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1 Introduction

Machine learning algorithms are rarely perfect. To be successfully deployed, they
must compensate for their imperfections by interacting intelligently with the user
and the environment. We define two broad categories of such interaction: corrective
feedback and persistent learning.

Corrective feedback is the ability to solicit corrections from the user. For exam-
ple, corrective feedback may be required when spam filters incorrectly classify
email messages, when speech recognizers incorrectly transcribe words, or when
automated assembly systems incorrectly join product components. The main dif-
ficulty in corrective feedback is designing the corrective action to be as effortless
as possible for the user. The amount of effort per correction becomes increasingly
important in domains requiring high accuracy, for example where each prediction
must be manually inspected for errors.

If after being corrected the system repeats its errors, the user will be justifiably
disappointed. This is the motivation behind the second capability, persistent learn-
ing. Persistent learning is the ability of the system to continually update its predic-
tion model after deployment. Given corrected data examples, the system should re-
estimate its parameters to improve future performance. For example, given enough
corrective feedback, a spam filter should become personalized to the type of mail
each user receives, and a speech recognizer should become personalized to the
speech idiosyncrasies of each user.

Persistent learning and corrective feedback have been successfully implemented for
simple classification tasks such as spam filtering. However, such a simple interac-
tion model is not possible for algorithms that operate over more complex domains.
In particular, we are interested in algorithms designed for structured prediction:
classification tasks where the output has multiple interacting labels. Examples of
structured prediction tasks include speech recognition, where the input is a spoken
utterance and the output is a sequence of words, and information extraction, where
the input is a sequence of text and the output is a relational database of the entities
in the text.

Soliciting corrective feedback is often more difficult for structured prediction tasks
than for simple prediction tasks. For example, correcting a spam filter can be as
simple as a single mouse click, whereas correcting a speech recognizer may require
retyping entire words and phrases, and correcting an information extraction system
may require re-labeling and re-segmenting extracted entities. The more difficult it
is for the user to correct the system, the less feedback the system will receive. This
in turn leads to a brittle system incapable of adapting to its environment.

In this paper, we argue that by designing more efficient corrective feedback mech-
anisms, we can enable more effective persistent learning.



We examine this hypothesis on one common instance of structured classification:
information extraction. In particular, we consider the task of discovering contact
information (e.g. name, address, phone number) from on-line sources such as email
messages and web pages. This is an example of named-entity recognition — the
task of identifying a set of interesting entity types in text.

As we will show, an extraction system based on linear-chain conditional random
fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) can extract over
90% of these fields correctly from a diverse set of noisy sources. However, this
accuracy is only attainable given hand-labeled data. Efficiently acquiring this data
is the goal of this work. We present an interactive information extraction system
that makes correcting the predictions of a partially-trained extractor as effortless as
possible, ensuring data integrity and fast training of a high-accuracy extractor.

There are four main contributions of this paper. The first is an algorithm to incor-
porate corrective feedback into CRFs (Section 3.1). By constraining the prediction
procedure to respect user corrections, we enable what we refer to as correction
propagation: the correction to one part of the output automatically corrects other
parts of the output. We demonstrate empirically that correction propagation can
lead to more efficient corrective feedback (Section 3.6.1).

The second contribution is a set of algorithms to determine the order in which pre-
dictions should be corrected by the user. For each example, we may want to correct
the least confident prediction first, as described in Section 3.2, or we may want to
correct the prediction that will maximize the amount of correction propagation, as
described in Section 3.3.

Third is the introduction of an interactive information extraction interface (Section
3.4). This interface highlights the label assigned to each field in the unstructured
document while flagging labels that should be corrected. The interface also allows
for rapid correction using “drag and drop,” and supports the correction propagation
capability described above.

Finally, relying on these corrective feedback mechanisms, we advocate a cost-
sensitive active learning paradigm for information extraction that reduces not only
how many examples the annotator must label, but also how difficult each example
is to annotate (Section 4). That is, whereas traditional active learning approaches
minimize the number of examples that must be manually labeled, we minimize
the number of corrective actions. We show that more efficient corrective feedback
mechanisms decrease the amount of effort required to train an accurate extractor.

The remainder of this paper first reviews CRFs for information extraction, then
describes each of our four contributions in turn. We perform experiments simulating
an interactive information extraction environment and demonstrate the amount of
user effort saved through corrective feedback and persistent learning.



2 Information Extraction with Conditional Random Fields

Information extraction (IE) is the task of automatically populating a relational
database with facts discovered from natural language text. A common subtask of IE
is named-entity recognition (NER), the task of annotating text with shallow seman-
tic information, such as the names of people, places, or organizations. For example,
in this paper we are concerned with annotating free-text contact records with field
labels, such as name, company, city, phone number, etc.

More formally, we represent a document D by a sequence of word tokens x =
(x1...2,). The goal of NER is to extract from D a set of fields F = {F} ... F}},
where each field is an attribute-value pair, F; = (a,v) (for example F; = (City,
San Francisco)). Note that a field value may span multiple work tokens.

For example, consider the input string John was born in San Francisco, Califor-
nia. From this sequence of tokens, the NER system should extract the fields F; =
(Name, John), F» = (City, San Francisco), and F3 = (State, California). We will
often refer to the attribute as a label of a token; e.g. in this example California is
labeled as a State.

There have been numerous NER systems proposed in the literature. We desire a
system that not only has accurate performance, but also facilitates intelligent and
efficient interaction with the user.

A simple, but often effective, NER system can be built simply using hand-crafted
regular expressions. For example, the pattern “born in [CAPS]” could be used to
label as a city any capitalized token that directly follows the phrase “born in.” Un-
fortunately, the infinite variability of human language makes this approach error
prone. We categorize NER errors into two types: (1) precision errors, e.g. erro-
neously labeling Charity Hospital as a city in the phrase born in Charity Hospital,
and (2) recall errors, e.g. failing to label San Francisco as a city in the phrase raised
in San Francisco. Many wrapper induction techniques have been proposed to learn
regular expressions that can reduce some of these errors (Kushmerick et al., 1997);
however, they are still constrained by the brittleness of pattern matching.

A popular alternative to pattern matching is statistical machine learning. In this
approach, a number of features are computed for each token to provide evidence of
its label. Example features include information about capitalization, syntax, context
words, presence in name lists, and even the regular expressions used in pattern
matching techniques. Given some training examples in which tokens are annotated
with their true labels, these systems learn correlations between features and labels,
thereby inducing a distribution over possible labels for each token.

In addition to often being more accurate and robust than pattern matching tech-
niques, statistical machine learning approaches frequently have the capability of



reliably estimating the confidence of each labeling decision. This becomes impor-
tant in an interactive system, where we would like to direct the user to fields most
likely in need of correction.

Maximum entropy classification (Jaynes, 1979) is a potentially quite powerful ma-
chine learning approach to NER, since it allows arbitrary, potentially dependent,
features of the input and can also naturally estimate the confidence of its deci-
sions. However, because maximum entropy classification extracts each field inde-
pendently of related fields, there is no potential for correction propagation.

Conditional random fields (CRFs) are a generalization both of maximum entropy
models and hidden Markov models that have been shown to perform well on infor-
mation extraction tasks (Lafferty et al., 2001; Sutton and McCallum, 2006; McCal-
lum and Li, 2003; Pinto et al., 2003; McCallum, 2003; Sha and Pereira, 2003). Like
maximum entropy classifiers, they allow for the introduction of arbitrary non-local
features; additionally, they capture the dependencies between neighboring labels.
CREFs are well-suited for interactive information extraction since the confidence of
the labels can be estimated, and there is a natural scheme for optimally propagating
user corrections. We now give a brief overview of CRFs.

CRFs are undirected graphical models that encode the conditional probability of
values on designated output nodes given values on designated input nodes. In the
special case in which the designated output nodes of the graphical model are linked
by edges in a linear chain, CRFs make a first-order Markov independence assump-
tion among output nodes, and thus correspond to finite state machines (FSMs). In
this case CRFs can be roughly understood as conditionally-trained hidden Markov
models, with additional flexibility to take advantage of complex, overlapping fea-
tures.

Let x = (1, x9,...z7) be an observed input data sequence, such as a sequence of
word tokens in a document (the values on 7" input nodes of the graphical model).
Let L be a set of FSM states, each of which is associated with a label (such as
LastName or PhoneNumber). Let y = (y1, 9, ...yr) be some sequence of states,
(the values on 7" output nodes). CRFs define the conditional probability of a state
sequence given an input sequence as

1 T
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where Zy is a normalization factor over all state sequences, fi(y;—1,ys, X, t) is an
arbitrary feature function over its arguments, and \; € A is a learned weight for
each feature function. The normalization factor, Zy, involves a sum over an expo-
nential number of different possible state sequences, but because these nodes with
unknown values are connected in a graph without cycles (a linear chain in this case),
it can be efficiently calculated via belief propagation using dynamic programming.
Inference to find the most likely state sequence is also a dynamic program, in this



y City City Other State Zip

F1 F2 F3
City State| Zip
San Francisco | CA 94080

X San Francisco , CA 94080
1 2 3 4 5

Fig. 1. A graphical model of a CRF for a named-entity recognition example. The predicted
label sequence y corresponds to the three extracted fields F'1, F'2, F'3.

case very similar to the Viterbi algorithm of hidden Markov models.

The A parameters can be determined using supervised machine learning. Given a
setof N training sequences D = {x), y(¥}, where y¥) is the true labeling of token
sequence x(?, the A weights of the CRF can be set to maximize the conditional
log likelihood of the true labels of D. To mitigate over-fitting, the conditional log
likelihood 1s often regularized by a Gaussian prior over parameters, with mean 0
and variance 2. The resulting function we wish to maximize is

Ak
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This maximization can be formulated as a convex optimization problem, solved
efficiently using hill-climbing methods such as conjugate gradient or its improved
second-order cousin, limited-memory BFGS (Liu and Nocedal, 1989). BFGS can
simply be treated as a black-box optimization procedure, requiring only that one
provide the first-derivative of the function to be optimized. The first-derivative of
the regularized conditional log-likelihood is

= (f: Gty x)) - (i X oy Ciyx)) - 2

i=1 i=1 s o

where Cj,(y,x) is the “count” for feature k given y* and x(*), equal to the sum of
all of the fr(yi—1, s, x (1) t) values for each position in the sequence y(®. The last
term, Ay /o, is the derivative of the Gaussian prior.

Figure 1 shows an example of the graphical model for a linear-chain CRF. In graph-
ical modeling notation, circles represent random variables, shaded nodes indicated
observed random variables, and edges indicate probabilistic dependence. Each edge
is parameterized by a set of weighted feature functions representing contextual evi-
dence of a label, such as capitalization, word identity, or presence in a lexicon. The
features are presented in more detail in Section 3.5.3.

For illustrative purposes, we will now step through a concrete example of how to



calculate the probability of the label sequence in Figure 1, according to Equation
1. Assume that we have only one type of feature fi(vy;_1,y:,X,t), which is equal
to 1 if token ¢ is capitalized, and is O otherwise. Assume further that the weight
associated with this feature is 0.8 if y; € {City, State}, and is —0.2 otherwise.
Then, the probability of the label sequence given in Figure 1 is calculated as

pa(y|x) ocexp <0.8 - fi(null, City, San, 1) + 0.8 - f,(City, City, Francisco, 2)
—0.2 - f1(City, Other, “,”, 3) + 0.8 - f1(Other, State, CA, 4)
0.2+ f,(State, Zip, 94080, 5))
x0.8-3=24

To convert this unnormalized score into a probability, we must divide by Z, the
sum of the scores for every other possible label sequence for the given input se-
quence. There exists a well-known dynamic programming solution to calculate this
sum in time O(T'L?), where T is the length of the sequence, and L is the number
of different output labels (see Section 3.1).

Note that in this example the feature only computes evidence over the current token
x¢. In general, features can gather evidence from any element of the input sequence,
for example a feature that indicates the identity of the previous token, or whether the
next token contains only digits. These contextual features are extremely informative
for NER tasks.

In the next sections we discuss ways to extend CRFs to support corrective feedback
and persistent learning.

3 Corrective Feedback

Although CRFs have been quite successful on many information extraction task,
their output will still inevitably contain errors. The goal of this section is to present
extensions to CRFs that allow the user to verify and correct system predictions with
as little effort as possible.

The first way we reduce effort is by interactively updating system predictions as
the user makes corrections (Section 3.1). When a correction is made, the constraints
imposed upon the inference algorithm often lead to other errors being automatically
corrected with no additional input from the user. We call this capability correction
propagation.

The second way we reduce effort is by focusing the user’s attention to certain fields
that should be corrected. The user is directed to fields either when the system has



low confidence in its prediction (Section 3.2) or when correcting that field is ex-
pected to lead to correction propagation (Section 3.3).

3.1 Correction Propagation with the Constrained Viterbi Algorithm

When the user corrects the label for one extracted field, we would like the model
to re-perform inference in case this correction affects the predicted labels of other
fields.

For example, given the name “Charles Stanley,” it is likely that the first name is
Charles and the last name is “Stanley.” But, the opposite is possible as well. Given
the error that the two names have been switched, naive correction systems require
two corrective actions. In the interactive information extraction system described
below, when the user corrects the first name field to be “Stanley,” the system then
automatically changes the last name field to be “Charles,” because this is the most
likely interpretation given the correction.

The inference algorithm for CRFs has a natural extension that essentially “clamps”
some hidden y nodes to their corrected value, often resulting in new predictions
for other fields. We first briefly describe the traditional inference algorithm, then its
constrained counterpart.

In hidden Markov models, the Viterbi algorithm (Rabiner, 1989) (also known as
the max-product algorithm) is an efficient dynamic programming solution to the
problem of finding the state sequence most likely to have generated the observa-
tion sequence (i.e. the most probable explanation (MPE) inference problem). CRFs
employ a conditional analog of Viterbi that returns the most likely state sequence
given an observation sequence, i.e. the solution to

y" = argmax p,(y|x).
Yy

To avoid an exponential-time search over all possible settings of y, Viterbi stores
the probability of the most likely path at time ¢ which accounts for the first £ obser-
vations and ends in state y;. Following the notation of Rabiner (1989), we define
this probability to be &;(y;), where dy(y;) is the probability of starting in each state
i, and the induction step is given by:

Oc+1(yi) = max [&(y’) exp <Zk: Aefi(Y's i X, t))} : 2)

The recursion terminates in

yr = argmax|dr(y;)]
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We can backtrack through the dynamic programming table to recover y*.

We now describe how to modify Viterbi to respect a user correction. By a user
correction, we mean that a user has fixed the labels for some set of tokens, either
by correcting a field label, or adjusting the start or end boundaries of a field.

When a user enters a correction to a field, we represent this by fixing the y labels
for that field to the labels specified by the user. These are encoded as constraints
in the Viterbi algorithm, resulting in the constrained Viterbi algorithm. Constrained
Viterbi alters Eq. 2 such that y* is constrained to pass through some sub-path C' =
(Yt, Yit1 - - ), corresponding to a user correction. These constraints C' now define
the new induction

max|0,(y') exp (SNfely/ ox.) )| i = g

0 otherwise

Or1(ys) = 3)

for all y;,1 € C'. For time steps not constrained by C, Eq. 2 is used instead. Thus,
constrained Viterbi restricts Viterbi search to only consider paths that respect con-
straints C'.

Because CRFs model the dependence between adjacent labels, a change to the pre-
diction for label y; can change the MPE estimate for label y; .1, which can in turn
change the estimate for g, o, etc. In this way, a single user correction can be prop-
agated throughout the entire sequence.

In an interactive setting, when the user corrects one field, these corrections are
propagated in real-time to the rest of the fields, allowing the user to fix multiple
errors with a single action.

We refer to a CRF augmented with constrained Viterbi as a constrained conditional
random field (CCRF).

3.2 Confidence Estimation with the Constrained Forward-Backward Algorithm

Manually inspecting each automatically labeled field can be tedious for the user.
One way to mitigate this effort is to direct the user to fields that are most likely to
be incorrect. In this section, we describe how a CRF can estimate the confidence of
each field it extracts.

The conditional probability of the label for one token p(y;|x) is calculated by a
variant of the Viterbi algorithm called forward-backward (also known as the sum-
product algorithm). This algorithm is similar to the Viterbi algorithm; but instead
of choosing the most probable state sequence, forward-backward evaluates all pos-
sible state sequences given the observation sequence.



The forward values a1 (y;) are recursively defined similarly to Eq. 2, except the
max is replaced by a summation. Thus we have

a1 (yi) = Z

y/

au(y) exp (;Akmy',%,x, 0) 4)

The recursion terminates to define Zy in Eq. 1:

Ze =" ar(y) (5)

Although the probability of the label for one token p(y;|x) is easily obtained by
the CRF inference algorithm, the label for an entire field requires calculating the
probability of a sequence of tokens p(y; . .. yx|x), where the field contains tokens

To estimate the confidence the CRF has in an extracted field, we employ a technique
we term constrained forward-backward (Culotta and McCallum, 2004), which cal-
culates the probability of any state sequence matching the labeling of the field under
consideration. The constrained forward-backward algorithm calculates the proba-
bility of any sequence passing through a set of constraints C' = (y, ...y,), where
now y, € C' can be either a positive constraint or a negative constraint. A negative
constraint constrains the forward value calculation not to pass through state y,.

The calculations of the forward values can be made to conform to C' in a manner
similar to the constrained Viterbi algorithm. If o} (y;) is the constrained forward
value, then Z/ = ¥, o/7(y;) is the value of the constrained lattice. Our confidence
estimate is equal to the normalized value of the constrained lattice: Z. /Z. For
predicted value f for field Fj, this confidence estimate is equivalent to P(F; = f|x).

In the context of interactive form filling, the constraints C' correspond to an auto-
matically extracted field. The positive constraints specify the observation tokens la-
beled inside the field, and the negative constraints specify the boundary of the field.
For example, if state names B-Title and I-JobTitle represent label tokens that begin
and continue a JobTitle field, and the system labels observation sequence (x5 . . . x5)
as a JobTitle field, then C' = (y, = B-JobTitle, y3 = y, = y5 = I-JobTitle, ys # I-
JobTitle). Thus, the confidence estimate corresponds to the probability of any state
sequence predicting these constrained JobTitle labels.

3.3 Maximizing Correction Propagation

While highlighting the least confident field is likely to direct the user to incorrectly
labeled fields, an alternative objective is to solicit user actions that maximize the
number of fields automatically fixed by correction propagation. The motivation for
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this objective is to maximize the number of “free” corrections enabled by correction
propagation. Because of the dependencies among predicted labels, knowing the true
label of one field may reduce the uncertainty of the predictions for other fields.

We define two scoring functions that rank fields to be labeled based on the expected
amount of correction propagation that will follow their correction.

The first scoring function prefers fields that have high mutual information with the
rest of the sequence. Let y~* be the set of label variables excluding those for field
F;. The score for field F; is the mutual information between y ¢ and Fj:

I(y'|Fy) = H(F,) — H(F)ly™)
=—> " P(F;= f)log P(F; = f)

f
3N Py t=y9. Fi=fllogP(y ' =yYV|E=f) (6)
j f

In the last term, the sum over j requires iterating over all possible labelings of y.
We approximate this exponential calculation by restricting the sum to the top 7’
most probable paths (e.g. 7' = 30). Similarly, when field F; contains many tokens,
summing over all competing predictions can also become intractable. In this case,
we sample from the top most probable predictions for F;.

The intuition behind this scoring function is that if the distribution over one field
conveys a large amount of information about the distribution over other fields, then
correcting this field may lead to the automatic correction of other fields.

The second scoring function attempts to maximize the expected number of auto-
matic corrections directly. Let y . _ , be the constrained Viterbi path where field F;
is clamped to the setting f. Let #(F; = f) be the number of labels in y7, _ that
are changed from the original Viterbi output when the labeling for field F; is set to
f. Then the expected number of tokens automatically corrected by having the user
correct field F; is estimated as

EC(F;) =Y P(yp—sIx)#(F; = f) (7)
f

The intuition behind this measure is to weight the number of label changes effected
by setting F; to f by the probability that those changes are correct.

We compare the effectiveness of these scoring functions empirically in Section
3.6.2.

11
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Fig. 2. A user interface for entry of contact information. The user interface relies on inter-
active information extraction. If a user makes a correction, the interactive parser can update
other fields. Notice that there are 3 possible names associated with the address. The user is
alerted to the ambiguity by the color coding.

3.4 User Interface

From the perspective of user interface design, there are a number of goals, in-
cluding reducing cognitive load, reducing the number of user actions (clicks and
keystrokes), and speeding up the data acquisition process. An important element
that is often overlooked is the confidence the user has in the integrity of the data.
This is crucial to the usability of the application, as users are not tolerant of (surpris-
ing) errors, and will discontinue the use of an automatic semi-intelligent application
if it has corrupted or misclassified information. Unfortunately such factors are often
hard to quantify. We describe an interface that enables efficient corrective feedback
to ensure data integrity.

3.4.1 User Interfaces for Information Extraction

Figure 2 shows a user interface that facilitates interactive information extraction.
The fields to be populated are on the left side, and the source text was pasted by the
user into the right side. The information extraction system extracts text segments
from the unstructured text and populates the corresponding fields in the contact
record. This user interface is designed with the strengths and weaknesses of the
information extraction technology in mind. Some important aspects are:

e The UI displays visual aids that allow the user to quickly verify the correctness
of the extracted fields. In this case color-coded correspondence is used (e.g. blue
for all phone information, and yellow for email addresses). Other options include

12



arrows or floating overlayed tags.

e The UI allows for rapid correction. For example, text segments can easily be
grouped into blocks to allow for a single click-drag-drop. In the contact record
at the left, fields have drop down menus with other candidates for the field. Al-
ternatively the interface could include “try again” buttons next to the fields that
cycle through possible alternative extractions for the field until the correct value
is found.

e By integrating the original text in the interface, the system addresses the common
“recall” errors of extractors. That is, if a token is incorrectly labeled as not being
part of the record, the user can correct this error by dragging the token to the
correct field box.

e The Ul immediately propagates all corrections and additions by the constrained
Viterbi algorithm.

e The UI visually alerts the user to fields that have low confidence based on the
constrained forward-backward algorithm. Furthermore, in the unstructured text
box, possible alternatives may be highlighted (e.g. alternate names are indicated
in orange).

Confidence scores can be incorporated in a Ul in a number of ways. Field assign-
ments with relatively low confidence can be visually marked. If a field assignment
has very low confidence, and is likely to be incorrect, we may choose not to fill in
the field at all. The text that is most likely to be assigned to the field can then be
highlighted in the text-box (e.g. in orange).

Another related case is when there are multiple text segments that are all equally
likely to be classified as e.g. a name, then this could also be visually indicated (as
is done in Figure 2).

3.5 Experimental Setup

Below we simulate an interactive information extraction environment and show
that correction propagation and confidence estimation can decrease the expected
amount of user effort.

3.5.1 User Interaction Models

For the purposes of quantitative evaluation we will simulate the behavior of a user
performing contact record entry, verification, and correction. This allows for a sim-
pler experimental paradigm that can more clearly distinguish the values of the var-
ious technical components.

A large number of user interaction models are possible given the particulars of the
interface and information extraction engine. Here we outline the basic models that

13



will be evaluated in the experimental section.

UIM1: The simplest case. The user is presented with the results of automatic field
assignment and has to correct all errors (i.e. no correction-propagation).

UIM2: Under this model, we assume an initial automatic field assignment, fol-
lowed by a single randomly-chosen manual correction by the user. We then
perform correction-propagation, and the user has to correct all remaining errors
manually.

UIM3: This model is similar to UIM2. We assume an initial automatic field as-
signment. Next the user is asked to correct the least confident incorrect field.
The user is visually alerted to the fields in order of confidence, until an error is
found. We then perform correction-propagation and the user then has to correct
all remaining errors manually.

UIMm: The user has to fill in all fields manually.

3.5.2  The Expected Number of User Actions:

The goal in designing a new application technology is that users see an immediate
benefit in using the technology. Assuming that perfect accuracy is required, benefit
is realized if the technology increases the time efficiency of users, or if it reduces
the cognitive load, or both. Here we introduce an efficiency measure, called the
Expected Number of User Actions, which will be used in addition to standard IE
performance measures.

The Expected Number of User Actions (ENUA) measure is defined as the num-
ber of user actions (e.g. clicks) required to correctly enter all fields of a record.
For these experiments, we define an action to be the correction of one field, either
by entering a field, changing its label or adjusting its boundaries. The Expected
Number of User Actions will depend on the user interaction model. To express the
Expected Number of User Actions, we introduce the following notation: P;(j) is
the probability distribution over the number of errors j after : manual corrections.
This distribution is represented by the histogram in Figure 3.

Under UIM1, which does not involve correction propagation, the Expected Number
of User Actions is:

ENUA = i nPy(n) (8)
where Py(n) is the distribution over the nlzrflber of incorrect fields (see Figure 3).
In models UIM2 and UIM3 the Expected Number of User Actions is
ENUA; = (1 - R(0)) + > _nPi(n). )

where Py(0) is the probability that all fields are correctly assigned initially and
Py (n) is the distribution over the number of incorrect fields in a record after one
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Fig. 3. Histogram, where records fall into bins depending on how many fields in a record
are in error. Solid bars are for CRF before any corrections. The shaded bars show the dis-
tribution after one random incorrect field has been corrected. These can be used to estimate
Py(j) and Py (j), respectively.

field has been corrected. The distribution P; will depend on which incorrect field is
corrected, e.g. a random incorrect field is corrected under UIM2, whereas the least
confident incorrect field is corrected under UIM3. The subscript 1 on ENU A,
indicates that correction-propagation is performed once.

3.5.3 Data

For training and testing we collected 2187 documents (27,560 words) from web
pages and email and hand-labeled 25 fields.' Each document example consists of
one contact record that must be labeled with the correct field names, and may con-
tain tokens that are not part of the record (e.g. email text). Some data comes from
pages containing lists of addresses, and about half come from disparate web pages
found by searching for valid pairs of city name and zip code. For each experiment,
we sampled three random splits of the data, reserving 70% for training and 30% for
testing.

The features consist of capitalization features, 24 regular expressions over the token
text (e.g. ConstainsHyphen, ContainsDigits, etc.), character n-grams of length 2-4,

L The 25 fields are: FirstName, MiddleName, LastName, NickName, Suffix, Title, JobTi-
tle, CompanyName, Department, AddressLine, Cityl, City2, State, Country, PostalCode,
HomePhone, Fax, CompanyPhone, DirectCompanyPhone, Mobile, Pager, VoiceMail,
URL, Email, InstantMessage
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Token Acc. F1 Prec Rec

CRF 92.30 88.47 | 89.03 | 87.93
MaxEnt 89.80 82.48 | 82.48 | 82.47

Table 1

Token accuracy and field performance for the Conditional Random Field based field ex-
tractor, and the Maximum Entropy based field extractor. All differences are statistically
significant (p = 0.01).

and offsets of these features within a window of size 5. We also used 19 lexicons,
including “US Last Names,” “US First Names,” “State names,” “Titles/Suffixes,”
“Job titles,” and “Road endings.” Feature induction was not used in these experi-
ments.

3.6 Results

We implement two machine learning methods to automatically annotate the text of
each contact record. CRF is the conditional random field described in Section 2.
MaxEnt is a maximum entropy classifier with the same set of features as the CRF.
However, MaxEnt does not model the dependence between adjacent labels. Table
1 shows the performance for the two methods averaged over three random trials.
Column 1 lists the token accuracy (the proportion of tokens labeled correctly), and
columns 3-4 list the precision and recall at the field level; that is, all the tokens
in a field must be extracted correctly to be considered correct. F1 is the harmonic
mean of recall and precision. These experiments do not include any user feedback.
Notice that the token error rate of the CRF system is about 25% lower than that of
the MaxEnt system. These results are statistically significant according to a paired-t
test with p = 0.01.

In the following sections, we start by discussing results in terms of the Expected
Number of User Actions. Then we discuss results that highlight the effectiveness
of correction-propagation and confidence estimation.

3.6.1 User Interaction Experiments

Table 2 shows the Expected Number of User Actions for the different algorithms
and User Interaction Models. In addition to the CRF and MaxEnt algorithms, Ta-
ble 2 shows results for CCRF, which is the constrained conditional random field
classifier presented in this paper.

The baseline user interaction model (UIM1) is expected to require 0.73 user actions
per record. Notice that manual entry of records is expected to require on average
6.31 user actions to enter all fields, about 8.6 times more actions than UIM1. This
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ENUA | Change

CRF — (UIM1) 0.73 baseline
CCRF - (UIM2) 0.63 -13.9%
CCRF - (UIM3) 0.64 -11.3%
MaxEnt — (UIM1) | 0.94 +29.0%
Manual — (UIMm) | 6.31 | +770.0%

Table 2

The Expected Number of User Actions (ENUA) to completely enter a contact record. No-
tice that Constrained CRF with a random corrected field reduces the Expected Number of
User Actions by 13.9%.

difference confirms that correcting the CRF requires much less effort than entering
fields manually.

The improvement of UIM2 over UIMI is due to correction propagation. In UIM?2,
correction propagation occurs between the user’s first and second correction, often
reducing the number of actions. The ENUA drops to 0.63, which is a relative drop
in ENUA of 13.9%. In comparison, manual entry requires over 10 times more user
actions.

Confidence estimation is used in UIM3. Recall that in this user interaction model
the system assigns confidence scores to the fields, and the user is asked to correct
the least confident incorrect field.

Interestingly, correcting a random field (ENUA = 0.63) seems to be slightly more
informative for correction-propagation than correcting the least confident erroneous
field (ENUA = 0.64). While this may seem surprising, recall that a field will have
low confidence if the posterior probability of the competing labels is close to the
score for the chosen class. Hence, it only requires a small amount of extra informa-
tion to boost the posterior for one of the other labels and “flip” the classification. We
can imagine a contrived example containing two adjacent incorrect fields. In this
case, we should correct the more confident of the two to maximize correction prop-
agation. This is because the field with lower confidence requires a smaller amount
of extra information to correct its classification, all else being equal.

To better understand this phenomenon, in the next section we compare different
methods of estimating the amount of correction propagation.

3.6.2 Correction Propagation Experiments

In this section, we describe experiments that directly measure the amount of cor-
rection propagation enabled by different methods of ordering field corrections.
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CFB | EC | MI

%OPT | .536 | .571 | .875

Table 3
The percentage of optimal correction propagation for competing scoring functions.

We compare the scoring functions described in Section 3.3 to determine which best
estimates the amount of correction propagation. For each record, each field is given
a score by the scoring function, and the incorrect field with the highest score is
corrected. We then measure the number of fields automatically corrected by this
one manual correction.

For comparison, we also implement two boundary scoring functions, OPT and
NONOPT. Given a record with errors in multiple fields, OPT gives the highest
score to the incorrect field that will result in the maximum amount of correction
propagation; NONOPT results in the least amount of correction propagation. We
note that OPT is not a strict upper-bound, as there may be combinations of correc-
tions that result in greater propagation than choosing a single correction greedily.

The three other scoring functions are CFB, which uses constrained forward-backward
to score each field with the negative of its confidence value; EC, the expected num-

ber of correction (Equation 7); and MI, the mutual information criterion (Equation
6).

The values in Table 3 are normalized to be a percentage of optimal performance. If
N(X) is the number of field errors that remain under scoring function X, then

N(NONOPT) — N(X)

%O0PT(X) = N(NONOPT) — N(OPT)

Thus, %OPT(NONOPT)= 0 and %OPT(OPT)= 1.

These results suggest that the mutual information criterion (MI) is the best esti-
mate of the expected amount of correction propagation. MI outperforms EC most
likely because EC only considers the optimal path for each possible correction of a
field, whereas MI considers the full distribution of state sequences (up to the 7T™-best
approximation).

If the system knows which fields are incorrectly labeled, it can maximize correction
propagation by soliciting corrections in the order determined by MI. Of course,
the system does not know which fields are incorrect until the user corrects them.
Because a field with a high MI score is not necessarily incorrect, MI will often
direct the user to fields needing no correction. This incurs the additional user effort
of verifying correct fields.

To reduce this burden, in the next section we evaluate how accurately the CRF can
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predict whether a field is correct.

3.6.3 Confidence Estimation Experiments

A simple way of assessing the effectiveness of the confidence measure is to ask
how effective is it at directing the user to an incorrect field. In our experiments with
CCREFs, the number of records that contained one or more incorrect fields was 276.
Using the constrained forward-backward algorithm, the least confident field was
truly incorrect in 226 out of those 276 records. Hence, confidence estimation cor-
rectly predicts an erroneous fields 81.9% of the time. If we instead choose a token
at random, then we will choose an incorrect token in 80 out of the 276 records, or
29.0%. In practice, the user does not initially know where the errors are, so confi-
dence estimates can be used effectively to direct the user to incorrect fields.

We perform a more thorough evaluation under a different user scenario, in which
we wish to reduce the labeling error rate of a large amount of data, but we do not
need the labeling to be error free. If we have limited man-power, we would like to
maximize the efficiency of the human labeler.

This user interaction model assumes that we allow the human labeler to verify or
correct a single field in each record, before going on to the next record.

As before the constrained conditional random field model is used, where con-
strained forward-backward predicts the least confident extracted field. If this field is
incorrect, then CCRF is supplied with the correct labeling, and correction propaga-
tion is performed using constrained Viterbi. If this field is correct, then no changes
are made, and we go on to the next record.

The experiments compare the effectiveness of verifying or correcting the least con-
fident field i1.e. CCRF - (L.Conf), to verifying or correcting an arbitrary field i.e.
CCRF - (Random).

Finally, CMaxEnt is a Maximum Entropy classifier that estimates the confidence
of each field by averaging the posterior probabilities of the labels assigned to each
token in the field. As in CCREF, the least confident field is corrected if necessary.
Note that CMaxEnt does not perform correction propagation, since each field is
predicted independently.

Table 4 shows results after a single field in each record has been verified or cor-
rected. Notice that if a random field is chosen to be verified or corrected, then
the token accuracy increases to 93.82%, only a 20.6% reduction in error rate. If
however, we verify or correct only the least confident field, the error rate is re-
duced by 47.8%. These results are statistically significant according to a paired-t
test (p = 0.01).
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Method A Error | Token Acc | Fl1 Precision | Recall
CCRF - (L. Conf.) | -47.8% 95.69 93.98 94.46 93.52
CCREF - (Random) | -20.6% 93.82 90.85 91.58 90.13
CMaxEnt -30.1% 92.46 87.75 88.39 87.11

Table 4

Token accuracy and field performance for interactive field labeling. CCRF - (L. Contf.)
obtains a 47.8% reduction in F1 error over CRF. These reduction results are relative to
Table 1, where no user corrections are given. The improvements of CCRF - (L. Conf.) over
CCRF - (Random) and CMaxEnt are statistically significant (paired-t test, p = 0.01).

Pearson’s r | Avg. Precision
CFB 0.530 97.8
Random 0.003 88.93
WorstCase - 72.8

Table 5
The correlation coefficient and average precision evaluations of the constrained forward-
backward confidence estimate.

This difference illustrates that reliable confidence prediction can increase the ef-
fectiveness of a human labeler. Also note that the 47.8% error reduction CCRF
achieves over CRF is substantially greater than the 30.1% error reduction between
CMaxEnt and MaxEnt. This difference is due both to the correction propagation
and more accurate confidence estimation of CRFs.

To explicitly measure the effectiveness of the constrained forward-backward algo-
rithm for confidence estimation, Table 5 displays two evaluation measures: Pear-
son’s r and average precision. Pearson’s r is a correlation coefficient ranging from
—1 to 1 which measures the correlation between a confidence score of a field and
whether or not it is correct.

Given a list of extracted fields ordered by their confidence scores, average precision
measures the quality of this ordering. We calculate the precision at each point in the
ranked list where a correct field is found and then average these values. WorstCase
is the average precision obtained by ranking all incorrect fields above all correct
fields. Both Pearson’s 7 and average precision results demonstrate the effectiveness
of constrained forward-backward for estimating the confidence of extracted fields.

We summarize the empirical results thus far as follows:

e Correction propagation reduces the expected number of actions to correct an
automatically extracted database.

e Mutual information is the most reliable estimator of correction propagation,
among the three estimators compared.

e Confidence estimation with constrained forward-backward can accelerate data
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cleaning by directing the user to fields most likely needing correction.

4 Persistent Learning

Thus far, we have discussed extensions to CRFs to enable rapid correction of sys-
tem errors. However, we have not yet described how to use these corrections to
improve the prediction model of the CRF. In this section, we will discuss persistent
learning for CRFs. The techniques presented here can be used either to create a new
CREF for a novel domain, or to improve an existing CRF with new training data.

Below, we discuss a cost-sensitive active learning framework to train a CRF in-
teractively while minimizing the amount of time spent labeling data. The efficient
corrective feedback techniques discussed in the previous sections are incorporated
into this active learning system to improve learning rates.

4.1 Active Learning for Information Extraction

Training a CRF extractor requires labeling a training set with the true labels of each
token. This is particularly expensive to obtain for structured prediction tasks, since
each training example may have multiple, interacting labels, all of which must be
correctly annotated for the example to be of use to the learner. To give the user the
flexibility to use these techniques on customized tasks, we would like to make this
labeling process as painless as possible.

Active learning is a machine learning technique designed to address this problem.
The idea is to optimize the order in which the training examples are labeled to in-
crease learning efficiency (Cohn et al., 1995; Lewis and Catlett, 1994). Most active
learners are evaluated by plotting a learning curve that displays the learner’s per-
formance on a held-out data set as the number of labeled examples increases. An
active learner is considered successful if it obtains better performance than a tra-
ditional learner given the same number of labeled examples. Thus, active learning
expedites annotation by reducing the number of labeled examples required to train
an accurate model.

However, this paradigm assumes each example is equally difficult to annotate.
While this assumption may hold in traditional classification tasks, in structured
classification tasks it does not. For example, consider the following labeled exam-
ple:

<name> Jane Smith </name>

<title> CEO </title>
<company> Unicorp, LLC </company>
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Phone: <phone> (555)555-5555 </phone>

To label this example, the user must not only specify which type of field each token
belongs to, but also must determine the start and end boundaries of each field.
Clearly, the amount of work required to label an example such as this will vary
between examples, based on the number of fields. Additionally, unlike in traditional
classification tasks, a structured prediction system may be able to partially label an
example, which can simplify annotation. In the above example, the partially-trained
system might correctly segment the title field, but mislabel it as a company name.
These partial predictions can reduce labeling effort.

This greater variety of labeling effort is not reflected by the standard evaluation
metrics from active learning. Since our goal is to reduce annotation effort, it is de-
sirable to design a labeling framework that considers not only how many examples
the annotator must label, but also how difficult each example is to annotate.

In the next section, we propose a framework to address these shortcomings for a
CRF-based extraction system. We then provide a fine-grained extension of the Ex-
pected Number of User Actions measure defined in Section 3.5.2 that distinguishes
between boundary and classification annotations. Finally, we demonstrate an in-
teractive information extraction system that aims to minimize the amount of effort
required to train an accurate extractor.

4.2 Annotation framework

To expedite annotation for information extraction, we first note that the main differ-
ence between labeling IE examples and labeling traditional classification examples
is the problem of boundary annotation (or segmentation). Given a sequence of text
that is correctly segmented, choosing the correct label for each field is simply a
classification task: the annotator must choose among a finite set of labels for each
field. However, determining the boundaries of each field is an intrinsically distinct
task, since the number of ways to segment a sequence is exponential in the sequence
length. Additionally, from a human-computer interaction perspective, the “clicking
and dragging” involved in boundary annotation generally requires more hand-eye
coordination from the user than does classification annotation.

With this distinction in mind, our system reduces annotation effort in two ways.
First, many segmentation decisions are converted into classification decisions by
presenting the user with multiple predicted segmentations to choose from. Thus,
instead of hand segmenting each field, the user may select the correct segmentation
from the given choices.

Second, the system uses the effort-saving techniques discussed in Section 3 to allow
the user to efficiently correct examples to be added to the training set.
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The resulting system allows the user to constrain the predictions of the learner with-
out manually annotating the boundaries of incorrect segments. Very often, these
constraints will allow the user to simply select the correct annotation from among
the provided choices. Thus, the annotator can frequently label a record without
explicitly annotating the boundaries.

We validate this active learning framework in an interactive information extraction
system, reducing the total number of annotation actions by 21% and the number of
boundary annotations by 42%, as compared with competing methods.

We first provide a brief overview of the annotation framework applied to IE. Given
an IE learning algorithm L and a set of unlabeled data U, the task is to iteratively
solicit annotations from the user and retrain the extractor. Each example is a se-
quence of tokens (e.g. a paragraph), and a labeled example provides the true field
label for each token.

At iteration ¢, the system operates as follows:

(1) Rank the set of unlabeled examples U by the priority to be labeled.

(2) Select the top-ranked example u € U to be labeled.

(3) Present to the user the top k labelings of u predicted by L (the model at time
t).

(4) If the correct labeling exists in the top k choices, allow the user to select that
labeling, and add « to the labeled data set.

(5) Otherwise, for any field in these k predictions that is segmented correctly but
classified incorrectly, allow the user to provide the correct label for this field.

(6) Based on these corrections, generate a new set of k predictions, propagating
these corrections to possibly fix other errors.

(7) If the correct labeling exists in these new top k choices, allow the user to select
that labeling and add u to the labeled dataset.

(8) Otherwise, if the correct labeling still does not exist in these & predictions,
allow the user to manually correct one of these incorrect £ predictions with
the true labeling.

Notice that the only step in which the user must manually segment fields is step
8. Steps 4 and 7 allow the user to label the sequence by making a choice among
k predictions. Step 5 allows the user to provide correct field labels to the learner,
without manually segmenting fields. In step 6, the system performs constrained
inference to generate a new set of predictions that conform to the user’s corrections.
It is in this step that the system often automatically corrects segmentation errors
present in the first k£ choices.

This framework allows the user to rapidly and easily annotate examples and cor-

rect the system’s predictions, while reducing the amount of effort spent labeling
boundaries.
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In the remaining sections, we describe in more detail the components of this system.

4.3 Ranking function

In step (1), the system ranks the unlabeled examples by the order in which they
should be labeled. The ranking function should order examples to create the steep-
est learning curve (i.e. achieve the highest accuracy with the fewest number of
labeled examples).

This ranking function is the subject of much of the work in active learning (Cohn
et al., 1995; Lewis and Catlett, 1994; Muslea et al., 2003). However, our proposed
framework is not directly concerned with this ranking function, but rather with the
user interaction after the examples have been ranked. Hence, any of the popular
active learning ranking functions can be used in step (1). We experiment with two
common methods:

e LeastConfidence: This uncertainty-based approach ranks each example by the
probability of the top prediction, i.e. p(y*|x).

e Query-by-committee (QBC): This committee-based approach trains a pool of
learners and ranks examples by the amount of disagreement among the pool. In
particular, we split the set of labeled examples into m sets, and train a CRF on
each set. To score an unlabeled example, we generate m labelings, one from each
CRF. We calculate the normalized vote entropy (Argamon-Engelson and Dagan,
1999) for a labeled token ¢ as follows:

| V(I 1)
log
B 2= m

~ log min(

V(1)

D(t) =

where V' ([, ) is the number of labelings assigning label [ to token ¢, and |L| is
the number of possible labels. To obtain the score for an entire sequence, we
average the vote entropies of each labeled token. This is a measure of how much
disagreement exists among the m CRFs.

4.4  Presenting multiple predictions

To present the user with the top k£ predictions, we must extend the CRF inference
algorithm to return k predictions, instead of simply the top prediction. There are
well-established, efficient modifications to the Viterbi algorithm that can calcu-
late the top k optimal predictions, often called k-best Viterbi (Schwartz and Chow,
1990). This algorithm can be viewed as a beam search through the space of possible
predictions. We apply this algorithm to inference in CRFs to generate the £ most
probable predictions.
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In step 5, the annotator provides the true label for fields that have been correctly
segmented but incorrectly classified. The system must then produce the top k pre-
dictions that conform to these new annotations.

In Section 3.1 we described the constrained Viterbi algorithm, which modifies the
traditional Viterbi algorithm to prune from the search space those labelings that do
not agree with the given annotations. We extend this to our current task using an
algorithm we call k-best constrained Viterbi, which, as its name suggests, combines
k-best Viterbi with constrained Viterbi. This extension can be straight-forwardly
implemented by constraining the k-best Viterbi algorithm to prune predictions that
do not agree with the annotations.

Using this algorithm, we enable the system to solicit corrections for the classifi-
cation of fields, which are then propagated to correct both the classification and
segmentation of other fields. In this way, we can reduce the amount of effort ex-
pended on segmentation labeling.

4.5 Measuring annotation effort

We refine the Expected Number of User Actions metric from Section 3.5.2 to con-
struct a more fine-grained estimate of the number of actions required to label each
example. Whereas ENUA assumes it takes one action to enter, relabel, or adjust
the boundaries of a field, we wish to distinguish among these actions. We define
three atomic labeling actions: start, end, and type, corresponding to labeling the
start boundary, end boundary, and type of an field.

Thus, labeling the input

<name> Jane Smith </name>
<title> CEO </title>

requires 2 start, 2 end, and 2 type actions. The goal of our annotation framework is
to reduce the total number of annotation actions.

We can see that a partially labeled example can require fewer annotation actions.
For example, consider the following partially labeled record:

<name> Jane </name> Smith
<company> CEO </company>

This requires one end action to fix the ending boundary of “Jane,” and one type
action to change “CEQ” from a company to a title. Thus, using the partial labeling
has reduced the total number of required actions from 6 to 2.

By presenting the user with £ predictions, we introduce another action: If one of
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Action Name Action Description
type User corrects the field label for a token or set of token.
start User adjusts the beginning boundary of a field.
end User adjusts the ending boundary of a field.
choice User selects the correct record labeling from a choice of k labelings.

Table 6
The set of measured user actions.

the k predictions is correct, the user must choose this prediction. We call this action
choice. A summary of user actions is given in Table 6.

To simulate corrections, we accumulate the number of times each action is per-
formed. In the first round, when the user corrects the labels of correctly segmented
fields, the only action incurred is the type action. If none of the k£ constrained pre-
dictions are correct, then (and only then) the user must perform the segmentation
actions start and end.

It will generally be the case that some actions are more expensive than others.
For example, as mentioned earlier, start and end actions may require more hand-
eye coordination than type actions. A cost-sensitive approach could take this into
account; however, in these experiments, we assume each action has unit cost.

4.6  Experiments

Using the same fully annotated collection of extracted contact records from Section
3.5, we simulate our annotation framework and measure the performance of the
CREF with respect to the number of actions required to train it.

We use 150 examples to train an initial CRF, 1018 to simulate user annotation, and
1019 to evaluate performance. Results are averaged over three random samples.

We first show that traditional active learning is beneficial in this domain. Figure 4
plots the average field F1 versus training set size, where the order in which exam-
ples are labeled is either random (Random), by order of least confidence (LeastCon-
fidence), or by the query-by-committee method (QBC, with three committee mem-
bers). Results are averaged over three random trials, with standard error bars as in-
dicated. This figure demonstrates that the order in which examples are labeled can
affect learning efficiency. For example, LeastConfidence requires approximately
300 fewer training examples to achieve the same F1 performance as Random.

Interestingly, the more sophisticated and computationally expensive QBC method
is outperformed by the straight-forward confidence measure. A likely reason for
this result is that because CRFs require a substantial number of labeled examples
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Fig. 4. Testing label F1 as a function of training set size, with standard error bars over
three trials. LeastConfidence outperforms both query-by-committee (gbc) and the random
baseline.

to perform well, dividing the small training set among three CRFs results in high-
variance models that do not give reliable estimates of overall performance. Because
of its simplicity and superior performance, LeastConfidence is the only ranking
function used in the following experiments.

Note that in Figure 4 each labeled example (e.g. a paragraph) must be manually la-
beled by the annotator. This figure assumes each example requires the same amount
of user effort to label (namely, one unit of cost). However, because each example
is a variable-length sequence of labels, different examples will incur different la-
beling costs. Moreover, using the corrective feedback methods we have presented,
even examples of the same length may have different labeling costs. Thus, we de-
sire a more explicit measure of labeling effort. In the next experiments, we examine
how F1 varies with the number of annotation actions.

We compare two competing methods. Baseline presents the user with the top pre-
diction, and the user must hand annotate all corrections. The other method is the
learning framework advocated in this paper, which presents the user with & pos-
sible segmentation, and interactively solicits label corrections. We vary k from 1
to 4. Constrained inference and correction propagation are used in one round of
interactive labeling. Note that all of these methods use LeastConfidence to rank the
unlabeled examples. The difference is the interaction that takes place when labeling
each example.
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Fig. 5. Testing label F1 as a function of the total number of annotation actions. At k = 4,
performance plateaus with roughly 800 fewer actions than the baseline.
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Fig. 6. Testing label F1 as a function of the total number of segmentation actions. The
interactive system with k = 4 requires just over half the number of segmentation actions of
the baseline.

Figure 5 compares these methods, measuring the total number of annotation ac-
tions required for each F1 value. The interactive framework outperforms the base-
line consistently. On average, interactive labeling with k£ = 4 requires 21% fewer
actions than baseline.

Note that £ = 1 closely tracks the baseline performance. This suggests that when
we restrict the user corrections to type actions only, there are not enough errors
fixed by correction propagation to overcome the additional cost of a round of user
interaction. This is further confirmed by the fact that performance increases with k.
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start + end | type | choice | start + end + type || total
k=1 1.28 1.07 | 0.62 2.35 2.97
k=2 0.95 0.92 | 0.70 1.87 2.58
k=3 0.79 0.88 | 0.74 1.67 241
k=4 0.71 0.86 | 0.76 1.58 2.34

Table 7

The average number of actions to label a single record, averaged over 1018 records, where
each record has on average 6.2 fields. As k increases, we convert more and more segmen-
tation actions into type and choice actions. Results for k¥ = 4 show a 22% reduction in
actions over k = 1. Boldfaced results are significantly lower than all other column values
(paired-t test, p = 0.05).

However, as k increases, we notice diminishing marginal returns in savings. This
suggests a trade-off between the difficulty of examining k labelings and the savings
realized by reducing the user action to a simple multiple-choice selection.

To demonstrate the reduction in segmentation labeling, Figure 6 displays the num-
ber of segmentation actions (start or end) needed to achieve a particular F1 value.
On average across the sampled F1 values, interactive labeling with k£ = 4 requires
42% fewer segmentation actions.

Note the steep learning curve of the interactive method. This suggests that the
CRF’s poor segmentation performance early in training is quickly overcome. The
result is that after a small number of actions, the annotator can reduce the number
of segmentation actions needed to train the CRF, and instead mostly provide type
annotation.

Table 7 displays the average number of actions required to label each record for
different values of k. These results are compatible with the trends in Figures 5 and
6. Note that the increase in choice actions as k increases is expected, since there are
many examples where the correct labeling is in the top £ choices. The advantage of
this framework is that the increase in the number of choice actions is outweighed by
the reduction in other actions. Note also that this reduction in effort is manifest even
assuming all actions incur the same cost. If we assume that boundary annotation is
more costly than type annotation, these difference will be even more pronounced.

These experiments have demonstrated that by providing the user with efficient cor-
rective feedback mechanisms, we can decrease the labeling effort required to train
a high-accuracy extractor.
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5 Related Work

This paper unifies previous work introducing interactive information extraction
and cost-sensitive active learning (Kristjannson et al., 2004; Culotta and McCal-
lum, 2005). In addition, we provide novel scoring functions to maximize correction
propagation (Section 3.3), provide more thorough evaluation of their effectiveness
(Section 3.6.2), and compare against additional active learning methods (Section
4.3).

Others have studied efficient ways to interactively train an extraction system (Cardie
and Pierce, 1998; Caruana et al., 2000); however, these methods do not use partially
labeled examples to reduce labeling effort and do not use the corrective feedback
methods we propose here. Instead, partially correct annotations are instead simply
marked as incorrect.

There has also been work in the human-computer interaction literature on design-
ing interfaces to support error correction for speech and handwriting recognition
systems (Mankoff and Abowd, 1999; Suhm et al., 1999). They motivate the impor-
tance of confidence estimation and user feedback, but consider neither correction
propagation nor active learning systems.

Active learning in general is a widely-researched area that mainly investigates dif-
ferent forms of scoring functions to rank unlabeled examples, as we discussed
in Section 4.3. These functions can be coarsely divided into uncertainty-based
methods, committee-based methods, and error minimization methods. Uncertainty-
based methods rank examples according to how much confidence the learner has in
its prediction (Lewis and Catlett, 1994; Scheffer et al., 2001). The LeastConfidence
method discussed in Section 4.3 is an example of this approach. Notably, recent
work by Schein (2005) has shown that simple uncertainty-based methods can be
competitive or superior to committee-based methods. Committee-based methods
construct a committee of learners and rank examples by the amount of disagree-
ment among them (Freund et al., 1997; McCallum and Nigam, 1998; Argamon-
Engelson and Dagan, 1999). The QBC method presented in Section 4.3 is an ex-
ample of this approach. Query-by-committee methods have also been extended to
multi-view and co-testing domains (Muslea et al., 2003; Ghani et al., 2003). Finally,
error minimization methods attempt to directly minimize the expected classification
error on future test examples (Cohn et al., 1996; Roy and McCallum, 2001). While
this approach provides nice theoretical guarantees, it is computationally expensive
and requires a number of approximations to be effective in practice.

To the best of our knowledge, the active learning framework we propose is the
first that (1) is sensitive to the difficulty of labeling each training example (2) uses
partially labeled examples to reduce this labeling difficulty, and (3) uses efficient
corrective feedback mechanisms (such as correction propagation) to reduce user
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effort. Below we discuss other active learning methods that are more closely related
to our approach.

Thompson et al. (1999) present an active learning system for information extraction
and parsing, which are instances of structured learning tasks. While they demon-
strate the advantage of active learning for these tasks, they require the annotator to
fully label each training example, which is precisely what this paper aims to avoid.

Vlachos (2006) has recently presented an active learning method that employs an
unsupervised learning algorithm to partially label examples, which are then cor-
rected by the user. This can be seen as an unsupervised analog to our previous
work (Kristjannson et al., 2004; Culotta and McCallum, 2005). Three central dis-
tinctions in our work is that we consider confidence at the field rather than token
level, we allow correction propagation to reduce labeling effort, and we provide
estimates of user effort per annotation.

Baldridge and Osborne (2004) consider active learning to annotate sentences with
parse trees. The annotator is presented with the top n predicted parse trees for a
sentence. If the true parse is in the top n predicted parses, the user may select that
parse. Otherwise, the user must manually annotate the sentence. This differs from
our work in that they do not leverage information from partially correct parses, and
correction propagation is not considered.

Additionally, Anderson and Moore (2005) evaluate various objective functions for
active learning for HMMs. Our mutual information scoring function (Equation 6)
used to maximize correction propagation can be seen as a variant of the entropy
loss function used in their work.

Confidence prediction itself is also an under-studied aspect of information extrac-
tion, although it has been investigated in document classification (Bennett, 2000),
speech recognition (Gunawardana et al., 1998), and machine translation (Gan-
drabur and Foster, 2003). Much of the previous work in confidence estimation
for information extraction comes from the active learning literature. Scheffer et al.
(2001) derive confidence estimates using hidden Markov models in an information
extraction system; however, they do not estimate the confidence of entire fields,
only singleton tokens. The token confidence is estimated by the difference between
the probabilities of its first and second most likely labels, whereas our constrained
forward-backward (Culotta and McCallum, 2004) considers multi-token fields, and
the full distribution of all suboptimal paths. Scheffer et al. (2001) also explore
an idea similar to constrained forward-backward to perform Baum-Welch training
with partially labeled data, where a limited number of labels provide constraints.
However, these constraints are again for singleton tokens only. Analogs of con-
strained Viterbi have been used in bioinformatics to find sub-optimal alignments of
RNA sequences (Zuker, 1991), and in speech recognition to train HMMs when the
word sequence is known but the sub-phone sequence is not (Franzini et al., 1990).
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6 Conclusions and Future Work

We have presented a framework for corrective feedback and persistent learning
for information extraction and have demonstrated its value empirically through the
simulated correction of real data.

While these simulations are effective for evaluation, the best evaluation is a com-
plete user study. Performance could be measured by the actual time it takes users
to train an accurate system and correct its predictions. This more costly evalua-
tion method also requires addressing issues of user interface design and annotator
variability, but it is ultimately the most direct evaluation procedure.

Additionally, while our proposed active learning system makes no assumptions
about the underlying ranking function, there may exist ways to construct a rank-
ing function that has a preference for examples that are easy to label.

While we have restricted our empirical study to information extraction, the ideas
presented here can be applied to other structured learning domains. The main prin-
ciples we have advocated in this paper are the following:

e Active learning systems should leverage partially labeled examples to reduce
annotation effort.

e When a user correction is provided, predictions should be updated in real-time
to enable correction propagation savings.

e Users should be directed to fields that are either most likely to need correction,
or most likely to lead to correction propagation.

e To better reflect user effort, evaluation of active learning systems should consider
the number of user actions, not simply the number of labeled examples.

This work can be seen as a way to facilitate the wide-spread use of machine learn-
ing algorithms for structured prediction. These algorithms often require additional
training examples to be personalized to each user. Therefore, the easier it is for a
system to be trained and corrected by the user, more likely it is that the system will
be well-received, frequently used, and accurate.
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