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Research Statement

I am a computer scientist who conducts research in the areas of computer vision and machine learning.
My goal as a researcher is to make fundamental contributions towards building AI systems with rich vi-
sual reasoning capabilities. My research focuses on architectures for visual recognition tasks [1–5, 7–14,
19, 25, 26, 29, 35, 42–45], as well as techniques to improve their robustness, efficiency, generalization and
interpretability [15–17,20–24,30–34,36–39,41,46–53]. My research is also interdisciplinary. I collaborate
with computer scientists and ecologists to analyze bird migration from radar imagery; with astronomers to
uncover scientific insights from images of galaxies; as well as domain experts to develop applications in
graphics, health care, material design, and sustainability. I am a long-term organizer of the Fine-Grained Vi-
sual Categorization workshop which aims to foster collaborations between researchers in computer vision,
ecology, biology and industry, and to understand the role of computer vision in other domains.

My research is motivated not only by the numerous applications of computer vision, but also by the possibil-
ity that fundamental advances in analyzing visual data can provide insights into various social, cultural, and
natural factors that profoundly affect our lives. For example, data collected from personal devices, social
media, autonomous platforms and medical devices can support novel applications in e-commerce, robotics,
manufacturing, and health care. Similarly, data collected by satellites, weather radars, telescopes and other
sensor networks provide an unprecedented opportunity to understand planet-scale phenomena such as the
impact of climate change on biodiversity and shed light into processes that govern the physical world. I
argue that a primary barrier to realizing the full potential of these data resources is computational. In partic-
ular, current AI systems lack the ability to perceive detailed semantic information, to work across modalities
such a language and vision, interact with humans to solve problems, and to solve novel tasks with limited
supervision.

Application areas. My research addresses these challenges in the context of the following application areas,
as illustrated in Fig. 1–4:

• Fine-grained and detailed visual recognition. Detailed understanding is necessary to enable richer appli-
cations of computer vision across domains ranging from e-commerce, to biology and ecology. We have
developed architectures for fine-grained categorization tasks such as identifying the species of a bird, or
the model of a car (e.g., [25, 26]). We have also developed methods for understanding texture, which can
be used to estimate material properties of surfaces or clothing styles (e.g., [8, 9]). In my PhD thesis, I
developed part-based models for estimating attributes of people such as their pose, activities, and clothing
styles in photographs (e.g., [3–5, 35]).

• 3D shape understanding and generation. We have developed architectures for 3D shape perception tasks
such as classification and semantic segmentation (e.g., [44, 45]), for estimating shapes from a single
image, image collections, or even sketches (e.g., [11, 13, 29]), as well as methods for decomposing 3D
data into primitives for easier editing and manipulation. These methods can enable applications in robotics
and autonomous driving where 3D understanding is necessary for navigation, grasping, and other tasks.

• Applications in computer graphics, ecology, astronomy and chemistry. With collaborators, we have de-
veloped novel applications of computer vision to problems in computer graphics, such as animation and
editing textures using language; in ecology, such as classifying animals in camera-trap images and recog-
nizing biological phenomena in radar imagery; in astronomy, such as for classifying star clusters in high
resolution images of galaxies (e.g., [28,41,49,53]); with chemists to develop ways to represent and design
catalysts for chemical separation.
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Research themes. In the context of the aforementioned applications my research follows two themes:

• Learning and recognition with humans in-the-loop. We have developed annotation tasks and learning
algorithms to discover semantic parts and attributes associated with a category and to train interpretable
visual representations [30, 38]; user-interfaces to efficiently annotate detailed labels [36]; and techniques
for incorporating human knowledge during inference making it possible to deploy imperfect recognition
systems for solving complex tasks [51, 52].

• Statistical and computational efficiency in learning. My PhD thesis contributed to improving the effi-
ciency of recognition systems (e.g., [33, 37]). Recently, we have analyzed the role of image representa-
tions and architectures for 3D shape understanding, developed algorithms for few-shot learning and for
learning with weak supervision, and developed a framework for measuring similarity between tasks for
meta-learning (e.g., [20, 46–48]).

Research collaboration, impact, and funding. Within computer science, I am a member of the computer
vision and machine learning (broadly AI) communities. My research strategy is to publish fundamental
and application-driven results in computer vision (CV), graphics and machine learning (ML) venues, and
collaborate with domain experts to publish novel scientific findings in ecology and astronomy. I have
organized the last eight Fine-Grained Visual Categorization workshops (FGVC3— FGVC9), and contributed
several datasets and open-source software to the AI community. Since joining UMass, I have published
38 articles in highly selective CV, ML and AI conferences, including 27 at CVPR, ICCV, ECCV, KDD,
SIGGRAPH, and AAAI, nine journal articles at selective venues, and two book chapters. My publications
have been cited 16196 times (h-index 41, i10-index 67) according to Google scholar as of March 8, 2022.
Papers that I have co-authored have received the best paper honorable mention at CVPR 2018 [44], and best
student paper at WACV 2015 [52]. My work has been supported by six awards from the National Science
Foundation, Climate Change AI foundation, with two as sole PI and four as Co-PI, and gifts from Facebook,
Adobe, and NVIDIA; the UMass portions of these awards total 3.2 million US dollars. On the education
side, I have supervised nine PhD students (five ongoing and four have graduated).

Below I describe my research contributions and future work organized into three thrusts: architectures for
visual recognition, techniques for knowledge transfer and learning, and applications of computer vision in
ecology, astronomy, and other areas.

1 Architectures for Visual Recognition

Advances in computer vision, in part due to the “deep learning” revolution, offer a real possibility of univer-
sal and detailed visual perception. A challenge is that current techniques are reliant on significant manual
supervision, limiting their scalability to tasks and domains. My research develops architectures with better
statistical and computational efficiency to address these challenges. My research also develops novel archi-
tectures for analyzing and generating modalities such as texture and 3D data. I will highlight these in the
context of various problems that I have tackled recently.

1.1 Texture Understanding and Fine-Grained Categorization

Texture is indicative of an object’s shape, material properties, and also useful for fine-grained categorization
tasks, such as distinguishing animal species as illustrated in Fig. 1(a). The ability to perform these tasks
increases the value of data collected through a variety of sensors, e.g., to estimate distribution of species
and inform conservation efforts, as well as enable applications in robotics and computer graphics. In a
series of work that started as a collaboration with Mircea Cimpoi, Andrea Vedaldi and Iasonas Kokkinos,
and continued by my students, we have developed a better understanding of how texture properties can be
analyzed with deep networks, and in the process proposed several innovative architectures for texture and
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(a) Two related bird species (b) Bilinear convolutional networks (c) Maximal images 
Figure 1: Fine-grained visual categorization. (a) Two visually similar species of Gulls. Below each are
examples of each species; notice the inter- and intra-class variability. (b) Bilinear CNNs compute outer
product interactions between features from two streams and was one of the early methods proposed by
our group that achieved high performance on this task. (c) Visualizing “maximal images” of a category
according to a bilinear CNN shows the discriminative “texture” indicative of that category.

fine-grained categorization. I will summarize the main contributions below:

• At CVPR 2014, we presented the describable texture dataset aimed at describing textures “in the wild”
using natural language [8]. The dataset served as a tesbed for analyzing the effectiveness of deep networks
trained on ImageNet for the classical problem of texture and material recognition.

• At CVPR 2015 [10] and in a subsequent IJCV journal [9], we observed that though the features extracted
from layers of a deep convolution neural network (CNN) offered excellent generalization on many com-
puter vision datasets, they were not as effective for texture recognition compared to classical approaches.
We showed that instead, combining features from intermediate layers of a deep network with encoding
and orderless pooling techniques developed in the classical texture analysis literature led to better perfor-
mance. In particular, we proposed Fisher vector CNNs that outperformed both classical representations
and standard CNN architectures across a wide variety of texture datasets.

We then studied the role of texture for fine-grained categorization. This task is challenging because the
subtle differences between categories are confounded by factors such as pose, viewpoint, and occlusion
(Fig. 1a). The dominant approach at the time was to localize a set of parts and extract a pose-normalized
appearance. While these methods were more accurate, training part detectors required significant effort as
they relied on part annotations.

• At ICCV 2015, we proposed bilinear CNN [25, 26], a deep architecture that offered the effectiveness of
part-based models but did not require part annotations. The key idea was a decomposition of the represen-
tation as an outer product (see Fig. 1b) designed to capture discriminative part-feature interactions. We
also showed that the model is related to bag-of-words representations, but unlike them could be trained
in an end-to-end manner. The model surpassed the state-of-the-art on several fine-grained recognition
benchmarks, even outperforming several that relied on part annotations. The work was influential in the
design of several architectures for fine-grained classification, and the idea of combining of information
from multiple streams through outer product interactions has found its use in tasks such as visual question
answering and activity recognition.

• At CVPR 2016, we developed a technique [22] to analyze what these models learn by visualizing maximal
images for each category as shown in Fig. 1c. Recently, we applied this technique to visualize and describe
various fine-grained datasets from the FGVC6 workshop challenges [27], shedding some light on the
discriminative visual features predictive of the category.

• At BMVC 2017, we proposed the improved bilinear CNN [23] that increased the effectiveness of bi-
linear pooling by using spectral normalization. Furthermore, we showed that the procedure could be
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efficiently implemented on the GPU using iterative methods. At ECCV 2018, we presented second-
order democratic pooling [24] which is simpler and more efficient. These models remain effective, with
a team winning the iNaturalist18 challenge by combining improved bilinear CNNs with deeper networks.
It was also a component of some of the top-performing methods at the FGVC6 challenges.

1.2 3D Shape Recognition and Generation

There is a growing need to analyze and generate 3D shape data for applications in computer graphics,
robotics and autonomous driving. However, existing techniques for processing 3D data are lacking in com-
parison to those for image data. In the last few years, together with colleagues at UMass, in particular Erik
Learned-Miller, Rui Wang and Evangelos Kalogerakis, and several graduate students, in particular Matheus
Gadelha, Hang Su and Jong-Chyi Su, we have advanced techniques for 3D shape analysis and synthesis as
illustrated in Fig. 2. I will summarize the main contributions below.

• At ICCV 2015, we presented a deep architecture for 3D shape recognition called multi-view CNN [45]
(Fig. 2a). The technique aggregates view-based representations from multiple views to obtain a global
3D shape representation. The architecture is end-to-end trainable and benefits from transferable repre-
sentations learned on large-scale image datasets. At the time of publication, this model achieved state-of-
the-art performance on standard 3D shape classification and retrieval tasks (e.g., [42]). Although several
new techniques have been proposed since, a recent survey from our group presented at an ECCV 2018
workshop [46] showed that multi-view architectures outperform these techniques when they are combined
with the latest image classification networks.

• At CVPR 2017, in a work led by Evangelos Kalogerakis, we presented Shape-PFCN [19], an architec-
ture for 3D shape segmentation. Segmentations from multiple views were projected back to the surface
followed by global reasoning to obtain a consistent segmentation. The approach is simple and practical
and has been effectively applied to other 3D semantic segmentation tasks.

• At 3DV 2017, we presented an approach for generating 3D shapes from sketches using a mutli-view
depth and normal representation of the 3D shape, as illustrated in Fig. 2b. The key insight was to generate
vast amounts of synthetic sketch data by applying the techniques developed in the computer graphics
community to supervise deep networks. This was a novel application of deep learning for the classical
task of understanding shape from sketches that pioneers like Jan J. Koenderink studied.

• At 3DV 2017, we presented PRGAN [11], an approach for inferring 3D shapes from shape collections
that did not require any prior knowledge about the underlying shapes. This is a challenging problem
related to non-rigid structure from motion. Our approach combined a 3D generative model with a dif-
ferentiable renderer, and used adversarial networks to match the generated image distributions to the
provided set of images. The method was able to infer coarse 3D shapes and viewpoints in a completely
unsupervised manner. In a recent work [12] we extended the approach to incorporate weak supervision,
such as viewpoint and part annotations, to improve the reconstructions.

• At CVPR 2018, we presented SPLATNet [44], an architecture that efficiently operates on point-cloud
data using sparse high-dimensional filtering, as illustrated in Fig. 2c. The approach also allows one to
effectively combine view-based and 3D-based reasoning for recognition tasks. Moreover the architec-
ture can also be efficiently implemented on the GPU making it practical for real-time applications. The
approach was awarded best paper honorable mention at CVPR 2018 (1/4 of 979 accepted papers).

• At ECCV 2018, we presented one of the first generative models for point-cloud data called MRTNet [13].
The idea was to parameterize the point-cloud data implicitly using a spatial partitioning tree and use the
induced hierarchy to organize feed-forward operations in a generative model. The model can be used to
encode point cloud shapes or generate 3D shapes from images as shown in Fig. 2(d-e). Our approach
outperformed the existing state-of-the-art on standard image to shape generation benchmarks. The work
improved our earlier generative model for point clouds called PCAGAN [14].
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Figure 2: 3D shape understanding. (a) Multi-view CNN for 3D shape recognition. (b) Generating 3D
shapes from sketches. (c) SPLATNet architecture for shape segmentation. (d-e) Multiresolution tree net-
works (MRTNet) and its application to generate 3D shapes represented as point clouds.

2 Knowledge Transfer and Learning

Humans are able to recognize new concepts from a few examples while current AI systems cannot. My
research addresses this limitation in two ways. First, I study how humans can efficiently collaborate with
computer vision systems to train them and solve complex recognition tasks. Second, I study ways to improve
the generalization and computational efficiency of recognition systems by analyzing the role of datasets,
architectures and training algorithms, contributing to the growing area of research on meta-learning. I will
highlight the main contributions next.

2.1 Efficiency of Learning and Inference

My PhD thesis proposed ways to improve the efficiency and accuracy of detection and classification systems:

• Additive kernel SVMs [32–34] that reduced the training and evaluation time for several commonly used
kernel SVMs (e.g., intersection, chi-squared) in computer vision, making them practical for detection and
other large-scale classification tasks. This work was influential in the development of several “pre deep-
learning” computer vision systems, including the region-based pipeline for object detection that won the
PASCAL VOC challenges 2009-11, a precursor to the modern R-CNN detectors.

• Poselets that are visually discriminative patterns and capture a configuration of parts of an object. In
a series of work in collaboration with several people, in particular Lubomir Bourdev, we showed that
poselets were effective for detecting objects and recognizing their attributes [3, 4, 35].

• Biased normalized cuts [39] that enabled interactive image segmentation from scribbles and clicks in
the normalized-cuts framework.

• Learnable Hough transforms for combining part-based models for object detection [37].

Together with collaborators I have continued this line of research.

• In a project led by Tamir Hazan and in collaboration with several researchers, we developed a Per-
turb and MAP framework for drawing samples from probabilistic models by perturbing them and us-
ing efficient MAP inference algorithms. This enabled inference and learning of certain structured mod-
els [15–17]. At AISTATS 2014, we used this framework for accelerating annotation of structured data,
such as polygon boundaries of objects in images, by jointly reasoning about annotation cost and uncer-
tainty induced by a probabilistic model [36].
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Figure 3: Recognition with humans in-the-loop (a) Discovering semantic parts from pairwise correspon-
dence annotations. (b) Attribute discovery from visual differences and a speaker-listener model trained to
refer to instances. (c) Localized similarity metrics for interactive recognition.

• At ECCV 2014, we proposed a technique to accelerate object detectors by training a model to predict the
accuracy of the detector using features computed from the model itself, speeding the overall training by
an order of magnitude [2].

• At CVPR 2019, we presented an approach for few-shot learning called CVXOptNet [20]. The idea was to
learn representations that lead to good classifiers according to a convex learner. This resulted in consistent
improvements over the commonly used nearest neighbor classifiers at a modest increase in computational
cost on standard few-shot learning benchmarks.

• At CVPR 2019, we characterized the priors induced by a random deep network by analyzing it as a
Gaussian process, and proposed ways to improve the “deep image prior” of Ulyanov et al. for image
denoising and inpainting tasks [7].

2.2 Learning and Recognition with Humans in-the-Loop

Another line of research aims at simplifying how to collect annotations for training computer vision systems.
We have developed techniques where semantic properties can be discovered by asking human annotators to
perform simple tasks that don’t require any category-specific instructions.

• At CVPR 2012, we showed that by asking annotators to mark correspondences between pairs of images
one can discover semantic parts as seen in Fig. 3a. These parts provide an interpretable basis for detection
and retrieval [38].

• At CVPR 2013, we showed that by asking annotators to describe the differences between instances
one can discover a rich lexicon of discriminative attributes [30], as seen in Fig. 3b). These ideas were
instrumental in the collection of the airplanes in detail dataset [50].

• At ICCV 2017, we showed that training computer vision systems to analyze and generate visual differ-
ences lead to better models for language and vision tasks [48] (see Fig. 3b).

Interpretable representations not only make subsequent debugging and visualization of the learned models
easier for humans, it can serve as a basis for interactive recognition. For example:

• We developed techniques for recognition with humans in-the-loop (e.g. [51, 52]), where perceptually-
aligned representations can be used to incorporate human feedback for fine-grained categorization tasks
(Fig. 3c). The latter [52] was awarded a best student paper at WACV 2015.

• At BMVC 2017, we studied how annotations can be incorporated to improve learning. Typically, part
labels or attributes are used in “pipelined” architecture (e.g., detect and then classify). However, simpler
end-to-end trained models are more effective as more training data becomes available. We presented a
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technique called cross quality distillation to use annotations as loss functions whose influence could be
adjusted based on the amount of training data. Our work showed that off-the-shelf models trained with
these loss functions match the accuracy of hand-designed pipelines [47].

• In collaboration with Evangelos Kalogerakis, we have developed interpretable generative models for com-
puter graphics applications where it is often desirable to have an editable representation. At CVPR 2018,
we presented CSGNet that decomposes 3D shapes into a computer program written in constructive solid
geometry [43]. Similarly, in SIGGRAPH 2018, we presented VISEMENet to generate editable facial
animation parameters controlled by speech [53].

Human in-the-loop recognition is also relevant for quickly building systems for solving novel tasks. In this
context methods for active learning, semi-supervised learning, and interaction design become important to
develop good workflows for data processing.

3 Applications

Ecology. I lead the computer vision efforts for dark ecology project — a significant ongoing research
collaboration between the University of Massachusetts and the Cornell Lab of Ornithology. Our goal is
to quantitatively measure biological information from the entire archive of US weather RADAR data and
use the resulting data to unravel mysteries of bird migration. We have developed automatic techniques to
separate weather from biology in radar data so we can accurately and automatically measure migration, and
cloud workflows to scale our analyses to this massive data set (Fig. 4a). Recently, we passed a significant
milestone: our model now identifies at least 95.9% of all biomass with a false discovery rate of 1.3% across
a wide range of conditions [28], and we have analyzed 13 million scans using more than 10,000 hours of
compute time to construct a 25-year data set of migration covering all 143 radar stations in the contiguous
US at a frequency of once every 30 minutes. The data is the first of its kind for answering historical
questions about the basic biology and conservation of bird migration systems. For example, we found that
the phenology of nortornal bird migration has shifted at by ≈ 1.5 days / decade in the continental US [18].
Another ongoing project is aimed at detecting roosts [6] of birds and bats which have a distinctive signature
on weather radar, seen as the ring-shaped structures in Fig. 4b. These phenomenon offer insights to the
migratory behavior of aerial insectivores which are threathened by a number of factors. These projects are
actively funded by two grants from the NSF, for which I am a co-PI.

Astronomy. I collaborate with Daniela Calzetti from the Astronomy department, to develop algorithms for
search, classification, and shape measurement of young star clusters in high resolution images of galaxies.
Our current techniques are able to achieve accuracy comparable to human experts [40] and we are evaluating
how well these methods generalize to novel tasks. Our initial tests were performed on the two closest
galaxies to our own Milky Way (M31 and M33), and then extended to M51 and NGC628, which are further
away from us. These are well-studied galaxies for which high-fidelity catalogs already exist, and can be used
for training and evaluation of automatic systems. We anticipate that data collected using these techniques
will provide insights into the physics of star formation, and serve as pilot studies for building efficient
workflows for processing future data that will arrive through the James Webb telescope.

Others collaborations. In collaboration with students and faculty members I developed applications of
computer vision that include: a dataset of camera trap images from Costa Rica and algorithms for recog-
nizing the presence and species of animals that appear in them [49]; algorithms for inferring 3D shape of
rooftops from satellite imagery to estimate their solar power potential [21]; and using computer vision to
train a model for predicting facial expressions from Electrooculography (EOG) based sensors embedded in
wearable eye glasses [41]. An ongoing collaboration with the Chemistry department aims at developing
representations of extended materials such as zeolites, for designing catalyts for chemical seperation.
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Figure 4: The dark ecology project to understand bird migration from RADAR data in the US.

4 Future work and conclusion

My research group is investigating several projects for manipulating, generating, and performing inference
collaboratively between humans and machines. One direction is for computer graphics applications where
raw data such as point-clouds are represented using primitives for easier manipulation and editing. Another
project aims to use natural language to generate and describe regions in images for interactive editing.
Another is to accelerate science where expert labels can be used to train ML systems to process vast amount
of scientific data, or serve as surrogate models for experimental design.

My research group is also looking into language as a means of communication for solving complex tasks
with humans and AI systems. Current models for integrating language and vision are one-directional, i.e.,
machines are trained to produce descriptions in natural language, or answer questions about an image or
video. We would like to develop systems that can truly communicate, i.e., machines that can ask questions
to experts and vice-versa to solve visual recognition tasks.

Another direction in our group aims to improve the generalization of recognition systems by analyzing the
space of vision tasks. Recently, we developed a framework for efficiently computing vectorial representa-
tions of computer vision tasks [1]. The distance in the embedding space reflects task similarity and can be
used for model recommendation and other meta-learning tasks. Understading and relating tasks and their
solutions across diverse will enable us to build systems that can quickly learn and adapt to novel tasks.

My research group is also exploring ways to improve generalization of models when learning from a few
examples by exploiting unlabeled data from different modalities; improving generative models of 3D shapes
by analyzing inductive biases of deep architectures; developing models for analyzing spatio-temporal data
such as video and audio; increasing the robustness of 3D shape inference from images in realistic settings
where they could be occluded or appear in clutter; as well as methods for inferring 3D shapes without
supervision by “inverting” the physics of image formation.

In conclusion, several technological and social challenges need to be addressed for the wide-scale adoption
of AI systems. My research addresses several key ones: generalization, robustness and interpretability
of computer vision systems. I am looking forward to continue innovating in these areas with the goal of
building systems that can extract rich information from sensory inputs and act intelligently. I am also looking
forward to collaborations with domain experts to develop novel applications and to advance science.
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