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Mixin-Based Programming in C++1

Abstract. Combinations of C++ features, like inheritance, templates, and class
nesting, allow for the expression of powerful component patterns. In particular,
research has demonstrated that, using C++mixin classes, one can express lay-
ered component-based designs concisely with efficient implementations. In this
paper, we discuss pragmatic issues related to component-based programming
using C++ mixins. We explain surprising interactions of C++ features and poli-
cies that sometimes complicate mixin implementations, while other times enable
additional functionality without extra effort.

1  Introduction

Large software artifacts are arguably among the most complex products of hu
intellect. The complexity of software has led to implementation methodologies
divide a problem into manageable parts and compose the parts to form the final
uct. Several research efforts have argued that C++ templates (a powerful paramet
tion mechanism) can be used to perform this division elegantly.

In particular, the work of VanHilst and Notkin [29][30][31] showed how one ca
implementcollaboration-based(or role-based) designs using a certain templatize
class pattern, known as amixin class(or just mixin). Compared to other techniques
(e.g., a straightforward use ofapplication frameworks[17]) the VanHilst and Notkin
method yields less redundancy and reusable components that reflect the struct
the design. At the same time, unnecessary dynamic binding can be eliminated, r
ing into more efficient implementations. Unfortunately, this method resulted in v
complex parameterizations, causing its inventors to question its scalability.

The mixin layerstechnique was invented to address these concerns. Mixin layers
mixin classes nested in a pattern such that the parameter (superclass) of the
mixin determines the parameters (superclasses) of inner mixins. In previous w
[4][24][25], we showed how mixin layers solve the scalability problems of the Va
Hilst and Notkin method and result into elegant implementations of collaborati
based designs.
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Research Projects Agency (Cooperative Agreement F30602-96-2-0226), and the Univ
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This paper discusses practical issues related to mixin-based programming. We ad
viewpoint oriented towards C++ implementations, but our discussion is not ge
towards the C++ expert. Instead, we aim to document common problems and solu
in C++ mixin writing for the casual programmer. Additionally, we highlight issues th
pertain to language design in general (e.g., to Java parameterization or to the des
future languages). Most of the issues clearly arise from the interaction of C++ feat
with the constructs under study. The discussion mainly stems from actual experi
with C++ mixin-based implementations but a few points are a result of close exam
tion of the C++ standard, since they refer to features that no compiler we have enc
tered implements. Even though we present an introduction to mixins, mixin layers,
their uses, the primary purpose of this paper isnot to convince readers of the value o
these constructs. (The reader should consult [4], [24], [25], [26], or [29] for that.)

We believe that the information presented here represents a valuable step towards
ing some powerful programming techniques into the mainstream. We found tha
mixin programming style is quite practical, as long as one is aware of the poss
interactions with C++ idiosyncrasies. As C++ compilers move closer to sophistica
template support (e.g., some compilers already support separate template compil
the utility of such techniques will increase rapidly.

2  Background (Mixins and Mixin Layers)

The termmixin class(or justmixin) has been overloaded in several occasions. Mixi
were originally explored in the Lisp language with object systems like Flavors [20]
CLOS [18]. In these systems, mixins are an idiom for specifying a class and allow
its superclass to be determined bylinearizationof multiple inheritance. In C++, the
term has been used to describe classes in a particular (multiple) inheritance arr
ment: as superclasses of a single class that themselves have a commonvirtual base
class(see [28], p.402). (This isnot the meaning that we will use in this paper.) Both o
these mechanisms are approximations of a general concept described by Brach
Cook [6]. The idea is simple: we would like to specify an extension without pre-de
mining what exactly it can extend. This is equivalent to specifying a subclass w
leaving its superclass as a parameter to be determined later. The benefit is that a
class can be used to express an incremental extension, valid for a variety of clas

Mixins can be implemented using parameterized inheritance. The superclass of a
is left as a parameter to be specified at instantiation time. In C++ we can write thi

template <class Super>
class Mixin : public Super {

... /* mixin body */
};

To give an example, consider a mixin implementingoperation countingfor a graph.
Operation counting means keeping track of how many nodes and edges have bee
ited during the execution of a graph algorithm. (This simple example is one of the n
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algorithmic refinements to algorithm functionality discussed in [33]). The mixin cou
have the form:

template <class Graph>
class Counting: public Graph {

int nodes_visited, edges_visited;
public:

Counting() : nodes_visited(0), edges_visited(0), Graph() { }
node succ_node (node v) {

nodes_visited++;
return Graph::succ_node(v);

}
edge succ_edge (edge e) {

edges_visited++;
return Graph::succ_edge(e);

}
...

};

By expressing operation counting as a mixin we ensure that it is applicable to m
classes that have the same interface (i.e., many different kinds of graphs). We can
for instance, two different compositions:

Counting< Ugraph > counted_ugraph;
and

Counting< Dgraph > counted_dgraph;
for undirected and directed graphs. (We omit parameters to the graph classes fo
plicity.) Note that the behavior of the composition is exactly what one would expe
any methods not affecting the counting process are exported (inherited from the g
classes). The methods that do need to increase the counts are “wrapped” in the m

VanHilst and Notkin demonstrated that mixins are beneficial for a general clas
object-oriented designs [29]. They used a mixin-based approach to implementcollabo-
ration-based(a.k.a.role-based) designs [5][15][16][21][29]. These designs are base
on the view that objects are composed of different roles that they play in their inte
tion with other objects. The fundamental unit of functionality is a protocol for th
interaction, called acollaboration. The mixin-based approach of VanHilst and Notki
results in efficient implementations of role-based designs with no redundancy. So
times, however, the resulting parameterization code is quite complicated—many
ins need to be composed with others in a complex fashion. This introduces scala
problems (namely, extensions that instantiate template parameters can be of l
exponential to the number of mixins composed—see [24]). To make the appro
more practical by reducing its complexity,mixin layerswere introduced. Because
mixin layers are an incremental improvement of the VanHilst and Notkin method,
only discuss implementing collaboration-based designs using mixin layers.

Mixin layers [24][25][26] are a particular form of mixins. They are designed with t
purpose of encapsulating refinements for multiple classes. Mixin layers are ne
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mixins such that the parameter of an outer mixin determines the parameters of
mixins. The general form of a mixin layer in C++ is:

template <class NextLayer>
class ThisLayer : public NextLayer {
public:

class Mixin1 : public NextLayer::Mixin1 { ... };
class Mixin2 : public NextLayer::Mixin2 { ... };
...

};

Mixin layers are a result of the observation that a conceptual unit of functionality
usually neither one object nor parts of an object—a unit of functionality may span
eral different objects and specify refinements (extensions) to all of them. All s
refinements can be encapsulated in a single mixin layer and the standard inher
mechanism can be used for composing extensions.

This property of mixin layers makes them particularly attractive for implementing c
laboration-based designs. Each layer captures a single collaboration. Roles fo
classes participating in a collaboration are represented by inner classes of the
Inheritance works at two different levels. First, a layer can inherit entire classes f
its superclass (i.e., the parameter of the layer). Second, inner classes inherit me
(variables, methods, or even other classes) from the corresponding inner classes
superclass layer. This dual application of inheritance simplifies the implementatio
collaboration-based designs, while preserving the benefits of the VanHilst and No
method. An important source of simplifications is that inner classes of a mixin la
can refer unambiguously to other inner classes—the layer acts as a namespace.

We illustrate our point with an example (presented in detail in [24]) of a collaborati
based design and its mixin layers implementation. (Full source code is available,
request.) This example presents a graph traversal application and was examine
tially by Holland [16] and subsequently by VanHilst and Notkin [29]. This applicatio
defines three different algorithms on an undirected graph, all implemented usi
depth-first traversal:Vertex Numberingnumbers all nodes in the graph in depth-firs
order,Cycle Checkingexamines whether the graph is cyclic, andConnected Regions
classifies graph nodes into connected graph regions. The application has three d
classes:Graph, Vertex, andWorkspace. TheGraphclass describes a container of node
with the usual graph properties. Each node is an instance of theVertexclass. Finally,
theWorkspaceclass includes the application part that is specific to each graph op
tion. For theVertexNumberingoperation, for instance, aWorkspaceobject holds the
value of the last number assigned to a vertex as well as the methods to updat
number.

As shown in Fig 1, we can decompose this application into five independent collab
tions—one encompassing the functionality of an undirected graph, another enco
depth-first traversals, and three containing the specifics of each graph algorithm
tex numbering, cycle checking, and connected regions). Note that each collabor
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captures a distinct aspect of the application and each object may participate in se
aspects. That is to say, each object may play several roles. For instance, the rol
Graphobject in the “Undirected Graph” collaboration supports storing and retrieving
a set of vertices. The role of the same object in the “Depth First Traversal” collabora-
tion implements a part of the actual depth-first traversal algorithm.

By implementing collaborations as mixin layers, the modular design of Fig 1 can
maintained at the implementation level. For instance, the “Vertex Numbering” collabo-
ration can be implemented using a layer of the general form:

template <class Next>
class NUMBER : public Next {
public:

class Workspace : public Next::Workspace {
... // Workspace role members

};
class Vertex : public Next::Vertex {

... // Vertex role members
};

};

Note that no role (nested class) is prescribed forGraph . A Graph class is inherited
from the superclass ofNumber (the class denoted by parameterNext ).

As shown in [24], such components are flexible and can be reused and intercha
For instance, the following composition buildsGraph , Vertex , and WorkSpace

Fig 1: Collaboration decomposition of the example application: A depth-first traversal of
an undirected graph is specialized to yield three different graph operations. Ovals rep-
resent collaborations, rectangles represent classes, their intersections represent roles.
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classes nested inside classCycleC that implement vertex numbering of undirecte

graphs using a depth-first traversal:2

typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > CycleC;

By replacingNUMBERwith other mixin layers we get the other two graph algorithm
discussed. Many more combinations are possible. We can use the templates to
classes that implement more than one algorithm. For instance, we can have an ap
tion supporting both vertex numberingandcycle checking on the same graph by refin
ing two depth-first traversals in order:

typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > NumberC;
typedef DFT < CYCLE < NumberC > > CycleC;

Furthermore, all the characteristics of an undirected graph are captured by theUGRAPH

mixin layer. Hence, it is straightforward to apply the same algorithms to a direc

graph (mixin layerDGRAPH interchanged forUGRAPH):3

typedef DFT < NUMBER < DEFAULTW < DGRAPH > > > NumberC;

This technique (of composing source components in a large number of combinat
underlies thescalable libraries[3] design approach for source code plug-and-pla
components.

3  Programming with C++ Mixins: Pragmatic Considerations

Since little has been written about the pragmatics of doing component programm
using C++ mixins (mixin classes or mixin layers), we feel it is necessary to disc
some pertinent issues. Most of the points raised below concern fine interac
between the mixin approach and C++ idiosyncrasies. Others are implementation
gestions. They are all useful knowledge before one embarks into a development
using C++ mixins and could serve to guide design choices for future parameteriza
mechanisms in programming languages. The C++ aspects we discuss are well-
mented and other C++ programmers have probably also made some of our obs
tions. Nevertheless, we believe that most of them are non-obvious and many only
in the context of component programming—that is, when a mixin is designed and
in complete isolation from other components of the system.

Lack of template type-checking. Templates do not correspond to types in the C+
language. Thus, they are not type-checked until instantiation time (that is, compos
time for mixins). Furthermore, methods of templatized classes are themselves co

2. TheDEFAULTWmixin layer is an implementation detail, borrowed from the VanHilst and No
kin implementation [29]. It contains an emptyWorkSpace class and its purpose is to avoid
dynamic binding by changing the order of composition.

3. This is under the assumption that the algorithms are still valid for directed graphs as i
case with the original code for this example [16].
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ered function templates.4 Function templates in C++ are instantiated automatically a
only when needed. Thus, even after mixins are composed, not all their methods w
type-checked (code will only be produced for methods actually referenced in
object code). This means that certain errors (including type mismatches and refer
to undeclared methods) can only be detected with the right template instantiation
method calls. Consider the following example:

template <class Super>
class ErrorMixin : public Super {
public:

...
void sort(FOO foo) {

Super::srot(foo); // misspelled
}

};

If client code never calls methodsort , the compiler will not catch the misspelled
identifier above. This is true even if theErrorMixin template is used to create
classes, and methods other thansort  are invoked on objects of those classes.

Delaying the instantiation of methods in template classes can be used to advanta
we will see later. Nevertheless, many common designs are such that all member
ods of a template class should be valid for all instantiations. It is not straightforwar
enforce the latter part (“forall instantiations”) but for most practical purposes chec
ing all methods for a single instantiation is enough. This can be done by exp
instantiation of the template class, which forces the instantiation of all its memb
The idiom for explicit instantiation applied to our above example is:

template class ErrorMixin<SomeFoo>;

When “subtype of” does not mean “substitutable for”. There are two instances
where inheritance may not behave the way one might expect in C++. First, constru
methods are not inherited. Ellis and Stroustrup ([13], p.264) present valid reason
this design choice: the constructor of a superclass does not suffice for initializing
members added by a subclass. Often, however, a mixin class may be used o
enrich or adapt the method interface of its superclasseswithoutadding data members.
In this case it would be quite reasonable to inherit a constructor, which, unfortuna
is not possible. The practical consequence of this policy is that the only construc
that are visible in the result of a mixin composition are the ones present in the o
most mixin (bottom-most class in the resulting inheritance hierarchy). To make ma
worse, constructor initialization lists (e.g.,

constr() : init1(1,2), init2(3) {} )
can only be used to initialize direct parent classes. In other words, all classes ne
know the interface for the constructor of their direct superclass (if they are to use

4. This wording, although used by the father of C++—see [28], p.330—is not absolutely a
rate since there is no automatic type inference.
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structor initialization lists). Recall, however, that a desirable property for mixins is t
they be able to act as components: a mixin should be implementable in isolation
other parts of the system in which it is used. Thus a single mixin class should be us
with several distinct superclasses and should have as few dependencies as poss
practice, several mixin components are just thin wrappers adapting their superc
interface.

A possible workaround for this problem is to use a standardized construction inter
A way to do this is by creating a construction class encoding the union of all poss
arguments to constructors in a hierarchy. Then a mixin “knows” little about its dir
superclass, but has dependencies on the union of the construction interfaces for
possible parent classes. (Of course, another workaround is to circumvent constru
altogether by having separate initialization methods. This, however, requires a d
plined coding style to ensure that methods are always called after object construc
As a side-note, destructors for base classes are called automatically so they shou
be replicated.

Synonyms for compositions. In the past sections we have usedtypedef s to intro-
duce synonyms for complicated mixin compositions—e.g.,

typedef A < B < C > > Synonym;

Another reasonable approach would be to introduce an empty subclass:

class Synonym : public A < B < C > > { };

The first form has the advantage of preserving constructors of componentA in the syn-
onym. The second idiom is cleanly integrated into the language (e.g., can be tem
tized, compilers create short link names for the synonym, etc.). Additionally, it
solve a common problem with C++ template-based programming: generated n
(template instantiations) can be extremely long, causing compiler messages
incomprehensible.

Designating virtual methods. Sometimes C++ policies have pleasant side-effe
when used in conjunction with mixins. An interesting case is that of a mixin used
create classes where a certain method can be virtual or not, depending on the co
class used to instantiate the mixin. This is due to the C++ policy of letting a superc
declare whether a method is virtual, while the subclass does not need to specify
explicitly. Consider a regular mixin and two concrete classes instantiating it (a C
struct  is a class whose members are public by default):

template <class Super>
struct MixinA : public Super {

void virtual_or_not(FOO foo) { ... }
};

struct Base1 {
virtual void virtual_or_not(FOO foo) { ... }
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... // methods using “virtual_or_not”
};

struct Base2 {
void virtual_or_not(FOO foo) { ... }

};

The composition MixinA<Base1> designates a class in which the metho
virtual_or_not is virtual. Conversely, the same method is not virtual in the comp
sition MixinA<Base2> . Hence, calls tovirtual_or_not in Base1 will call the
method supplied by the mixin in the former case but not in the latter.

In the general case, this phenomenon allows for interesting mixin configurati
Classes at an intermediate layer may specify methods and let the inner-most
decide whether they are virtual or not.

As we recently found out, this technique was described first in [12].

Single mixin for multiple uses. The lack of template type-checking in C++ can actu
ally be beneficial in some cases. Consider two classesBase1 and Base2 with very
similar interfaces (except for a few methods):

struct Base1 {
void regular() { ... }
...

};
struct Base2 {

void weird() { ... }
... // otherwise same interface as Base1

};

Because of the similarities betweenBase1 andBase2 , it makes sense to use a singl
mixin to adapt both. Such a mixin may need to have methods calling either of
methods specific to one of the two base classes. This is perfectly feasible. A mixin
be specified so that it calls eitherregular  or weird :

template <class Super>
class Mixin : public Super {

...
public:

void meth1() { Super::regular(); }
void meth2() { Super::weird(); }

};

This is a correct definition and it will do the right thing for both compositio
Mixin<Base1> andMixin<Base2> ! What is remarkable is that part ofMixin seems
invalid (calls an undefined method), no matter which composition we decide to
form. But, since methods of class templates are treated as function templates, no
will be signalled unless the program actually uses the wrong method (which ma
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meth1 or meth2 depending on the composition). That is, an error will be signall
only if the program is indeed wrong. We have used this technique to provide unifo
componentized extensions to data structures supporting slightly different interface
particular, the red-black tree and hash table of the SGI implementation of the Stan
Template Library [22]).

Propagating type information. An interesting practical technique (also applicable
languages other than C++) can be used to propagate type information from a sub
to a superclass, when both are created from instantiating mixins. This is a com
problem in object-oriented programming. It was, for instance, identified in the des
of the P++ language [23] (an extension of C++ with constructs for component-ba
programming) and solved with the addition of theforward keyword. The same prob-
lem is addressed in other programming languages (e.g., Beta [19]) with the conce
virtual types.

Consider a mixin layer encapsulating the functionality of an allocator. This compon
needs to have type information propagated to it from its subclasses (literally, the
classes of the class it will create when instantiated) so that it knows what kind of
to allocate. (We also discussed this example in detail in [25] but we believe that
solution presented here is the most practical way to address the problem.) The r
this propagation is necessary is that subclasses may need to add data membe
class used by the allocator. One can solve the problem by adding an extra parame
the mixin that will be instantiated with the final product of the composition itself.
essence, we are reducing a conceptual cycle in the parameterization to a single se
erence (which is well-supported in C++). This is shown in the following code fra
ment:

template <class EleType, class FINAL>
class ALLOC {
public:

class Node {
EleType element; // stored data type

public:
... // methods using stored data

};

class Container {
protected:

FINAL::Node* node_alloc() {
return new FINAL::Node();

}
... // Other allocation methods

};
};

template <class Super>
class BINTREE : public Super {
public:
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class Node : public Super::Node {
Node* parent_link, left_link, right_link ;

public:
... // Node interface

};

class Container : public Super::Container {
Node* header; // Container data members

public:
... // Interface methods

};
};

class Comp : public BINTREE < ALLOC <int, Comp> > {/* empty */};

Note what is happening in this code fragment (which is abbreviated but preserve
structure of actual code that we have used). A binary tree data structure is creat
composing aBINTREE mixin layer with anALLOC mixin layer. The data structure
stores integer (int ) elements. Nevertheless, the actual type of the element stored isnot
int but a type describing the node of a binary tree (i.e., an integer together with t
pointers for the parent, and the two children of the node). This is the type of elem
that the allocator should reserve memory for.

The problem is solved by passing the final product of the composition as a param
to the allocator mixin. This is done through the self-referential (orrecursive) declara-
tion of classComp. (Theoretically-inclined readers will recognize this as afixpointcon-
struction.) Note thatCompis just a synonym for the composition and it has to use t
synonym pattern introducing a class (i.e., thetypedef synonym idiom discussed ear-
lier would not work as it does not support recursion).

It should be noted that the above recursive construction has been often used in the
ature. In the C++ world, the technique was introduced by Barton and Nackman [2]
popularized by Coplien [9]. Nevertheless, the technique is not mixin-specific or e
C++-specific. For instance, it was used by Wadler, Odersky and the first author [3
Generic Java [7] (an extension of Java with parametric polymorphism). The origin
the technique reach back at least to the development of F-bounded polymorphism

Hygienic templates in the C++ standard. The C++ standard ([1], section 14.6
imposes several rules for name resolution of identifiers that occur inside templ
The extent to which current compilers implement these rules varies, but full confo
ance is the best approach to future compatibility for user code.

Although the exact rules are complicated, one can summarize them (at loss of
detail) as “templates cannot contain code that refers to ‘nonlocal’ variables or m
ods”. Intuitively, “nonlocal” denotes variables or methods that do not depend on a t
plate parameter and are not in scope at the global point closest to the tem
definition. This rule prevents template instantiations from capturing arbitrary na
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from their instantiation context, which could lead to behavior not predicted by the t
plate author.

A specific rule applies to mixin-based programming. To quote the C++ stand
(14.6.2), “if a base class is a dependent type, a member of that class cannot h
name declared within a template, or a name from the templates enclosing sco
Consider the example of a mixin calling a method defined in its parameter (i.e.,
superclass of the class it will create when instantiated):

struct Base {
void foo() { ... }

};

void foo() { }

template <class Super>
struct Mixin : public Super {

void which_one() { foo(); } // ::foo
};

Mixin < Base > test;

That is, the call tofoo from methodwhich_one will refer to the globalfoo , not the
foo  method of theBase  superclass.

The main implication of these name resolution rules is on the way template-based
grams should be developed. In particular, imagine changing acorrectclass definition
into a mixin definition (by turning the superclass into a template parameter). Eve
the mixin is instantiated with its superclass in the original code, the new program isnot
guaranteed to work identically to the original, because symbols may now be reso
differently. This may surprise programmers who work by creating concrete classes
turning them into templates when the need for abstraction arises. To avoid the pote
for insidious bugs, it is a good practice to explicitly qualify references to superc
methods (e.g.,Super::foo  instead of justfoo ).

Compiler support. Most C++ compilers now have good support for parameteriz
inheritance (the technique we used for mixins) and nested classes. We have en
tered few problems and mostly with older compilers when programming with C
mixins. In fact, most of the compiler dependencies are not particular to mixin-ba
programming but concern all template-based C++ programs. These include limita
on the debugging support, error checking, etc. We will not discuss such issues as
are time-dependent and have been presented before (e.g., [10]). Note, howeve
mixin-based programming is not more complex than regular template instantiation
typically does not exercise any of the “advanced” features of C++ templates (
inference, higher-order templates, etc.). Overall, the compiler support issues invo
in mixin-based programming are about the same as those arising in implementin
C++ Standard Template Library [27].
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4 Related Work

Various pieces of related work have been presented in the previous sections. We c
exhaustively reference all C++ template-based programming techniques, but we
discuss two approaches that are distinct from ours but seem to follow parallel cou

The most prominent example is the various implementations of the STL. Such im
mentations often exercise the limits of template support and reveal interactions of
policies with template-based programming. Nevertheless, parameterized inheritan
not a part of STL implementations. Hence, the observations of this paper are m
distinct from the conclusions drawn from STL implementation efforts.

Czarnecki and Eisenecker’s generative programming techniques [10][11] were us
the Generative Matrix Computation Library (GMCL). Their approach is a represe
tive of techniques using C++ templates as a programming language (that is, to pe
arbitrary computation at template instantiation time). What sets their method a
from other template meta-programming techniques is that it has similar goals to m
based programming. In particular, Czarnecki and Eisenecker try to develop com
nents which can be composed in multiple ways to yield a variety of implementatio
Several of the remarks in this paper are applicable to their method, even though
use of mixins is different (for instance, they do not use mixin layers).

5  Conclusions

We presented some pragmatic issues pertaining to mixin-based programming in
We believe that mixin-based techniques are valuable and will become much m
widespread in the future. Mixin-based programming promises to provide reusable
ware components that result into flexible and efficient implementations.

Previous papers have argued for the value of mixin-based software component
their advantages compared to application frameworks. In this paper we tried to m
explicit the engineering considerations specific to mixin-based programming in C
Our purpose is to inform programmers of the issues involved in order to help m
mixin-based programming into the mainstream.

References

[1] ANSI / ISO Standard:Programming Languages—C++, ISO/IEC 14882, 1998.

[2] J. Barton and L.R. Nackman,Scientific and Engineering C++: An Introduction
with Advanced Techniques and Applications, Addison-Wesley, 1994.

[3] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Librarie
ACM SIGSOFT1993.

[4] D. Batory, R. Cardone, and Y. Smaragdakis, “Object-Oriented Frameworks
Product-Lines”, 1st Software Product-Line Conference, Denver, Colorado,
August 1999.



d

for

d

d

ral

E.
SS:

nted

re
ity

ted

in
[5] K. Beck and W. Cunningham, “A Laboratory for Teaching Object-Oriente
Thinking”, OOPSLA 1989, 1-6.

[6] G. Bracha and W. Cook, “Mixin-Based Inheritance”,ECOOP/OOPSLA 90, 303-
311.

[7] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler, “Making the future safe
the past: Adding Genericity to the Java Programming Language”,OOPSLA 98.

[8] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell, “F-bounde
Polymorphism for Object-Oriented Programming”, inProc. Conf. on Functional
Programming Languages and Computer Architecture, 1989, 273-280.

[9] J. Coplien, “Curiously Recurring Template Patterns”,C++ Report, 7(2):24-27,
Feb. 1995.

[10] K. Czarnecki and U. Eisenecker.Generative Programming: Methods, Tools, an
Applications. Addison-Wesley, 2000.

[11] K. Czarnecki and U. Eisenecker, “Synthesizing Objects”,ECOOP 1999, 18-42.

[12] U. Eisenecker, “Generative Programming in C++”, inProc. Joint Modular
Languages Conference (JMLC’97), LNCS 1204, Springer, 1997, 351-365.

[13] M.A. Ellis and B. Stroustrup,The Annotated C++ Reference Manual, Addison-
Wesley, 1990.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[15] R. Helm, I. Holland, and D. Gangopadhyay, “Contracts: Specifying Behavio
Compositions in Object-Oriented Systems”.OOPSLA 1990, 169-180.

[16] I. Holland, “Specifying Reusable Components Using Contracts”,ECOOP 1992,
287-308.

[17] R. Johnson and B. Foote, “Designing Reusable Classes”,J. of Object-Oriented
Programming, 1(2): June/July 1988, 22-35.

[18] G. Kiczales, J. des Rivieres, and D. G. Bobrow,The Art of the Metaobject
Protocol. MIT Press, 1991.

[19] O.L. Madsen, B. Møller-Pedersen, and K. Nygaard,Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley, 1993.

[20] D.A. Moon, “Object-Oriented Programming with Flavors”,OOPSLA 1986.

[21] T. Reenskaug, E. Anderson, A. Berre, A. Hurlen, A. Landmark, O. Lehne,
Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. Stenslet, “OORA
Seamless Support for the Creation and Maintenance of Object-Orie
Systems”,J. of Object-Oriented Programming, 5(6): October 1992, 27-41.

[22] Silicon Graphics Computer Systems Inc.,STL Programmer’s Guide. See:
http://www.sgi.com/Technology/STL/  .

[23] V. Singhal, A Programming Language for Writing Domain-Specific Softwa
System Generators,Ph.D. Dissertation, Dep. of Computer Sciences, Univers
of Texas at Austin, August 1996.

[24] Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Orien
Components”. In the5th Int. Conf. on Software Reuse (ICSR 98).

[25] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mix
Layers”. InECOOP 98.



ts”,
s at

in

ed
ced

t

tual
ricity

t

[26] Y. Smaragdakis, “Implementing Large-Scale Object-Oriented Componen
Ph.D. Dissertation, Department of Computer Sciences, University of Texa
Austin, December 1999.

[27] A. Stepanov and M. Lee, “The Standard Template Library”. Incorporated
ANSI/ISO Committee C++ Standard.

[28] B. Stroustrup,The C++ Programming Language, 3rd Ed., Addison-Wesley,
1997.

[29] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Bas
Designs”.JSSST International Symposium on Object Technologies for Advan
Software, Springer-Verlag, 1996, 22-37.

[30] M. VanHilst and D. Notkin, “Using Role Components to Implemen
Collaboration-Based Designs”.OOPSLA 1996.

[31] M. VanHilst and D. Notkin, “Decoupling Change From Design”,SIGSOFT 96.

[32] P. Wadler, M. Odersky and Y. Smaragdakis, “Do Parametric Types Beat Vir
Types?”, unpublished manuscript, posted in October 1998 in the Java Gene
mailing list (java-genericity@cs.rice.edu) .

[33] K. Weihe, “A Software Engineering Perspective on Algorithmics”, available a
http://www.informatik.uni-konstanz.de/Preprints/  .


	Mixin-Based Programming in C++
	Yannis�Smaragdakis
	College of Computing
	Georgia Institute of Technology
	Atlanta, GA 30332
	yannis@cc.gatech.edu
	Abstract
	Combinations of C++ features, like inheritance, templates, and class nesting, allow for the expre...

	1 Introduction
	2 Background (Mixins and Mixin Layers)
	Fig 1 : Collaboration decomposition of the example application: A depth-first traversal of an und...

	3 Programming with C++ Mixins: Pragmatic Considerations
	4 Related Work
	5 Conclusions
	References
	[1] ANSI / ISO Standard: Programming Languages—C++, ISO/IEC 14882, 1998.
	[2] J. Barton and L.R. Nackman, Scientific and Engineering C++: An Introduction with Advanced Tec...
	[3] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”, ACM SIGSOFT 1...
	[4] D. Batory, R. Cardone, and Y. Smaragdakis, “Object-Oriented Frameworks and Product-Lines”, 1s...
	[5] K. Beck and W. Cunningham, “A Laboratory for Teaching Object-Oriented Thinking”, OOPSLA 1989,...
	[6] G. Bracha and W. Cook, “Mixin-Based Inheritance”, ECOOP/OOPSLA 90, 303- 311.
	[7] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler, “Making the future safe for the past: Add...
	[8] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell, “F-bounded Polymorphism for Obj...
	[9] J. Coplien, “Curiously Recurring Template Patterns”, C++ Report, 7(2):24-27, Feb. 1995.
	[10] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and Applications. Ad...
	[11] K. Czarnecki and U. Eisenecker, “Synthesizing Objects”, ECOOP 1999, 18-42.
	[12] U. Eisenecker, “Generative Programming in C++”, in Proc. Joint Modular Languages Conference ...
	[13] M.A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison- Wesley, 1990.
	[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Objec...
	[15] R. Helm, I. Holland, and D. Gangopadhyay, “Contracts: Specifying Behavioral Compositions in ...
	[16] I. Holland, “Specifying Reusable Components Using Contracts”, ECOOP 1992, 287-308.
	[17] R. Johnson and B. Foote, “Designing Reusable Classes”, J. of Object-Oriented Programming, 1(...
	[18] G. Kiczales, J. des Rivieres, and D. G. Bobrow, The Art of the Metaobject Protocol. MIT Pres...
	[19] O.L. Madsen, B. Møller-Pedersen, and K. Nygaard, Object-Oriented Programming in the BETA Pro...
	[20] D.A. Moon, “Object-Oriented Programming with Flavors”, OOPSLA 1986.
	[21] T. Reenskaug, E. Anderson, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E. Nordhagen, E. Ness...
	[22] Silicon Graphics Computer Systems Inc., STL Programmer’s Guide. See: http://www.sgi.com/Tech...
	[23] V. Singhal, A Programming Language for Writing Domain-Specific Software System Generators, P...
	[24] Y. Smaragdakis and D. Batory, “Implementing Reusable Object-Oriented Components”. In the 5th...
	[25] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin Layers”. In ECOOP 98.
	[26] Y. Smaragdakis, “Implementing Large-Scale Object-Oriented Components”, Ph.D. Dissertation, D...
	[27] A. Stepanov and M. Lee, “The Standard Template Library”. Incorporated in ANSI/ISO Committee ...
	[28] B. Stroustrup, The C++ Programming Language, 3rd Ed., Addison-Wesley, 1997.
	[29] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”. JSSST Inte...
	[30] M. VanHilst and D. Notkin, “Using Role Components to Implement Collaboration-Based Designs”....
	[31] M. VanHilst and D. Notkin, “Decoupling Change From Design”, SIGSOFT 96.
	[32] P. Wadler, M. Odersky and Y. Smaragdakis, “Do Parametric Types Beat Virtual Types?”, unpubli...
	[33] K. Weihe, “A Software Engineering Perspective on Algorithmics”, available at http://www.info...





