





# Knowing a Good HOG Filter When You See It: Efficient Selection of Filters for Detection Ejaz Ahmed<sup>1</sup>, Gregory Shakhnarovich<sup>2</sup> and Subhransu Maji<sup>3</sup>

<sup>1</sup>University of Maryland, College Park, <sup>2</sup>Toyota Technological Institute at Chicago and <sup>3</sup>University of Massachusetts, Amherst

### **Problem** :

- Fast automatic filter selection method.
- Selected filters should be discriminative and diverse.
- Learn universal model of filter "goodness".
- Beneficial for large number of methods which rely on collection of filters.

#### **Visual Categories as Collection of Filters :**



Poselets

Candidate

Generation





**Discriminative Patches** 

**Common Architecture :** 



Expensive

Evaluation







Exemplar SVMs

Run as detector

Selected Filters (n)

(n << N)

















**ESVMs** 



```
from f_{g,j}
```

**Selected Filters** (w , λ) **Test Category** 

selected



- > Automatically selects discriminative and non redundant filters.
- evaluation fast

By passes explicit

**Category Independent Model:** 



Pool of Filters (N)



Rank (lda)

Rank (svm)

Poselet

31.5

31.6

 $\succ \Delta_{g,i,j} = y_{g,i} - y_{g,j}$ , for i > j measures how much better  $f_{g,i}$  is  $\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{g=1}^{G} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left[ 1 - \left\langle \mathbf{w}, \delta \phi_{g,i,j} \right\rangle \right]_+ \Delta_{g,i,j}$ 

### Selecting a Diverse Set of Filters:

 $\succ$   $x_i \in \{0,1\}, i \in \{1, \dots, N\}$  indicator variable  $\succ$   $A_{ii}$  similarity between filter i and j

$$\max_{\mathbf{x}\in\{0,1\}^N, \sum_i x_i=n} \sum_i \widehat{y}_i x_i - \lambda \sum_i \max_{j\neq i} A_{ij} x_i x_j.$$



| Results : |       |               |                  |                        |           |         |
|-----------|-------|---------------|------------------|------------------------|-----------|---------|
| ion       |       | /OC 2007 test |                  | Training sppedup       |           |         |
|           | ſ     | MAP           | δΜΑΡ             | Initial                | Selection | Overall |
|           | 2     | 9.03          |                  |                        |           |         |
| 26        |       | 6.66          | -2.37            | 8x                     | 8x        | 8x      |
| 27.       |       | 7.78          | -1.25            | 1x                     | 4.4x      | 2.4x    |
| 2         |       | 7.38          | -1.65            | 1x                     | 8x        | 3x      |
| 2         |       | 8.34          | -0.69            | 1x                     | 8x        | 3x      |
| 2         |       | 7.53          | -1.50            | 1x                     | 8x        | 3x      |
|           | 2     | 8.51          | -0.52            | 1x                     | 8x        | 3x      |
|           | 2     | 7.81          | -1.22            | 1x                     | 8x        | 3x      |
|           | 29.04 |               | +0.01            | 1x                     | 8x        | 3x      |
|           | 28.19 |               | -0.84            | 8x                     | 8x        | 8x      |
| 29.46     |       | 9.46          | +0.43            | 8x                     | 8x        | 8x      |
| anking    |       |               | ESVM             | ESVM Detection         |           |         |
| 100       | 150   | 200           | Method           |                        |           |         |
| 52.8      | 68.6  | 80.0          | Oracle           | Oracle                 |           |         |
| 52.0      | 00.0  | 80.0          | Random           |                        |           | 18.53   |
| 52.2      | 67.9  | 79.7          | Freq             |                        |           | 16.23   |
| 54.3      | 70.2  | 80.2          | Rank(lda         | Rank(Ida)              |           |         |
|           | 74.0  | 81.1          | Rank(lda) + Freq |                        |           | 18.75   |
| 55.4      | 71.2  |               | Rank(Ida         | Rank(Ida) + Freq + Div |           |         |



## **Take Home Message:**

Fast automatic filter selection method using intrinsic properties of filters