Motivation

e Sampling from the Gibbs distribution is
provably hard in the data-knowledge
domain of machine learning applications.

e Maximum A-Posteriori (MAP) is efficient
but sub-optimal due to model inaccuracy.

e Random MAP perturbations generate
unbiased samples efficiently.

Contribution: Relating Gibbs distributions
to random MAP perturbations.

Background

Gibbs distribution:
1
p(T1,...,2T,) = > exp(f(xq,... ,:z:n))

Data-knowledge domain: 0;(z;),0; i(z;, ;)

9(331, e ,azn) = Zﬁz(xz) + Z Oi,j(azi,azj)
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Gibbs distribution landscape is ragged and
samples are provably hard (Jerrum 1993):
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Maximum A-Posterior (MAP):

max 6(zy,...,x,)
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Random MAP Perturbations

(Papandreou et al. 11, Tarlow et al. 12, Hazan et al. 12)

MAP perturbations and Gibbs distributions:
Add a random function y:X—R with i.i.d.

Gumbel random variables y(x)
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@)} <t| = [] F(t - 6(=))

reX

exp (= D (~(t—0(2)))) = F(t - 0(x))

re X

£y grleag({{@(a:)

Theorem (approximate samples from
Gibbs marginals with MAP perturbations)
If the graphical model has no cycles then
with high probability

‘log (P'v [mr,ws € arg max {é(m) + z 'Sf,,;,j(xz-,a:j)}]) — log ( Z p(:c))‘ < en
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Proof idea:

0(x) = 01,2(x1,22) + 02 3(z2,23)

log (ZP($1,$2,$3)) = 01,2(x1,72) + log (Zexp(ez,s(wmxs))) —log Z
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1
Vg Pry Hm—3 Z_lrrth{Hz,s(mz,ws) +72,3,45 (T2, ¥3) } — log (292,3(%,%3))‘ > e] <
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Unbiased samples from Gibbs

Algorithm 1 Unbiased sampling from Gibbs distribution using randomized prediction

Iterate over j = 1, ..., n, while keeping fixed x1, ..., x;_1. Set
exp (B, | maxe, 1 an {0@) 4571 vi(z)}])
exp (By | maxe;, ap {0(@)+30; 7i(2)}])

3. Sample an element according to p,(-). If r is sampled then reject and restart with j = 1.
Otherwise, fix the sampled element z; and continue the iterations.

L. pj(z;) =

Output: z1, ..., Ty

Low dimensional random functions y:Xi—R
with i.i.d. Gumbel random variables y;(x;)
provide unbiased samples from Gibbs.

P [Algorithm 1 outputs x | Algorithm 1 accepts] = p(x).

Proof: The probability of sampling xi,...,Xn

exp (Ey| max {60(2) + 325 ;1 vi(zi)}]) exp(f(z))

jl;ll exp (E’Y [mjma)in{ﬁ(w) + Z?:j ’Yz(CUz)}]) €Xp (E'y [mfna’in{e("’) + Z?zl %(%)}]) |

The probability the algorithm accepts is

Z
exp (B, | maxg,, ., {0(z) + 3 i, vi(zi)}])

Theorem (Self-reducing upper bounds):
Low-dimensional random functions yi:Xi—R
with i.i.d. Gumbel random variables y;(xi)

satisfy for every j=1,...,n and Xxi,..., Xj-1 :

Zexp (E,y[ max n{@(:c) it 2’"’: %(fﬂz)}]) < exp (E,Y Lmaﬁn{l?(w) -f Zj:%(wz)}])
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Proof: Taking logarithm on both sides

LHS = E’Yj[ manE’YHl ----- ’Yn[ LLdN {0($)+Z%(%)}]]
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RHS = E, [E, . . [max max {O(x)—i-Z’yz-(a:i)}]]
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Results

Approximating marginal probabillities:
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The importance of probabilistic inference
(MAP suffers from model inaccuracy)

Image + annotation MAP solution Error estimates

Sampling allows computation of non-decomposable losses.
Example image with the boundary annotation (left) and the error
estimates obtained using our method (right). Thin structures of
the object are often lost in a single MAP solution (middle-left),
which are recovered by averaging the samples (middle-right)
and lead to better error estimates.

Average of 20 samples

The unbiased sampler is sub-exponential
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