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Motivation
• Sampling from the Gibbs distribution is 

provably hard in the data-knowledge 
domain of machine learning applications.

• Maximum A-Posteriori (MAP) is efficient 
but sub-optimal due to model inaccuracy.

• Random MAP perturbations generate 
unbiased samples efficiently.  

Contribution: Relating Gibbs distributions 
to random MAP perturbations.  

Unbiased samples from Gibbs

Background
Gibbs distribution:

Data-knowledge domain:

Gibbs distribution landscape is ragged and 
samples are provably hard (Jerrum 1993):

Maximum A-Posterior (MAP):

Random MAP Perturbations

MAP perturbations and Gibbs distributions:
Add a random function γ:X→R with i.i.d. 
Gumbel random variables γ(x)  

(Papandreou et al. 11, Tarlow et al. 12, Hazan et al. 12)

Proof: F (t) def= P [�(x) � t] = exp(� exp(�t))

Theorem (approximate samples from 
Gibbs marginals with MAP perturbations) 
If the graphical model has no cycles then 
with high probability

Proof idea: 

Proof: Taking logarithm on both sides

LHS =

RHS =

Theorem (Self-reducing upper bounds):
Low-dimensional random functions γi:Xi→R 
with i.i.d. Gumbel random variables γi(xi) 
satisfy for every j=1,...,n and x1,..., xj-1 :

Proof: Theorem 1 implies that we sample (x
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, x

s

) approximately from the Gibbs distribution
marginal probabilities with a max-operation, if we approximate
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} exp(✓(x)). Using graph
separation (or equivalently the Markov property) it suffices to approximate the partial partition func-
tion over the disjoint subtrees T

r

, T

s

that originate from r, s respectively. Lemma 1 describes this
case for a directed tree with a single parent. We use this by induction on the parents on these directed
trees, noticing that graph separation guarantees: the statistics of Lemma 1 hold uniformly for every
assignment of the parent’s non-descendants as well; the optimal assignments in Lemma 1 are chosen
independently for every child for every assignment of the parent’s non-descendants label. ⇤
Our approximated sampling procedure expands the graphical model, creating layers of the original
graph, while connecting edges between vertices in the different layers if an edge exists in the original
graph. We use graph separations (Markov properties) to guarantee that the number of added layers
is polynomial in n, while we approach arbitrarily close to the Gibbs distribution. This construction
preserves the structure of the original graph, in particular, whenever the original graph has no cycles,
the expanded graph does not have cycles as well. In the experiments we show that this probability
model approximates well the Gibbs distribution for graphical models with many cycles.

4 Unbiased sampling using sequential bounds on the partition function

In the following we describe how to use random MAP perturbations to generate unbiased samples
from the Gibbs distribution. Sampling from the Gibbs distribution is inherently tied to estimating the
partition function. Assume we could have compute the partition function exactly, then we could have
sample from the Gibbs distribution sequentially: for every dimension we sample x

i

with probabil-
ity which is proportional to

P
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exp(✓(x)). Unfortunately, approximations to the partition
function, as described in Section 3, cannot provide a sequential procedure that would generate un-
biased samples from the full Gibbs distribution. Instead, we construct a family of self-reducible
upper bounds which imitate the partition function behavior, namely bound the summation over its
exponentiations. These upper bounds extend the one in [5] when restricted to local perturbations.
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distribution with zero mean. Then for every j = 1, ..., n and every x
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In particular, for j = n holds
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Proof: The result is an application of the expectation-optimization interpretation of the partition
function in Theorem 1. The left hand side equals to E
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, while the right hand side is attained by alternating the maximization with respect
to x

j

with the expectation of �
j+1

, ..., �

n

. The proof then follows by taking the exponent.⇤
We use these upper bounds for every dimension i = 1, ..., n to sample from a probability distribution
that follows a summation over exponential functions, with a discrepancy that is described by the
upper bound. This is formalized below in Algorithm 1

Algorithm 1 Unbiased sampling from Gibbs distribution using randomized prediction
Iterate over j = 1, ..., n, while keeping fixed x
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2. p
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3. Sample an element according to p

j

(·). If r is sampled then reject and restart with j = 1.
Otherwise, fix the sampled element x

j

and continue the iterations.
Output: x

1

, ..., x

n

When we reject the discrepancy, the probability we accept a configuration x is the product of prob-
abilities in all rounds. Since these upper bounds are self-reducible, i.e., for every dimension i we
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Low dimensional random functions γi:Xi→R 
with i.i.d. Gumbel random variables γi(xi) 
provide unbiased samples from Gibbs. 

Proof: The probability of sampling x1,...,xn

The probability the algorithm accepts is

Results
Approximating marginal probabilities:

The unbiased sampler is sub-exponential

The importance of probabilistic inference 
(MAP suffers from model inaccuracy)

Sampling allows computation of non-decomposable losses. 
Example image with the boundary annotation (left) and the error 
estimates obtained using our method (right). Thin structures of 
the object are often lost in a single MAP solution (middle-left), 
which are recovered by averaging the samples (middle-right) 
and lead to better error estimates.


