

Object Segmentation by Alignment of Poselet Activations to Image Contours

Thomas Brox¹, Lubomir Bourdev²³, Subhransu Maji², Jitendra Malik²

¹University of Freiburg, Germany ²University of California at Berkeley ³Adobe Systems Inc.

ours | Barce- | Bonn | Chicago | Oxford

Pose specific part classifiers: Poselets beyond people

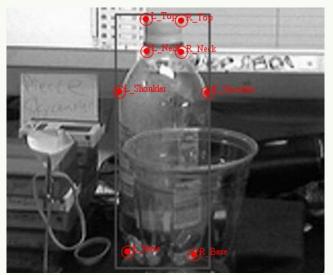
Definition of subcategories

→ sailboat, ocean liner, motorboat aeroplane -> propeller plane, jet, military aircraft

→ flying bird, non-flying bird

Separate definition of keypoints and separate classifiers for each subcategory

Keypoints for symmetric objects



Segmentation

Bottles and potted plants (among others) are rotation symmetric and require a viewpoint dependent definition of keypoints

Annotation with Amazon Mechanical Turk

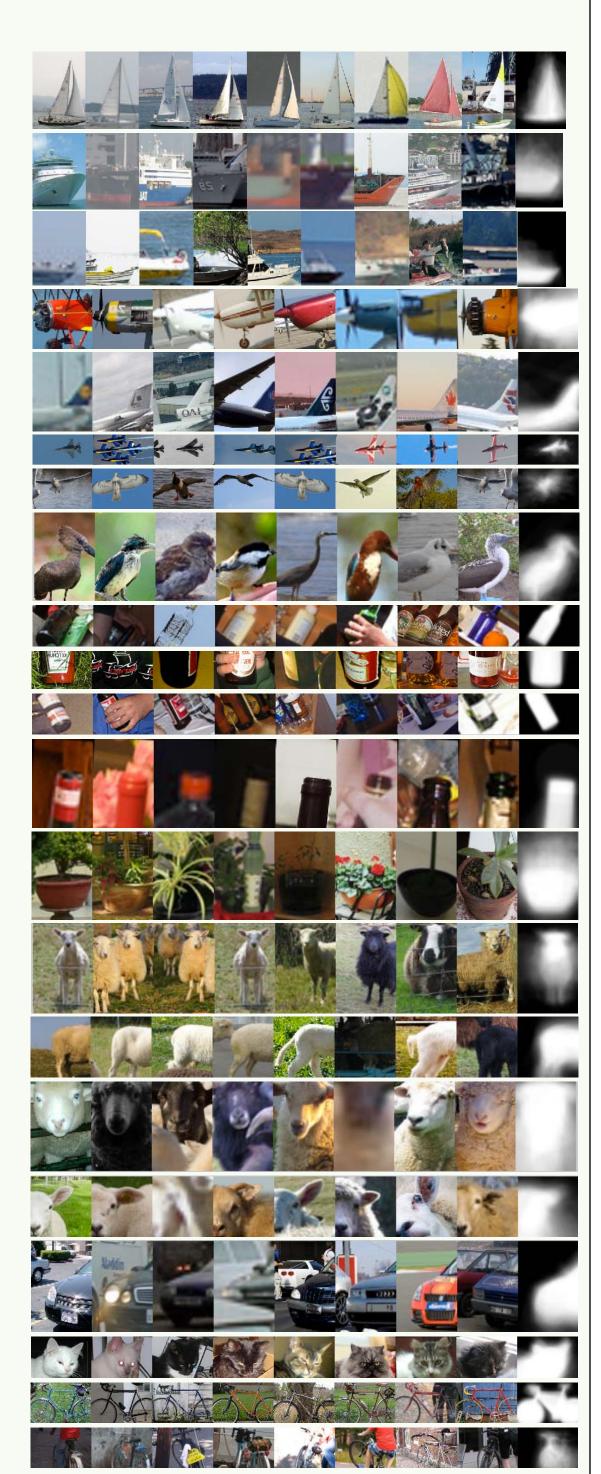
Keypoint annotation

Annotation of the complete PASCAL VOC

training set within 2 weeks and for about \$3000.

Generation of object hypotheses

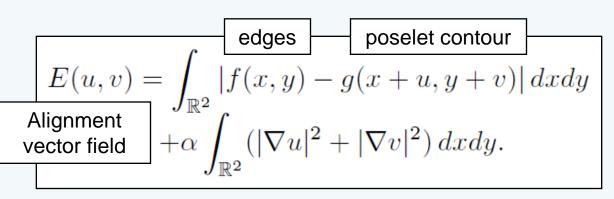
Clustering of mutually consistent poselet activations in the same manner as in Bourdev et al. ECCV 2010.

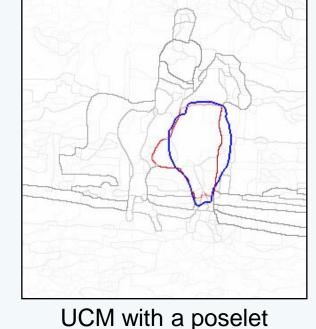


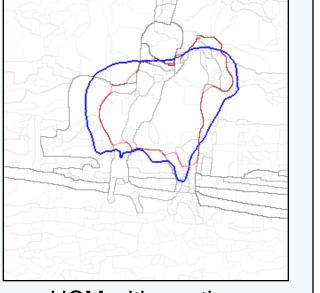
Alignment to image contours

Alignment of each poselet activation to the image contours

- Extract contour from the poselet's average mask
- Extract image edges with UCM (Arbelaez et al. PAMI 2011)
- Align poselet contour to the image edges with variational optical flow

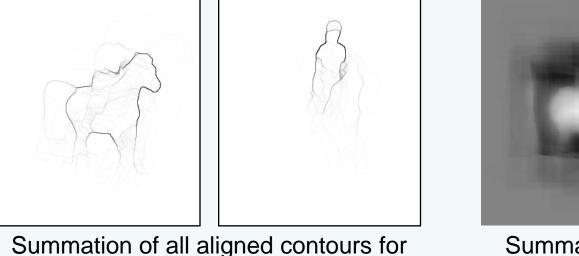






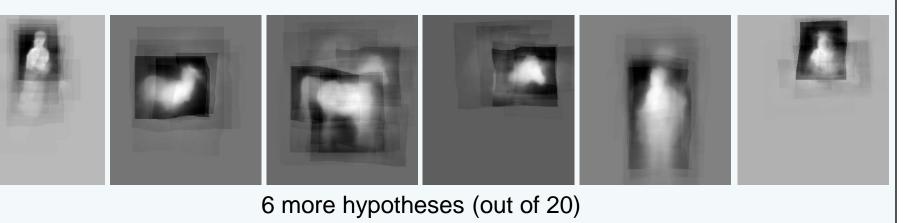
after alignment

UCM with another poselet activation before and after alignment



the two highest ranked hypotheses

Summation of all aligned masks for the two highest ranked hypotheses



L. Bourdev, S. Maji, T. Brox, J.Malik: Detecting people using mutually consistent poselet activations, ECCV 2010.

Competitive spatial integration

Dealing with overlapping hypotheses

$M'(x,y) = \int$	$M_j(x, y)$, if $M_j(x, y) = \max_k M_k(x, y)$	Winner keeps its score	
$M_j'(x,y) = \Big\{$	$M_j(x,y) - \max_k M_k(x,y)$, otherwise	Winner suppresses all losers	

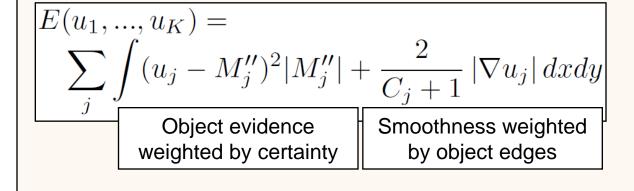
Losers of the winner's category contribute their score to the winner for not losing object evidence in case of erroneous poselet clustering.

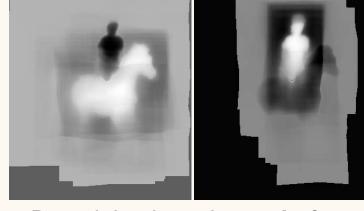
Removing false positive hypotheses

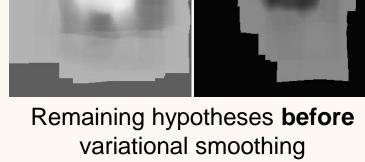
$$M_j''(x,y) = \frac{M_j'(x,y)}{\lambda + \max_{x,y} M_j'(x,y)}$$
 Global normalization of the score

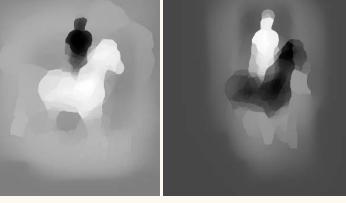
Thresholding after normalization keeps only hypotheses with high scores. This also removes local areas with a low score.

Creating spatially consistent segmentations by joint variational smoothing









Remaining hypotheses after variational smoothing

Zero level sets

Patch based refinement

Texture similarity defined by 7x7 image patches. Each pixel in a UCM superpixel votes for a label based on the majority label among its 100 nearest neighbors.

Segmentation results on Pascal datasets

	Iun	angnment+	angnment	basenne		ours	Darce-	Domi	Cincago	OAI
	model	smoothing		model			lona			Broo
background	79.23	78.77	78.76	78.58	background	82.2	81.1	84.2	80.0	70
aeroplane	36.26	33.25	26.14	26.63	aeroplane	43.8	58.3	52.5	36.7	31
bicycle	38.54	36.02	32.98	32.14	bicycle	23.7	23.1	27.4	23.9	18
bird	16.57	15.78	13.46	12.70	bird	30.4	39.0	32.3	20.9	19
boat	12.14	12.38	13.18	12.74	boat	22.2	37.8	34.5	18.8	23
bottle	30.40	30.45	32.94	31.40	bottle	45.7	36.4	47.4	41.0	31
bus	33.20	32.28	28.43	29.24	bus	56.0	63.2	60.6	62.7	53
car	42.15	41.88	39.84	39.25	car	51.9	62.4	54.8	49.0	45
cat	44.99	42.87	38.67	38.19	cat	30.4	31.9	42.6	21.5	24
chair	10.33	8.99	8.27	7.89	chair	9.2	9.1	9.0	8.3	8.
cow	37.21	34.80	29.77	29.24	cow	27.7	36.8	32.9	21.1	31
diningtable	10.69	9.90	11.61	11.37	diningtable	6.9	24.6	25.2	7.0	16
dog	23.15	21.64	18.04	17.61	dog	29.6	29.4	27.1	16.4	16
horse	43.92	40.71	36.34	35.41	horse	42.8	37.5	32.4	28.2	27
motorbike	32.59	31.53	28.52	27.90	motorbike	37.0	60.6	47.1	42.5	48
person	49.64	47.78	44.92	44.00	person	47.1	44.9	38.3	40.5	31
pottedplant	17.60	18.91	18.12	17.07	pottedplant	15.1	30.1	36.8	19.6	31
sheep	37.38	34.23	27.63	26.68	sheep	35.1	36.8	50.3	33.6	27
sofa	9.49	9.22	9.97	9.72	sofa	23.0	19.4	21.9	13.3	19
train	23.55	22.63	20.23	20.34	train	37.7	44.1	35.2	34.1	34
tvmonitor	47.50	47.19	38.87	43.51	tvmonitor	36.5	35.9	40.9	48.5	26
average	32.21	31.01	28.41	28.17	average	34.9	40.1	39.7	31.8	30
Impact of	f each co	omponent, VC	OC 2007 da	taset	Compariso	on to st	ate-of-th	e-art. V	OC 2010 c	latase

full alignment+ alignment baseline

This project was funded by the German Academic Exchange Service (DAAD), Adobe Systems Inc., Google Inc., and ONR MURI N00014-06-1-0734

P. Arbelaez, M. Maire, C. Fowlkes, J. Malik: Contour detection and hierarchical image segmentation, IEEE Trans. on Pattern Analysis and Machine Intelligence, 33(5):898-916, 2011.