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Abstract

Coreference analysis, also known as record linkage
or identity uncertainty, is a difficult and important
problem in natural language processing, databases,
citation matching and many other tasks. This pa-
per introduces several discriminative, conditional-
probability models for coreference analysis, all
examples of undirected graphical models. Un-
like many historical approaches to coreference, the
models presented here are relational—they do not
assume that pairwise coreference decisions should
be made independently from each other. Unlike
other relational models of coreference that are gen-
erative, the conditional model here can incorpo-
rate a great variety of features of the input without
having to be concerned about their dependencies—
paralleling the advantages of conditional random
fields over hidden Markov models. We present ex-
periments on proper noun coreference in two text
data sets, showing results in which we reduce error
by nearly 28% or more over traditional thresholded
record-linkage, and by up to 33% over an alterna-
tive coreference technique previously used in natu-
ral language processing.

1 Introduction
In many domains—including computer vision, databases and
natural language processing—we find multiple views, de-
scriptions, or names for the same underlying object. Cor-
rectly resolving these references is a necessary precursor to
further processing and understanding of the data. In com-
puter vision, solving object correspondence is necessary for
counting or tracking. In databases, performing record linkage
or de-duplication creates a clean set of data that can be ac-
curately mined. In natural language processing, coreference
analysis finds the nouns, pronouns and phrases that refer to
the same entity, enabling the extraction of relations among
entities as well as more complex propositions.

Consider, for example, the text in a news article; it may
discuss the entitiesGeorge Bush, Colin Powell, andDonald
Rumsfeld. The article would contain multiple mentions of
Colin Powell by different strings—“Secretary of State Colin
Powell,” “he,” “Mr. Powell,” “the Secretary”—and would

also refer to the other two entities with sometimes overlap-
ping strings. The coreference task is to use content and con-
text of all the mentions to determine how many entities are
discussed in the article, and which mention corresponds to
which entity.

This task is most frequently solved by examining indi-
vidual pair-wise distance measures between mentions inde-
pendently of each other. For example, database record-
linkage and citation reference matching has been performed
by learning a pairwise distance metric between records,
and setting a distance threshold below which records are
merged[Monge and Elkan, 1997; Borthwicket al., 2000;
McCallumet al., 2000b; Bilenko and Mooney, 2002; Cohen
and Richman, 2002]. Coreference in NLP has also been per-
formed with distance thresholds or pairwise classifiers[Mc-
Carthy and Lehnert, 1995; Geet al., 1998; Soonet al., 2001;
Ng and Cardie, 2002].

But these distance measures are inherently noisy and the
answer to one pair-wise coreference decision may not be in-
dependent of another. For example, if we measure the dis-
tance between all of the three possible pairs among three
mentions, two of the distances may be below threshold, but
one above—an inconsistency due to noise and imperfect mea-
surement. For example, “Mr. Powell” may be correctly
coresolved with “Powell,” but particular grammatical circum-
stances may make the model incorrectly believe that “Powell”
is coreferent with a nearby occurrence of “she”. Inconsisten-
cies might be better resolved if the coreference decisions are
made independent relation to each other, and in a way that
accounts for the values of the multiple distances, instead of
a threshold on single pairs independently. Valuable distinc-
tions in real data are also often even more subtle. For exam-
ple in noun coreference, the gender attribute of one mention
might combine with the job-title attribute of another corefer-
ent mention, and this combination, in turn, might help core-
solve a third mention. This has been recognized, and there
are some examples of techniques that use heuristic feature
merging[Morton, 1997].

Recently Pasulaet al. [2003] have proposed a formal, re-
lational approach to the problem of identity uncertainty using
a type of Bayesian network called a Relational Probabilistic
Model [Friedmanet al., 1999]. A great strength of this model
is that it explicitly captures the dependence among multiple
coreference decisions.



However, it is a generative model of the entities, mentions
and all their features, and thus has difficulty using many fea-
tures that are highly overlapping, non-independent, at vary-
ing levels of granularity, and with long-range dependencies.
For example, we might wish to use features that capture the
phrases, words and character n-grams in the mentions, the ap-
pearance of keywords anywhere in the document, the parse-
tree of the current, preceding and following sentences, as well
as 2-d layout information. To produce accurate generative
probability distributions, the dependencies between these fea-
tures should be captured in the model; but doing so can lead
to extremely complex models in which parameter estimation
is nearly impossible.

Similar issues arise in sequence modeling problems. In this
area significant recent success has been achieved by replacing
a generative model—hidden Markov models—with a condi-
tional model—conditional random fields (CRFs)[Lafferty et
al., 2001]. CRFs have reduced part-of-speech tagging er-
rors by 50% on out-of-vocabulary words in comparison with
HMMs [Ibid.], matched champion noun phrase segmentation
results[Sha and Pereira, 2003], and significantly improved
the segmentation of tables in government reports[Pintoet al.,
2003]. Relational Markov networks[Taskaret al., 2002] are
similar models, and have been shown to significantly improve
classification of Web pages.

This paper introduces three conditional undirected graphi-
cal models for identity uncertainty. The models condition on
the mentions, and generate the coreference decisions, (and in
some cases also generate attributes of the entities). Clique
potential functions can measure, for example, the degree of
consistency between “Mr. Powell”, “he” and our assignment
of the attributeMALE to their common entity. In the first
most general model, the dependency structure is unrestricted,
and the number of underlying entities explicitly appears in the
model structure. The second model the third models have no
structural dependence on the number of entities, and fall into
a class of Markov random fields in which inference exactly
corresponds to graph partitioning[Boykovet al., 1999].

We show preliminary experimental results using the third
model on a proper noun coreference problem two differ-
ent newswire text domains: broadcast news stories from the
DARPA Automatic Content Extraction (ACE) program, and
newswire articles from the DARPA MUC corpus. In both
domains we take advantage of the ability to use arbitrary,
overlapping features of the input, including string equality,
substring, and acronym matches. Using the same features,
in comparison with an alternative natural language process-
ing technique, we reduce error by 33% and 28% in the two
domains.

There are a wide variety of choices for addressing coref-
erence using conditionally-trained undirected graphical mod-
els. This paper aims to describe part of that landscape, and
present some preliminary experimental results. The progres-
sion of the three models show the trajectory of our thinking,
as well as some more flexible models to which one could
return in further experiments. Conditionally-trained identity
uncertainty models are a topic with much promise for addi-
tional future work.

2 Three Conditional Models of Identity
Uncertainty

We now describe three possible configurations for conditional
models of identity uncertainty, each progressively simpler
and more specific than its predecessor. All three are based
on conditionally-trained, undirected graphical models.

Undirected graphical models, also known as Markov net-
works or Markov random fields, are a type of probabilistic
model that excels at capturing interdependent data in which
causality among attributes is not apparent. We begin by in-
troducing notation for mentions, entities and attributes of en-
tities, then in the following subsections describe the likeli-
hood, inference and estimation procedures for the specific
undirected graphical models.

Let E = (E1, ...Em) be a collection of classes or “en-
tities”. Let X = (X1, ...Xn) be a collection of random
variables over observations or “mentions”; and letY =
(Y1, ...Yn) be a collection of random variables over integer
identifiers, unique to each entity, specifying to which entity
a mention refers. Thus they’s are integers ranging from 1 to
m, and if Yi = Yj , then mentionXi is said to refer to the
same underlying entity asXj . For example, some particu-
lar entity e4, U.S. Secretary of State, Colin L. Powell, may
be mentioned multiple times in a news article that also con-
tains mentions of other entities:x6 may be “Colin Powell”;
x9 may be “Powell”;x17 may be “the Secretary of State.” In
this case, the unique integer identifier for this entity,e4, is 4,
andy6 = y9 = y17 = 4.

Furthermore, entities may have attributes. LetA be a ran-
dom variable over the collection of all attributes for all enti-
ties. Borrowing the notation of Relational Markov Networks
[Taskaret al., 2002], we write the random variable over the at-
tributes of entityEs asEs.A = {Es.A1, Es.A2, Es.A3, ...}.
For example, these three attributes may begender, birth year,
andsurname. Continuing the above example, thene4.a1 =
MALE, e4.a2 = 1937, ande4.a3 = Powell. One can interpret
the attributes as the values that should appear in the fields
of a database record for the given entity. Attributes such as
surnamemay take on one of the finite number of values that
appear in the data set.

We may examine many features of the mentions,x, but
since a conditional model doesn’t generate them, we don’t
need random variable notation for them. Separate measured
features of the mentions and entity-assignments,y, are cap-
tured in different feature functions,f(·), over cliques in the
graphical model. Although the functions may be real-valued,
typically they are binary. The parameters of the model are
associated with these different feature functions. Details and
example feature functions and parameterizations are given for
the three specific models below.

The task is then to find the most likely collection of entity-
assignments,y, (and optionally also the most likely entity
attributes,a), given a collection of mentions and their context,
x. A generative probabilistic model of identity uncertainty is
trained to maximizeP (Y,A,X). A conditional probabilistic
model of identity uncertainty is instead trained to maximize
P (Y,A|X), or simplyP (Y|X).



2.1 Model 1: Groups of nodes for entities
First we consider an extremely general undirected graphical
model in which there is a node for the mentions,x,1 a node
for the entity-assignment of each mention,y, and a node for
each of the attributes of each entity,e.a. These nodes are
connected by edges in some unspecified structure, where an
edge indicates that the values of the two connected random
variables are dependent on each the other.

The parameters of the model are defined over cliques in this
graph. Typically the parameters on many different cliques
would be tied in patterns that reflect the nature of the repeated
relational structure in the data. Patterns of tied parameters
are common in many graphical models, including HMMs
and other finite state machines[McCallum et al., 2000a;
Lafferty et al., 2001], where they are tied across different
positions in the input sequence, and by more complex pat-
terns based on SQL-like queries, as in Markov Relational
Networks[Taskaret al., 2002]. Following the nomenclature
of the later, these parameter-tying-patterns are calledclique
templates; each particular instance a template in the graph we
call ahit.

For example, one clique template may specify a pattern
of consisting of two mentions, their entity-assignment nodes,
and an entity’ssurnameattribute node. The hits would consist
of all possible combinations of such nodes. Multiple feature
functions could then be run over each hit. One feature func-
tion might have value 1 if, for example, both mentions were
assigned to the same entity as the surname node, and if the
surname value appears as a substring in both mention strings
(and value 0 otherwise). Another feature function might be 1
if and only if both the mention strings and the surname value
are identical.

The Hammersley-Clifford theorem stipulates that the prob-
ability of a particular set of values on the random variables
in an undirected graphical model is a product of potential
functions over cliques of the graph. Our cliques will be the
hits, h = {h, ...}, resulting from a set of clique templates,
t = {t, ...}. In typical fashion, we will write the probabil-
ity distribution in exponential form, with each potential func-
tion calculated as a dot-product of feature functions,f , and
learned parameters,λ,

P (y,a|x) =
1

Zx
exp

(∑
t∈t

∑
ht∈ht

∑
l

λlfl(y,a,x : ht)

)
,

where (y,a,x : ht) indicates the subset of the entity-
assignment, attribute, and mention nodes selected by the
clique template hitht; andZx is simply a normalizer to make
the probabilities over ally sum to one (also known as the
partition function).

Being a conditional model allows great flexibility in the
features used. They can be overlapping and inter-dependent
without requiring model structure to capture the dependen-
cies; they can be a varying levels of granularity—for exam-
ple, questions about the entire document, context around the

1Even though there are many mentions inx, because we are not
generating them, we can represent them as a single node. This helps
show that feature functions can ask arbitrary questions about various
large and small subsets of the mentions and their context. We will
still usexi to refer to the content and context of theith mention.

mention, the words in the mention, and character-sequences
in the mention.

The parameters,λ, can be learned by maximum likelihood
from labeled training data. Calculating the partition function
is problematic because there are a very large number of pos-
sible y’s anda’s. Loopy belief propagation or Gibbs sam-
pling sampling have been used successfully in other similar
situations,e.g. [Taskaret al., 2002]. One may refer to these
sources for more details about the training procedure.

However, note that both loopy belief propagation and
Gibbs sampling only work over a graph with fixed structure.
But in our problem the number of entities (and thus number
of attribute nodes, and the domain of the entity-assignment
nodes) is unknown. Inference in these models must deter-
mine for us the highest-probability number of entities.

In related work on a generative probabilistic model of iden-
tity uncertainty, Pasulaet al. [2003], solve this problem by al-
ternating rounds of Metropolis-Hastings sampling on a given
model structure with rounds of Metropolis-Hastings to ex-
plore the space of new graph structures. Our desire to avoid
the complexity and lack of scalability of this approach moti-
vates our Model 2.

2.2 Model 2: Nodes for mention pairs, with
attributes on mentions

To avoid the need to change the graphical model structure
during inference, we now remove any parts of the graph that
depend on the number of entities,m: (1) The per-mention
entity-assignment nodes,Yi, are random variables whose do-
main is over the integers 0 throughm; we remove these
nodes, replacing them with binary-valued random variables,
Yij , over each pair of mentions,(Xi, Xj) (indicating whether
or not the two mentions are coreferent); although it is not
strictly necessary, we also restrict the clique templates to op-
erate over no more than two mentions (for efficiency). (2)
The per-entity attribute nodesA are removed and replaced
with attribute nodes associated with each mention; we write
xi.a for the set of attributes on mentionxi.

Even though the clique templates are now restricted to pairs
of mentions, this does not imply that pairwise coreference de-
cisions are made independently of each other—they are still
highly dependent. Many pairs will overlap with each other,
and constraints will flow through these overlaps. This point
is reiterated with an example in the next subsection.

Notice, however, that it is possible for the model as thus
far described to assign non-zero probability to an inconsis-
tent set of entity-assignments,y. For example, we may have
an “inconsistent triangle” of coreference decisions in which
yij andyjk are 1, whileyik is 0. We can enforce the impossi-
bility of all inconsistent configurations with the introduction
of some additional clique potentials. We add inconsistency-
checking functionsfl′(yij , yjk, yik) for all mention triples,
with the correspondingλl′ ’s fixed at negative infinity—thus
assigning zero probability to them. (Note that this is simply
a notational trick; in practice the inference implementation
simply avoids any configurations ofy that are inconsistent—
a check that is simple to perform.) Thus we have



P (y,a|x) =
1

Zx
exp

∑
i,j,l

λlfl(xi, xj , yij , xi.a, xj .a)

+
∑

i,j,k,l′

λl′fl′(yij , yjk, yik)

 .

We can also enforce consistency among the attributes of
coreferent mentions by similar means, either sharply (as with
entity-assignments), or more softly using non-infiniteλ’s.
Consistent attribute values will propagate around the net-
work, behaving much like the analogous propagation of re-
gion identifiers in Markov random fields used for segmenta-
tion in computer vision.

Since this model can hypothesize different numbers of en-
tities without changing the model structure, we can avoid
Metropolis-Hastings, and simply use the more standard and
efficient inference procedures mentioned above. The price
we have paid is theO(n2) binary mention-coreference vari-
ables,yij ; however, there are many widely-used techniques
for efficiently and drastically reducing the number of pair-
wise comparisons,e.g. [Monge and Elkan, 1997; McCal-
lum et al., 2000b]. In this case, we could also restrict
fl(xi, xj , yij) ≡ 0,∀yij = 0.

The main purpose of the attributes is to obtain values for
filling the fields of a proposition or database, and they are
not needed for when the task is solely coreference. This case
motivates our next model.

2.3 Model 3: Nodes for mention pairs, graph
partitioning with learned distance metric

When gathering attributes of entities is not necessary, we
can avoid the extra complication of attributes by removing
them from the model. What results is a straightforward,
yet highly expressive, discriminatively-trained, undirected
graphical model that can use rich feature sets and relational
inference to solve identity uncertainty tasks. Determining the
most likely number of entities falls naturally out of inference.
The model is

P (y|x) =
1

Zx
exp

∑
i,j,l

λlfl(xi, xj , yij) (1)

+
∑

i,j,k,l′

λl′fl′(yij , yjk, yik)

 .

Recently there has been increasing interest in study of the
equivalence between graph partitioning algorithms and in-
ference in certain kinds of undirected graphical models,e.g.
[Boykovet al., 1999]. This graphical model is an example of
such a case. With some thought, one can straightforwardly
see that finding the highest probability coreference solution,
y? = arg maxy P (y|x), exactly corresponds to finding the
graph partitioning of a (different) graph in which the entities
are the nodes and the edge weights are the (log) clique po-
tentials on the pair of nodes〈xi, xj〉 involved in their edge:∑

l λlfl(xi, xj , yij), wherefl(xi, xj , 1) = −fl(xi, xj , 0),

and edge weights range from−∞ to +∞. Unlike classic
mincut/maxflow binary partitioning, here the number parti-
tions (corresponding to entities) is unknown, but a single op-
timal number of partitions exists; negative edge weights en-
courage more partitions.

Graph partitioning with negative edge weights is NP-hard,
but it has a history of good approximations, and several ef-
ficient algorithms to choose from. Our current experiments
use an instantiation of the minimizing-disagreements Corre-
lational Clustering algorithm in[Bansalet al., 2002]. This ap-
proach is a simple yet effective partitioning scheme. It works
by measuring the degree of inconsistency incurred by includ-
ing a node in a partition, and making repairs. Due to space
constraints we refer the reader to Bansalet al. [2002] for
further details.

The resulting solution does not make pairwise coreference
decisions independently of each other. It has a significant
“relational” nature because the assignment of a node to a par-
tition (or, mention to an entity) depends not just on a single
low distance measurement to one other node, but on its low
distance measurement to all nodes in the partition (and fur-
thermore on its high distance measurement to all nodes of all
other partitions). For example, the “Mr. Powell”-“Powell”-
“she” problem discussed in the introduction would be pre-
vented by this model because, although the distance between
“Powell” and “she” might grammatically look low, the dis-
tance from “she” to another member of the same partition,
(“Mr. Powell”) is very high (due to a highly-weighted feature
function that checks for gender-consistency).

Interestingly, in our model, the distance measure between
nodes is learned from labeled training data. That is, we use
data,D, in which the correct coreference partitions are known
in order to learn a distance metric such that, when the same
data is clustered, the correct partitions emerge. This is ac-
complished by maximum likelihood—adjusting the weights,
λ, to maximize the product of Equation 1 over all instances
〈x,y〉 in the training set. Fortunately this objective function
is concave—it has a single global maximum—and there are
several applicable optimization methods to choose from, in-
cluding gradient ascent, stochastic gradient ascent and conju-
gate gradient; all simply require the derivative of the objective
function. The derivative of the log-likelihood,L, with respect
to weightλl has a quite intuitive meaning. It is the expected
value of featurefl given the correct partitionsy in the labeled
training data, minus the expected value of featurefl given the
probability distribution over partitions given by the current
model,

∂L

∂λl
=

∑
〈x,y〉∈D

∑
i,j,l

fl(xi, xj , yij)

−
∑
y′

PΛ(y′|x)
∑
i,j,l

fl(xi, xj , y
′
ij)

 ,

wherePΛ(y′|x) is defined by Equation 1, using the current
set ofλ parameters,Λ, and

∑
y′ is a sum over all possible

partitionings.
The number of possible partitionings is exponential in the

number of mentions, so for any reasonably-sized problem, we



obviously must resort to approximate inference for the sec-
ond expectation. A simple option is stochastic gradient as-
cent in the form of a voted perceptron[Collins, 2002]. Here
we calculate the gradient for a single training instance at a
time, and rather than use a full expectation in the second line,
simply using the single most likely (or nearly most likely)
partitioning as found by a graph partitioning algorithm, and
make progressively smaller steps in the direction of these gra-
dients while cycling through the instances,〈x,y〉 in the train-
ing data. Neither the full sum,

∑
y′ , or the partition function,

Zx, need to be calculated in this case. Further details are
given in[Collins, 2002].

3 Experiments with Proper Noun Coreference
We test our approach to identity uncertainty without attributes
(Model 3) on natural language proper noun coreference, using
two different data sets: 30 newswire articles from the MUC-6
corpus, and a set of 117 stories from the broadcast news por-
tion of the DARPA ACE data set. Both data sets had anno-
tated coreferences; annotatednon-proper nouns are ignored
in these first experiments. We pre-processed both data sets
with the Brill part-of-speech tagger.

We compare our Model 3 against two other techniques rep-
resenting typical approaches to the problem of identity un-
certainty. The first is single-link clustering with a threshold,
(single-link-threshold), which is universally used in database
record-linkage and citation reference matching[Monge and
Elkan, 1997; Borthwicket al., 2000; Bilenko and Mooney,
2002; McCallumet al., 2000b; Cohen and Richman, 2002].
It forms partitions by simply collapsing the spanning trees of
all mentions with pairwise distances below some threshold.
Our threshold of 0.6 was selected by cross validation.

The second technique, which we callbest-previous-match,
has been used in natural language processing applications
[Morton, 1997; Geet al., 1998; Ng and Cardie, 2002]. It
works by scanning linearly through a document, and associat-
ing each mention with its best-matching predecessor—best as
measured with a single pairwise distance. For each mention
there is also the option to match against the null predecessor.

In our experiments, both single-link-threshold and best-
previous-match implementations use a distance measure
based on a binary maximum entropy classifier—matching the
practice of Morton[1997], Borthwick et al. [2000] and Co-
hen and Richman[2002]. We also tested the heuristic feature
merging of Morton[1997], but found it to make no difference
on these data sets.

We use an identical feature set for all techniques, including
our Method 3. The features are described in Table 3. They
are quite non-independent, and operate at multiple levels of
granularity. They are typical of features used in several other
NLP coreference systems.

Table 2 shows the average of five-fold cross-validation for
all three models on the ACE and MUC data sets. Evaluation
was performed using the MUC-6 coreference algorithm for
both data sets. Model 3 out-performs both the single-link-
threshold and the best-previous-match technique. Model 3
reduces the error by 28% over single-link-threshold on the
ACE data, and by 24% on the MUC-6 data set. All differ-
ences from Model 3 are statistically significant.

Normalized substring non-zero when one string is a substring of
another string, after both strings are normalized. Normaliza-
tion consists of removing words from the phrase that do not
have the part of speech NNP or NNPS and words that contain
no vowels or that end in a period. This effectively removes
honorifics and non proper noun modifiers.

Un-normalized substring non-zero when one string is a substring
of the other.

Acronym non-zero when the sequence of capital letters derived
from one string is a substring of the other string.

Identical non-zero when the two mentions are identical.
Head Identical non-zero when the last tokens of each mention are

identical.
Modifier words and part-of-speech non-zero features for the

words and their parts of speech that appear to the left of the
head word in both mentions.

Figure 1: The binary features over pairs of mentions used in
the experiments

ACE MUC-6
best-previous-match 90.98 88.83
single-link-threshold 91.65 88.90
Model 3 93.96 91.59

Figure 2: MUC F1 results on two data sets, showing 28%
reduction and a 24% reduction in error over single-link on
the ACE and MUC-6 data sets, respectively.

There are some differences between the data sets. We
used a noun phrase tagger to identify noun phrases in the
MUC-6 data. The MUC-6 coreference annotations do not
include singletons (i.e. there is no annotation if a phrase is
non-coreferential), thus we identified these additional noun
phrases automatically—introducing an extra element of noise
into the MUC-6 data. By contrast, in the ACE data, all candi-
date noun phrases are hand-annotated. There are also differ-
ences in the annotation guidelines between the two data sets.

In preliminary experiments with coreference analysis ofall
nouns (including pronouns and common nouns), we reach
60% on the ACE data set, which compares favorably with
the state-of-the-art.

We expect that switching to more robust clustering algo-
rithms, and using a better estimate of our model’s posterior
distribution (sampling of partitions instead of voted percep-
tron) may further improve our model’s accuracy, especially
on small, noisy data sets.

Analysis of several individual coreference outputs bears
out the intuition discussed earlier: making coreference de-
cisions in dependent relation to each other results in more
accurate decisions.

4 Related Work and Conclusions
There has been much related work on identity uncertainty in
various specific fields. Traditional work in de-duplication for
databases or reference-matching for citations measure the dis-
tance between two records by some metric, and then collapse
all records at a distance below a threshold,e.g. [Monge and
Elkan, 1997; McCallumet al., 2000b]. This method is not
relational, that is, it does not account for the inter-dependent



relations among multiple decisions to collapse. Most recent
work in the area has focused on learning the distance metric
[Bilenko and Mooney, 2002; Cohen and Richman, 2002] not
the clustering method.

Natural language processing has had similar emphasis and
lack of emphasis respectively. Pairwise coreference learned
distance measures have used decision trees[McCarthy and
Lehnert, 1995; Ng and Cardie, 2002], SVMs[Zelenkoet al.,
2003], maximum entropy classifiers[Morton, 1997], and gen-
erative probabilistic models[Ge et al., 1998]. But all use
thresholds on a single pairwise distance, or the maximum of
a single pairwise distance to determine if or where a corefer-
ent merge should occur.

Pasulaet al. [2003] introduce a generative probability
model for identity uncertainty based on Probabilistic Rela-
tional Networks networks[Friedmanet al., 1999]. Our work
is an attempt to gain some of the same advantages that CRFs
have over HMMs by creating conditional models of iden-
tity uncertainty. The models presented here, as instances of
conditionally-trained undirected graphical models, are also
instances of relational Markov networks[Taskaret al., 2002]
and conditional Random fields[Lafferty et al., 2001]. Taskar
et al. [2002] briefly discuss clustering of dyadic data, such
as people and their movie preferences, but not identity uncer-
tainty or inference by graph partitioning.

The ties between inference in our model and graph par-
titioning [Boykov et al., 1999] are not only interesting, but
particularly helpful in that they provide concrete and efficient
algorithms for finding the highest probability solution, and
for fruitful Gibbs sampling. The possible use of spectral clus-
tering,e.g. [Ng et al., 2001], is an area of future work.

Identity uncertainty is a significant problem in many fields.
In natural language processing, it is not only especially dif-
ficult, but also extremely important, since improved corefer-
ence resolution is one of the chief barriers to effective data
mining of text data. Natural language data is a domain that
has particularly benefited from rich and overlapping feature
representations—representations that lend themselves better
to conditional probability models than generative ones[Laf-
ferty et al., 2001; Collins, 2002; Morton, 1997]. Hence our
interest in conditional models of identity uncertainty.
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