Workshop on Web-scale Vision and Social Media ECCV 2012, Firenze, Italy October, 2012 Linearized Smooth Additive Classifiers

Subhransu Maji Research Assistant Professor Toyota Technological Institute at Chicago

Generalized Additive Models

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

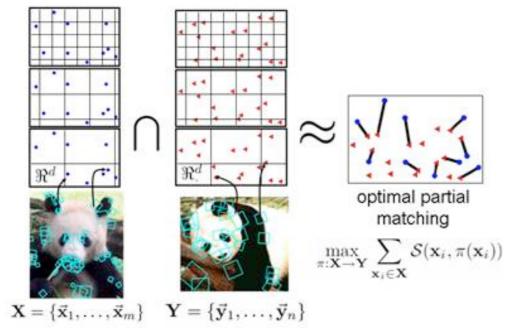
- Why use them?
 - **Efficiency** : can be efficiently evaluated
 - Interpretability : Simple generalization of linear classifiers, i.e., may lead to models that are interpretable
- Well known in the statistics community
 - Generalized Additive Models (Hastie & Tibshirani '90)
- However traditional learning algorithms do not scale well (e.g. "backfitting algorithm")

Additive kernels in computer vision

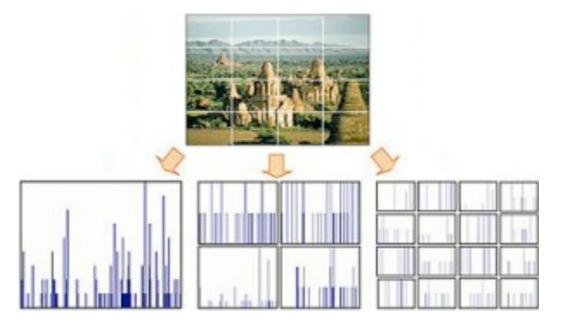
- Images are represented as histograms of low level features such as color and texture [Swain and Ballard 01, Odone et al. 05]
- Histogram based similarity measures are typically additive

$$K_{\min}(\mathbf{x}, \mathbf{y}) = \sum \min(x_i, y_i) \qquad K_{\chi^2}(\mathbf{x}, \mathbf{y}) = \sum \frac{2x_i y_i}{x_i + y_i}$$

• Other examples of additive kernels based on approximate correspondence :



Pyramid Match Kernel, Grauman and Darrell, CVPR'05



Spatial Pyramid Match Kernel, Lazebnik, Schmidt and Ponce, CVPR'06

Directly learning additive classifiers

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

A SVM like optimization framework

$$\begin{split} \min_{f \in F} \sum_{k} l\left(y^{k}, f(\mathbf{x}^{k})\right) + \lambda R(f) & \mathbf{x}^{k} \in \mathbb{R}^{d} \\ y^{k} \in \{+1, -1\} & \mathbf{x}^{k} \in \{+1, -1\} \\ \\ \text{Loss function on the data} \\ \text{e.g. hinge loss function} \\ \left(y^{k}, f(\mathbf{x}^{k})\right) = \max(0, 1 - y^{k} f(\mathbf{x}^{k})) \end{split}$$

l

 $\min_{f \in F} \sum_{k} l\left(y^k, f(\mathbf{x}^k)\right) + \lambda R(f)$

 $\mathbf{x}^k \in \mathbb{R}^d$ $y^k \in \{+1, -1\}$

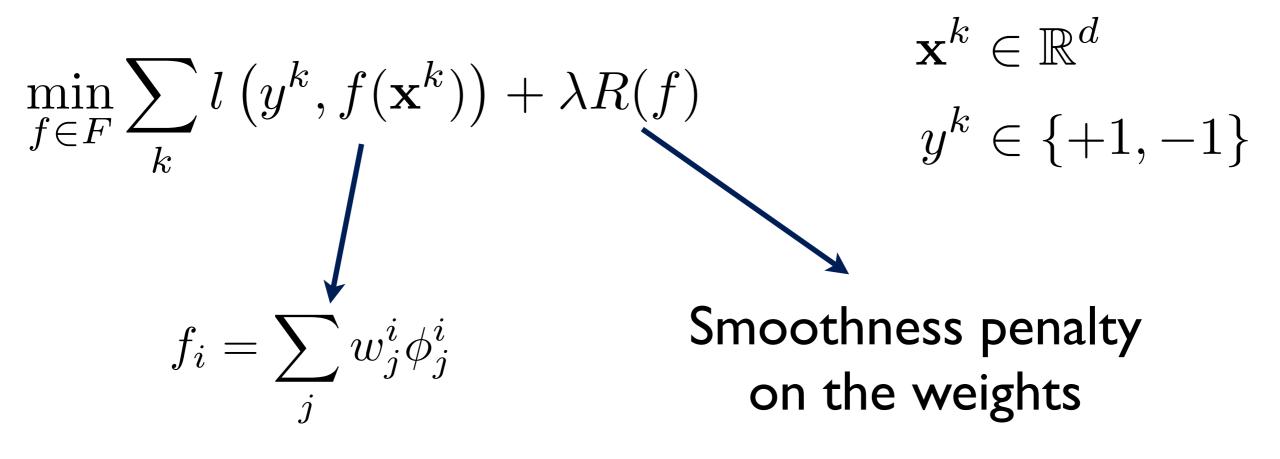
 $\min_{f \in F} \sum_{k} l\left(y^{k}, f(\mathbf{x}^{k})\right) + \lambda R(f)$ $\int_{f_{i}} \int_{j} w_{j}^{i} \phi_{j}^{i}$

$$\mathbf{x}^k \in \mathbb{R}^d$$
$$y^k \in \{+1, -1\}$$

Basis expansion

$$\min_{f \in F} \sum_{k} l\left(y^{k}, f(\mathbf{x}^{k})\right) + \lambda R(f) \qquad \mathbf{x}^{k} \in \mathbb{R}^{d} \\ y^{k} \in \{+1, -1\} \\ f_{i} = \sum_{j} w_{j}^{i} \phi_{j}^{i} \qquad \text{Smoothness penalty} \\ \text{on the weights}$$

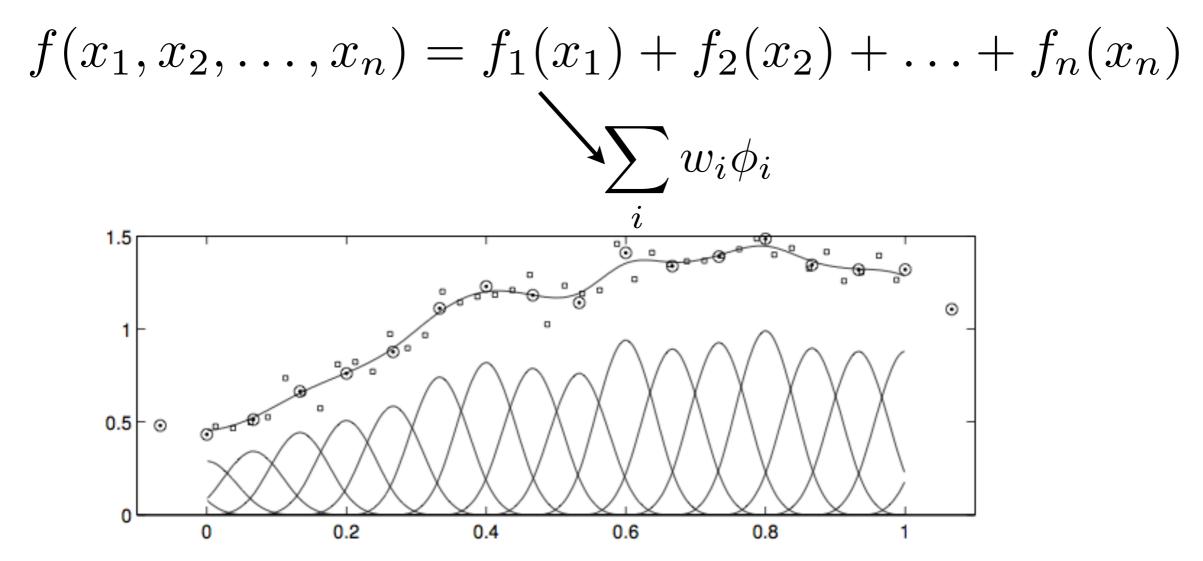
Basis expansion



Basis expansion

- Search for representations of the function and regularization for which the optimization can be efficiently solved
- In particular we want to leverage the latest methods for learning linear classifiers (almost linear time algorithms)

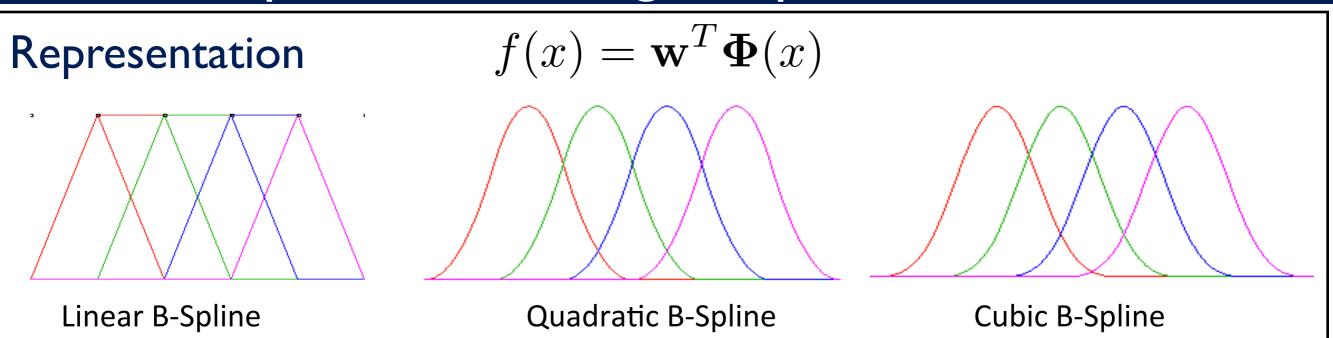
Spline embeddings : motivation



- Represent each function using a uniformly spaced spline basis
- Motivated by our earlier analysis that splines approximate additive classifiers well
- Popularized by Eilers and Marx (P-Splines '02, '04) for additive modeling
- Well known in graphics (DeBoor '01)
- Question: What is the regularization on **w**?

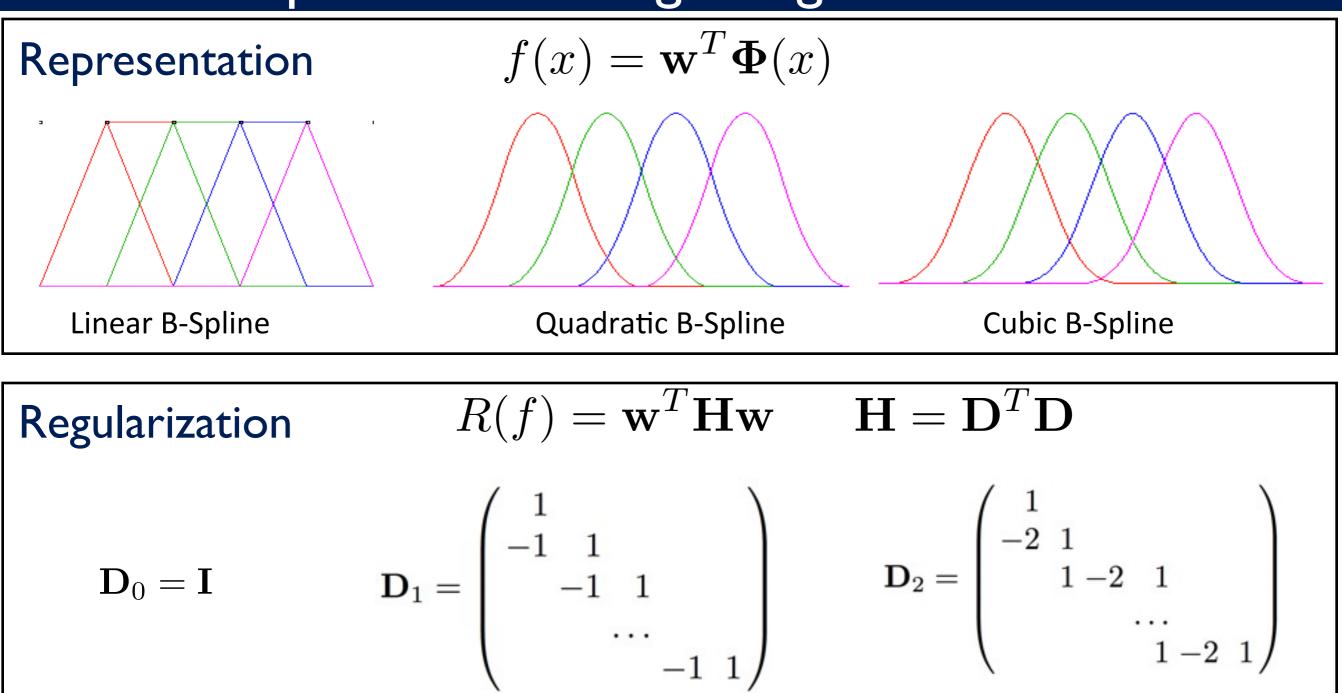
Figure from Eilers & Marx '04

Spline embeddings : representation



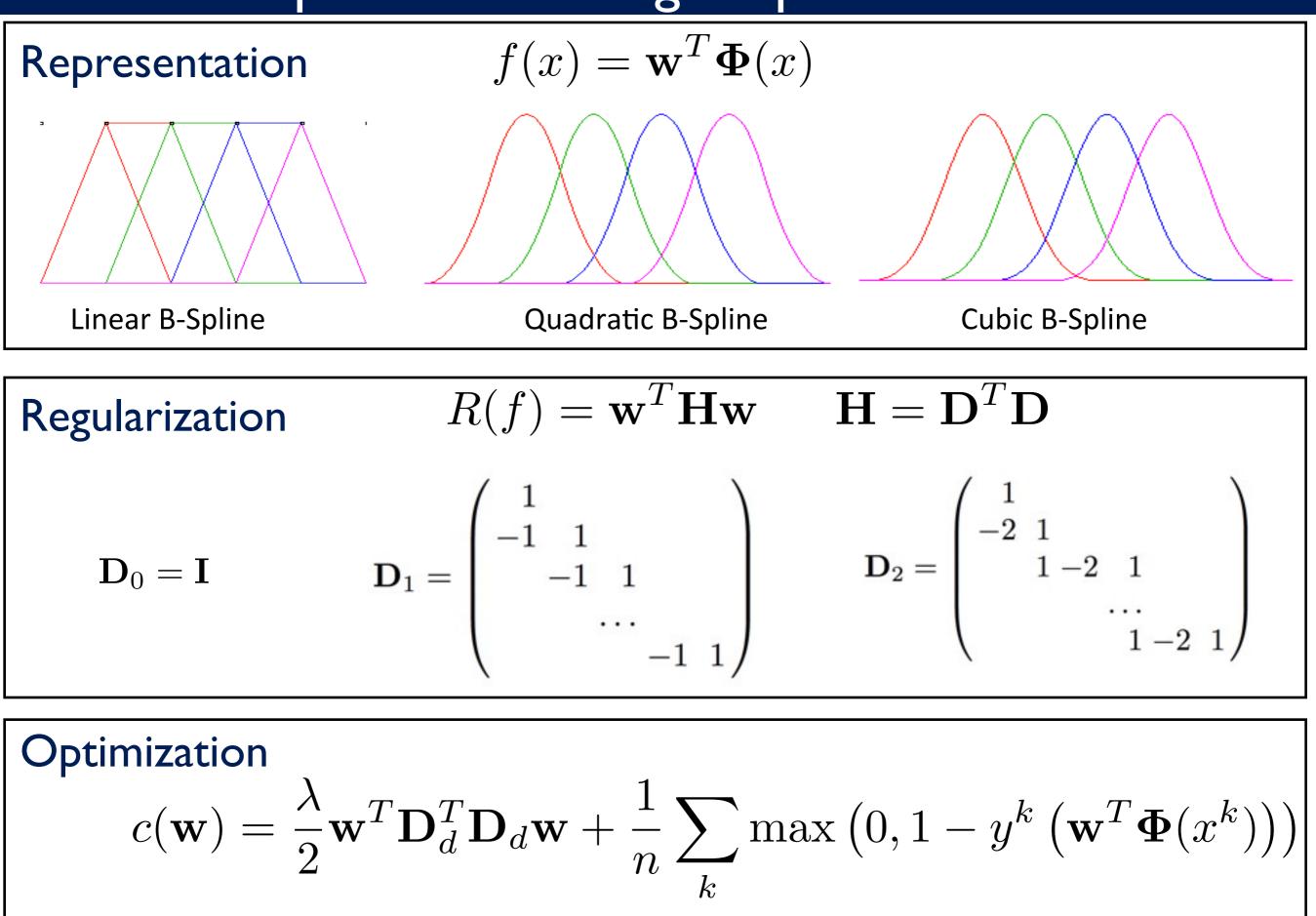
Project data onto a uniformly spaced spline basis

Spline embeddings : regularization

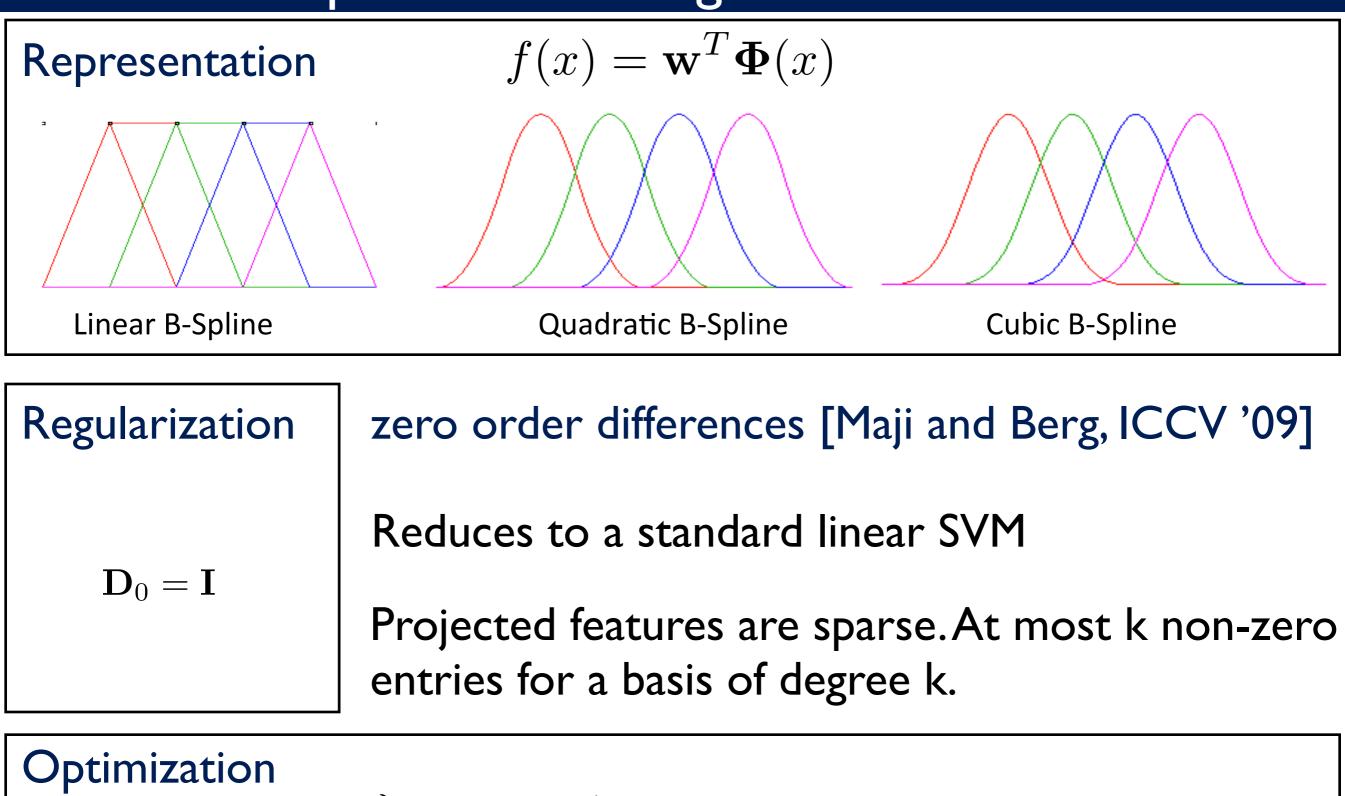


Penalize differences between adjacent weights Ensures that the learned function is smooth Similar to Penalized Splines of Eilers and Marx '02

Spline embeddings : optimization



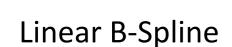
Spline embeddings : linear case



$$c(\mathbf{w}) = \frac{\lambda}{2}\mathbf{w}^T\mathbf{w} + \frac{1}{n}\sum_k \max\left(0, 1 - y^k\left(\mathbf{w}^T\mathbf{\Phi}(x^k)\right)\right)$$

Spline embeddings : general case

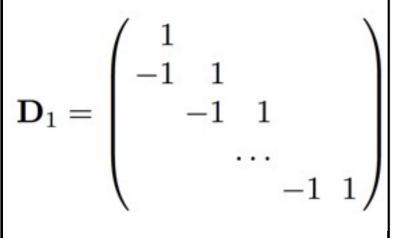
 $f(x) = \mathbf{w}^T \mathbf{\Phi}(x)$



Representation

Quadratic B-Spline

Cubic B-Spline



Penalize first order differences. Non-standard SVM due to regularization [Eilers & Marx '02]

Can offer better smoothness when some bins have few data points

Optimization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_1^T \mathbf{D}_1 \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

$$\mathbf{\Phi}^{\mathbf{D}_{1}} \mathbf{D}_{1} = \begin{pmatrix} 1 & & \\ -1 & 1 & & \\ & -1 & 1 & \\ & & \ddots & \\ & & & -1 & 1 \end{pmatrix}$$

Original Problem

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_d^T \mathbf{D}_d \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

$$\mathbf{D}_{1}^{-T} = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 0 & 1 & \dots & 1 & 1 \\ & 0 & \dots & 1 & 1 \\ & & \dots & & \\ & & & 1 & 1 \\ & & & 0 & 1 \end{pmatrix}$$

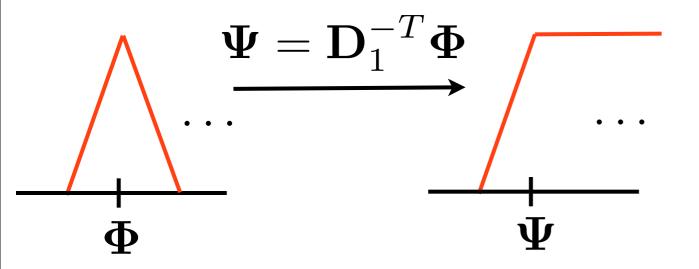
Original Problem

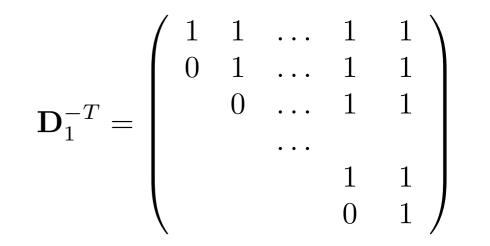
Upper Triangular

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_d^T \mathbf{D}_d \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

Re-Parameterization of the weight

$$c(\mathbf{w}) = \frac{\lambda}{2}\mathbf{w}^T\mathbf{w} + \frac{1}{n}\sum_k \max\left(0, 1 - y^k\left(\mathbf{w}^T\mathbf{D}_1^{-T}\boldsymbol{\Phi}(x^k)\right)\right)$$





Equivalently a change of basis

Upper Triangular

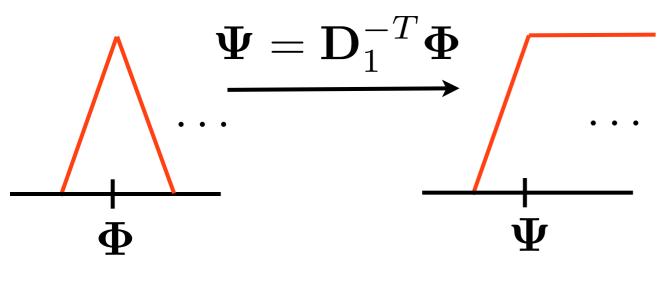
 Ψ

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_d^T \mathbf{D}_d \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

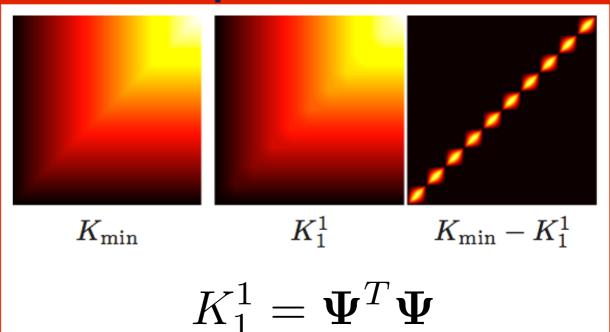
Re-Parameterization of the features

$$c(\mathbf{w}) = \frac{\lambda}{2}\mathbf{w}^T\mathbf{w} + \frac{1}{n}\sum_k \max\left(0, 1 - y^k\left(\mathbf{w}^T\mathbf{D}_1^{-T}\mathbf{\Phi}(x^k)\right)\right)$$

Implicit kernel



Equivalently a change of basis



 Ψ

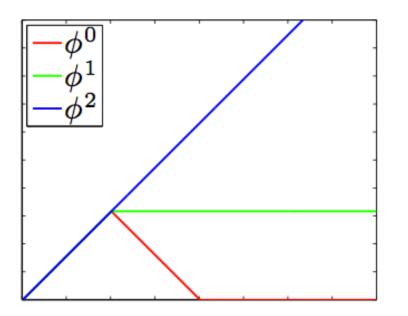
$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_d^T \mathbf{D}_d \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

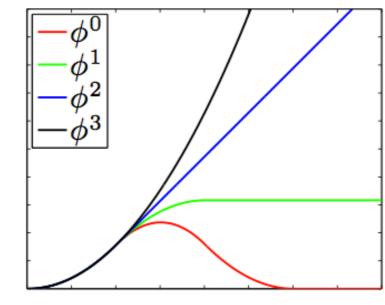
Re-Parameterization of the features

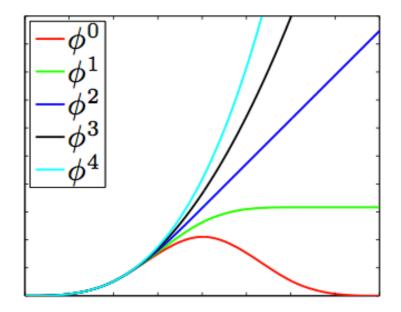
$$c(\mathbf{w}) = \frac{\lambda}{2}\mathbf{w}^T\mathbf{w} + \frac{1}{n}\sum_k \max\left(0, 1 - y^k\left(\mathbf{w}^T\mathbf{D}_1^{-T}\mathbf{\Phi}(x^k)\right)\right)$$

Spline embeddings : visualizing the kernel

Various basis and regularization





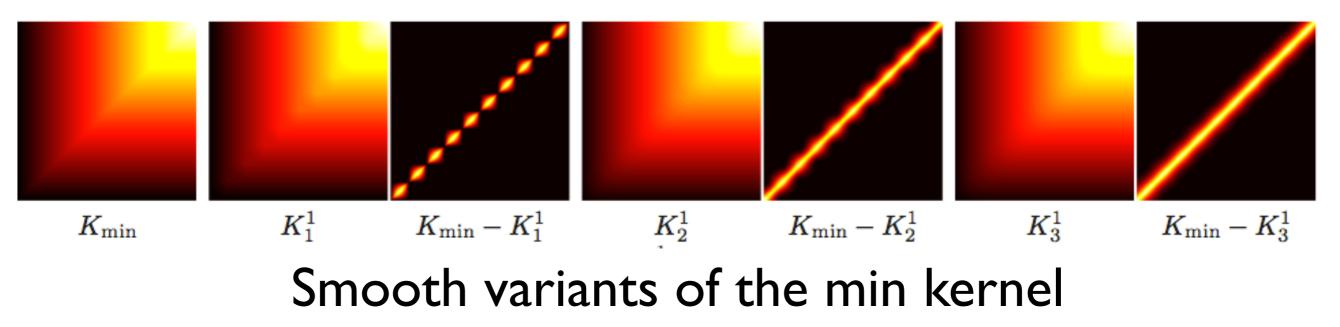


Linear B-Spline

Quadratic B-Spline

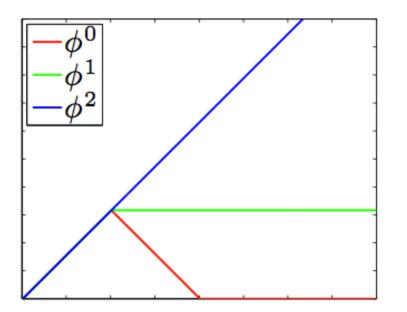
Cubic B-Spline

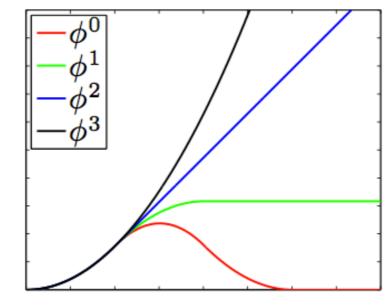
Fixing order(regularization)=1, and varying degree(basis)

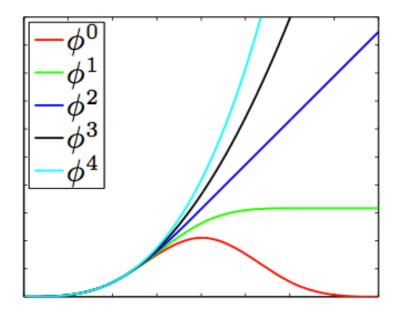


Spline embeddings : visualizing the basis

Various basis and regularization







Linear B-Spline

Quadratic B-Spline

Cubic B-Spline

$$\phi_i(x) = (x - \tau_i)_+^r$$

The basis are equivalent to truncated polynomial basis if: degree(basis) - order(regularization) = I [DeBoor '01]

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_d^T \mathbf{D}_d \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

Original problem : non-standard regularization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_d^T \mathbf{D}_d \mathbf{w} + \frac{1}{n} \sum_{k} \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

Original problem : non-standard regularization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} + \frac{1}{n} \sum_{k} \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{D}_d^{-T} \mathbf{\Phi}(x^k)\right)\right)$$

Modified problem : dense features (memory bottleneck)

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_d^T \mathbf{D}_d \mathbf{w} + \frac{1}{n} \sum_{k} \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

Original problem : non-standard regularization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{D}_d^{-T} \Phi(x^k)\right)\right)$$

Modified problem : dense features (memory bottleneck)
Solution : implicit representation
maintain: $\mathbf{w}_d = \mathbf{D}_d^{-1} \mathbf{w}$
classification: $f(x) = \mathbf{w}_d^T \Phi(x)$ \longleftarrow O(d) vs O(n)

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{D}_d^T \mathbf{D}_d \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Phi}(x^k)\right)\right)$$

Original problem : non-standard regularization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{D}_d^{-T} \boldsymbol{\Phi}(x^k)\right)\right)$$

Modified problem : dense features (memory bottleneck)
Solution : implicit representation
maintain: $\mathbf{w}_d = \mathbf{D}_d^{-1} \mathbf{w}$
classification: $f(x) = \mathbf{w}_d^T \boldsymbol{\Phi}(x) \qquad \mathbf{O}(d) \text{ vs } \mathbf{O}(n)$
update: $\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{D}_d^{-T} \boldsymbol{\Phi}(x^k)$
 $\mathbf{w}_d \leftarrow \mathbf{w}_d - \eta \mathbf{L}_d \boldsymbol{\Phi}(x^k)$
 $\mathbf{L}_d = \mathbf{D}_d^{-1} \mathbf{D}_d^{-T}$

Computing the updates

maintain: $\mathbf{w}_d = \mathbf{D}_d^{-1} \mathbf{w}$ classification: $f(x) = \mathbf{w}_d^T \mathbf{\Phi}(x)$ update: $\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{D}_d^{-T} \mathbf{\Phi}(x^k)$ $\mathbf{w}_d \leftarrow \mathbf{w}_d - \eta \mathbf{L}_d \mathbf{\Phi}(x^k)$ $\mathbf{L}_d = \mathbf{D}_d^{-1} \mathbf{D}_d^{-T}$

Computing the updates

maintain: $\mathbf{w}_d = \mathbf{D}_d^{-1} \mathbf{w}$ classification: $f(x) = \mathbf{w}_d^T \Phi(x)$ update: $\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{D}_d^{-T} \Phi(x^k)$ $\mathbf{w}_d \leftarrow \mathbf{w}_d - \eta \mathbf{L}_d \Phi(x^k)$ $\mathbf{L}_d = \mathbf{D}_d^{-1} \mathbf{D}_d^{-T}$

Given n linearly spaced basis of degree d, computing updates to w_d takes O(n²) time.

Computing the updates

maintain: $\mathbf{w}_d = \mathbf{D}_d^{-1} \mathbf{w}$ classification: $f(x) = \mathbf{w}_d^T \mathbf{\Phi}(x)$

update:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{D}_d^{-T} \boldsymbol{\varPhi}(x^k)$$
 $\mathbf{L}_d = \mathbf{D}_d^{-1} \mathbf{D}_d^{-T}$ $\mathbf{w}_d \leftarrow \mathbf{w}_d - \eta \mathbf{L}_d \boldsymbol{\varPhi}(x^k)$ $\mathbf{L}_d = \mathbf{D}_d^{-1} \mathbf{D}_d^{-T}$

Given n linearly spaced basis of degree d, computing updates to w_d takes $O(n^2)$ time.

However, one can compute it on O(nd) by exploiting the structure of D (see paper below)

Computing the updates

maintain: $\mathbf{w}_d = \mathbf{D}_d^{-1} \mathbf{w}$ classification: $f(x) = \mathbf{w}_d^T \mathbf{\Phi}(x)$

update:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{D}_d^{-T} \boldsymbol{\varPhi}(x^k)$$
 $\mathbf{L}_d = \mathbf{D}_d^{-1} \mathbf{D}_d^{-T}$ $\mathbf{w}_d \leftarrow \mathbf{w}_d - \eta \mathbf{L}_d \boldsymbol{\varPhi}(x^k)$ $\mathbf{L}_d = \mathbf{D}_d^{-1} \mathbf{D}_d^{-T}$

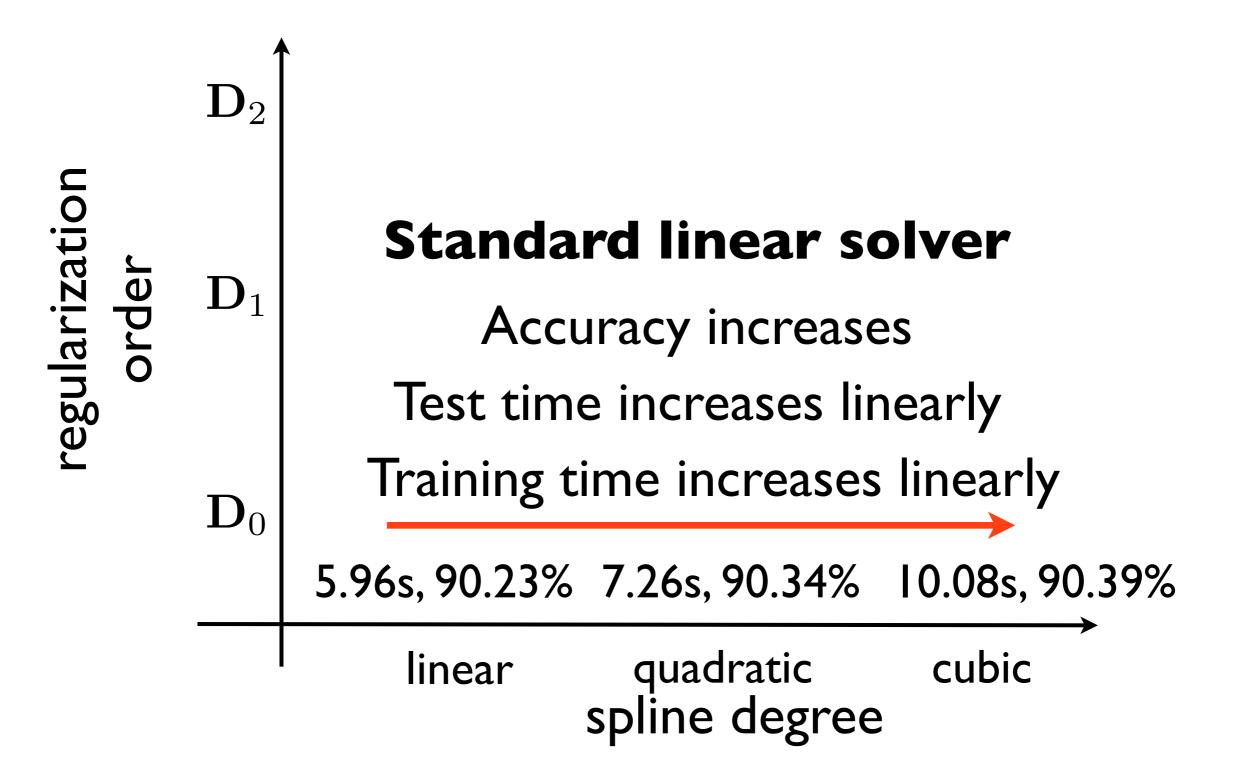
Given n linearly spaced basis of degree d, computing updates to w_d takes $O(n^2)$ time.

However, one can compute it on O(nd) by exploiting the structure of D (see paper below)

Hence these classifiers can be trained with very low memory overhead, without compromising training time

S. Maji, Linearized Smooth Additive Classifiers, ECCV WS 2012

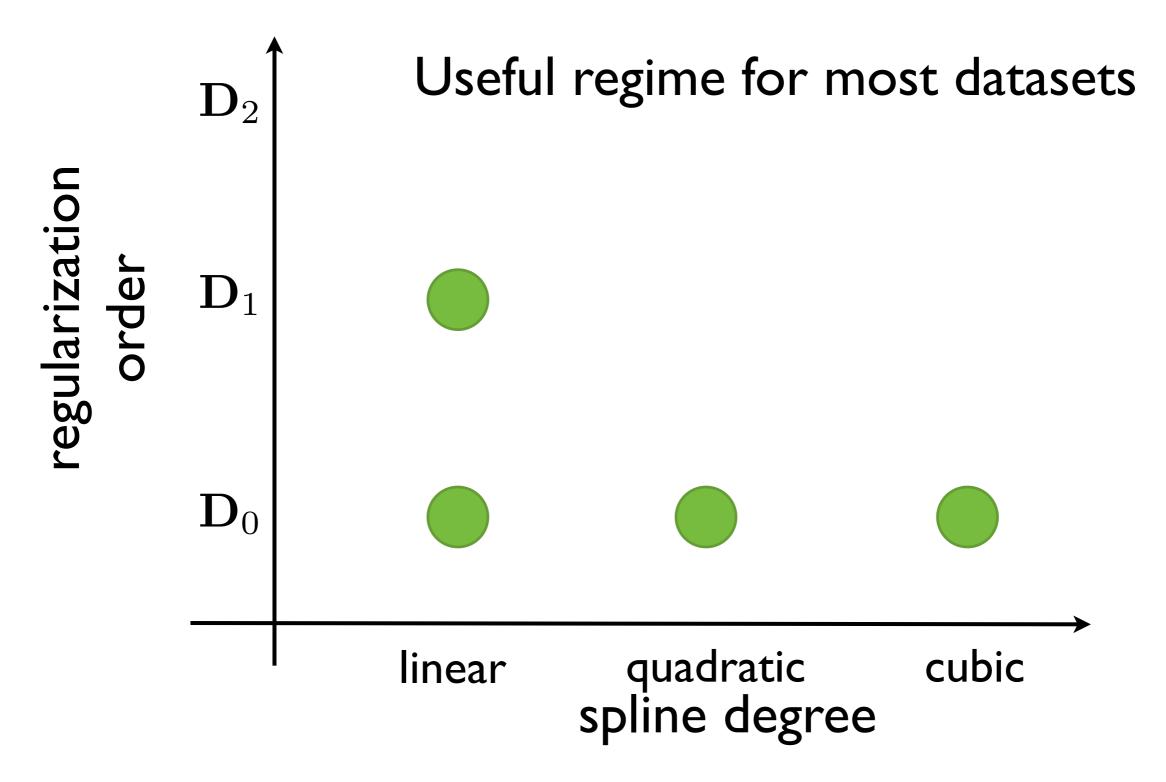
	\mathbf{D}_2			
regularization order	\mathbf{D}_1			
ê.	\mathbf{D}_0			
		linear	quadratic spline degree	cubic

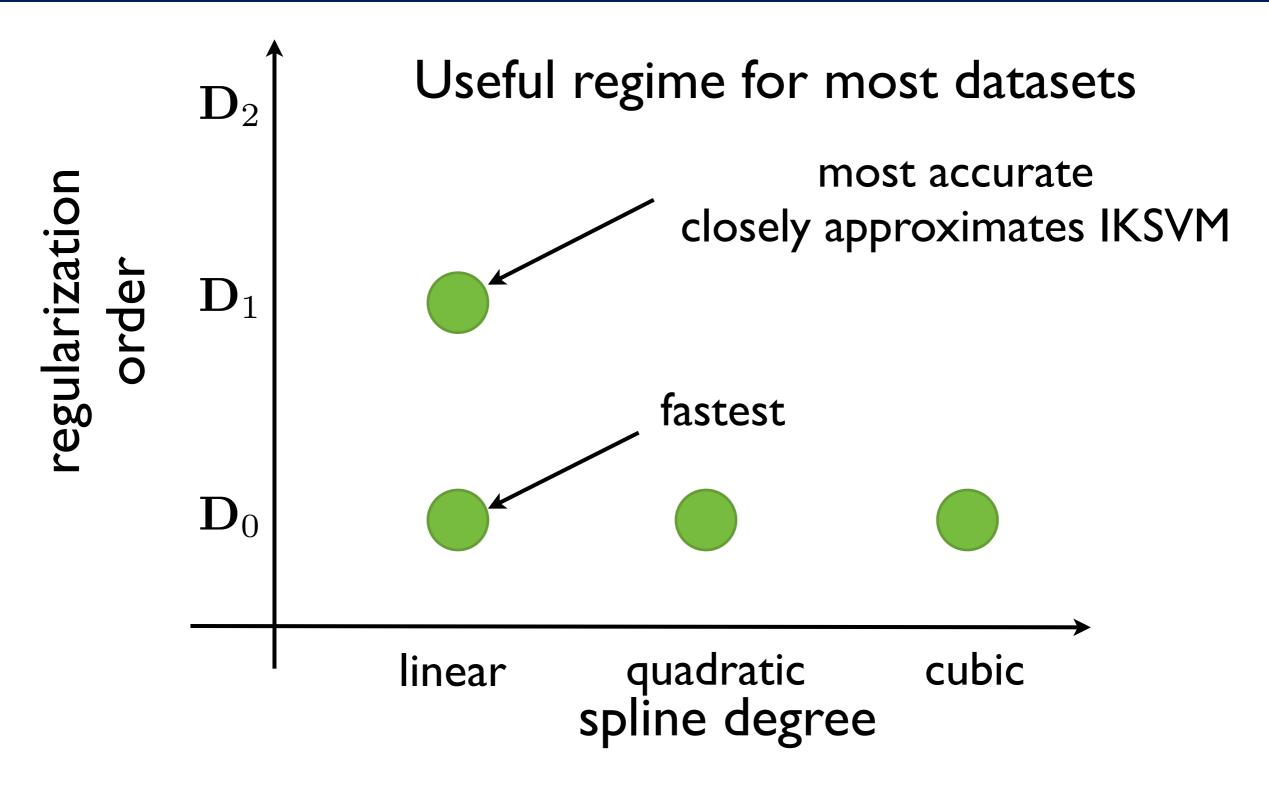


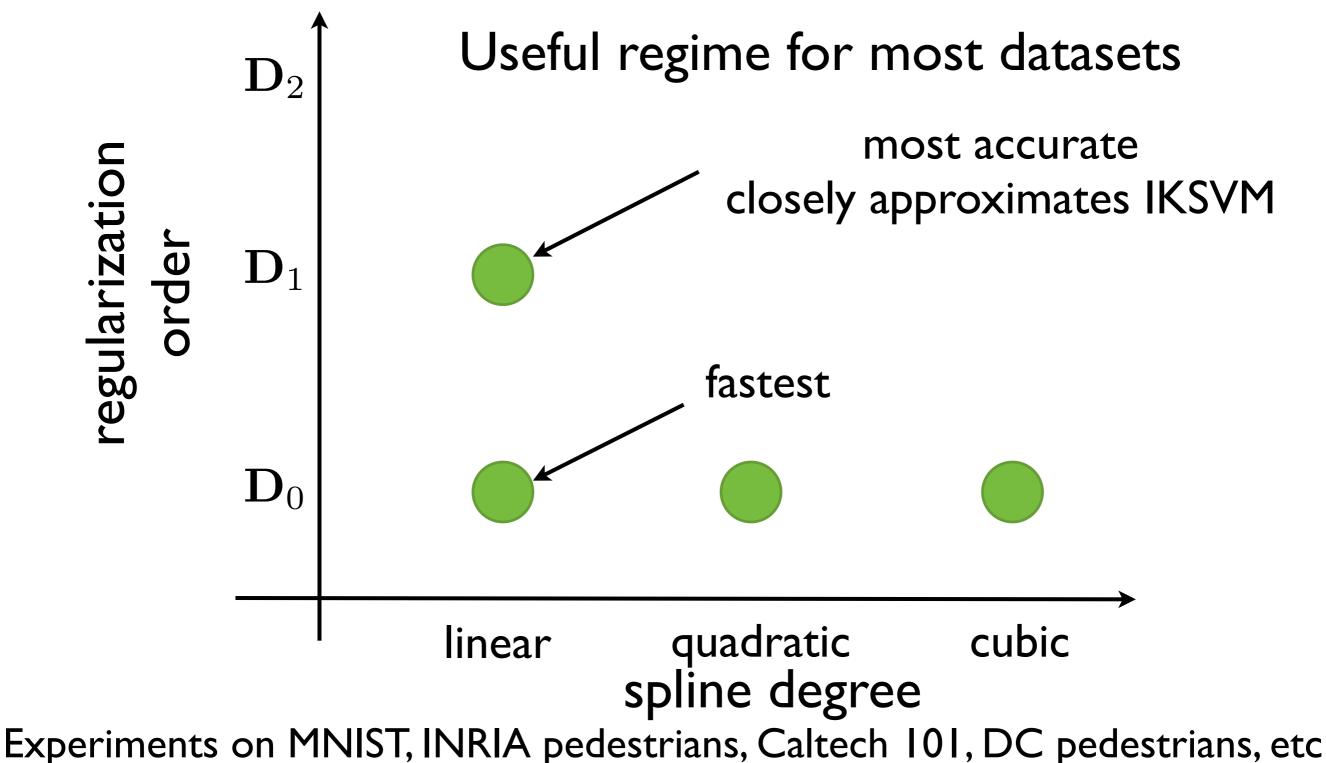
Experiments on DC pedestrian dataset (n = 20) IKSVM training time : 360s

regularization order	\mathbf{D}_2	246.87s 89.06%	Custom solver for order > 1 Accuracy peaks at D ₁
	\mathbf{D}_1		This suggests that first order smoothness is sufficient Training time increases linearly
	\mathbf{D}_0	5.96s 90.23%	
		linear	quadratic cubic spline degree

Experiments on DC pedestrian dataset (n = 20) IKSVM training time : 360s

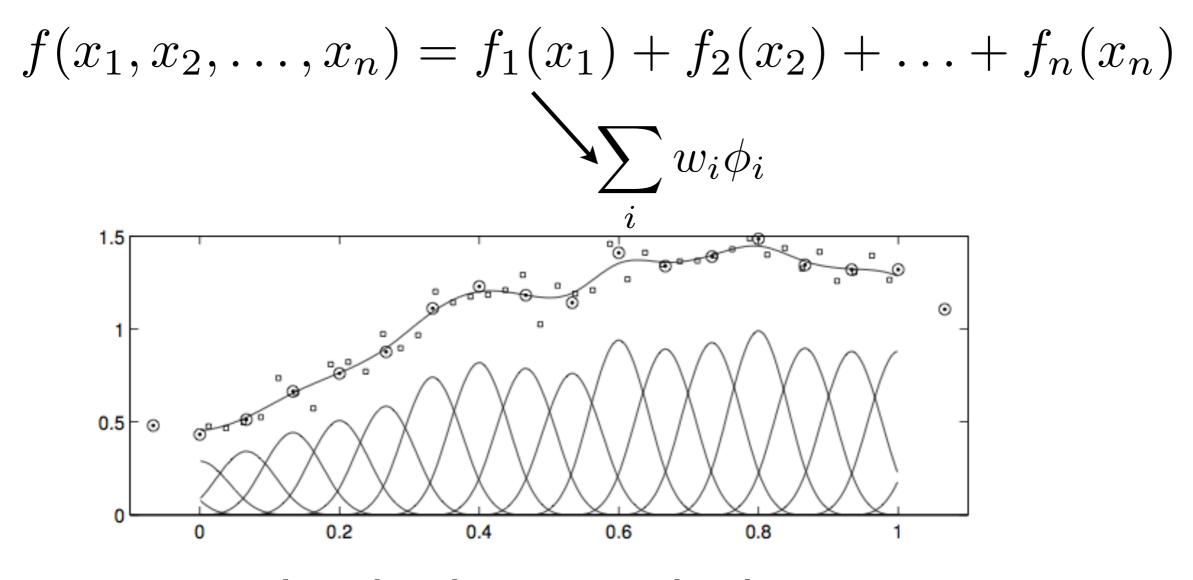






All these are still an order of magnitude faster than traditional SVM solver. These have the same memory overhead as linear SVMs since the features are computed online.

General basis expansion



local splines are the basis

In general can choose any orthonormal basis

Fourier embeddings : representation

Representation

$$f(x) = \sum w_i \psi_i(x)$$

$$\psi_1(x), \psi_1(x), \dots, \psi_n(x)$$

$$\int_a^b \psi_i(x)\psi_j(x)\gamma(x)dx = \delta_{i,j}$$

An orthonormal basis

Examples: Trigonometric functions, Wavelets, etc.

Fourier embeddings : regularization

Representation

 $f(x) = \sum w_i \psi_i(x)$

$$\psi_1(x), \psi_1(x), \dots, \psi_n(x)$$

$$\int_a^b \psi_i(x) \psi_j(x) \gamma(x) dx = \delta_i,$$

An orthonormal basis

j

Regularization : penalize d'th order derivative

$$\int_{a}^{b} f^{d}(x)^{2} \gamma(x) dx = \int_{a}^{b} w_{i} w_{j} \psi_{i}^{d}(x) \psi_{j}^{d}(x) \gamma(x) dx$$
$$R(f) = \mathbf{w}^{T} \mathbf{H} \mathbf{w} \quad \mathbf{H}_{i,j} = \int_{a}^{b} \psi_{i}^{d}(x) \psi_{j}^{d}(x) w(x) dx$$

Similar to the spline case (different basis) Requires the basis to be differentiable

Representation

 $f(x) = \sum w_i \psi_i(x)$

$$\psi_1(x), \psi_1(x), \dots, \psi_n(x)$$
$$\int_a^b \psi_i(x) \psi_j(x) \gamma(x) dx = \delta_{i,j}$$

An orthonormal basis

Regularization : penalize d'th order derivative

$$\int_{a}^{b} f^{d}(x)^{2} \gamma(x) dx = \int_{a}^{b} w_{i} w_{j} \psi_{i}^{d}(x) \psi_{j}^{d}(x) \gamma(x) dx$$
$$R(f) = \mathbf{w}^{T} \mathbf{H} \mathbf{w} \quad \mathbf{H}_{i,j} = \int_{a}^{b} \psi_{i}^{d}(x) \psi_{j}^{d}(x) w(x) dx$$

Optimization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{H} \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Psi}(x^k)\right)\right)$$

Optimization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{H} \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Psi}(x^k)\right)\right)$$

H is not diagonal - cannot directly use fast linear solvers In general it is not structured either (unlike splines)

Optimization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{H} \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Psi}(x^k)\right)\right)$$

H is not diagonal - cannot directly use fast linear solvers In general it is not structured either (unlike splines) Practical solution

Pick orthogonal basis with orthogonal derivatives Cross terms disappear, i.e., H is diagonal again $\int_{a}^{b} f^{d}(x)^{2} \gamma(x) dx = \int_{a}^{b} w_{i} w_{j} \psi_{i}^{d}(x) \psi_{j}^{d}(x) \gamma(x) dx \propto w_{i}^{2}$

Optimization

$$c(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{H} \mathbf{w} + \frac{1}{n} \sum_k \max\left(0, 1 - y^k \left(\mathbf{w}^T \mathbf{\Psi}(x^k)\right)\right)$$

H is not diagonal - cannot directly use fast linear solvers In general it is not structured either (unlike splines) Practical solution

Pick orthogonal basis with orthogonal derivatives Cross terms disappear, i.e., H is diagonal again $\int_{a}^{b} f^{d}(x)^{2} \gamma(x) dx = \int_{a}^{b} w_{i} w_{j} \psi_{i}^{d}(x) \psi_{j}^{d}(x) \gamma(x) dx \propto w_{i}^{2}$

Examples: Trigonometric functions, One of Jacobi, Laguerre or Hermite polynomials

M. Webster, Orthogonal polynomials with orthogonal derivatives. Mathematische Zeitschrift, 39:634–638, 1935

Fourier Embeddings : Two practical ones

Two families of orthogonal basis with orthogonal derivatives

Trigonometric $x \in [-1,1], w(x) = 1$ $\Psi_n^1(x) = \{\frac{\cos(n\pi x)}{n}, \frac{\sin(n\pi x)}{n}\} \quad \Psi_n^1(x) = \frac{H_n(x)}{\sqrt{nn!}}$ $\Psi_n^2(x) = \{\frac{\cos(n\pi x)}{n^2}, \frac{\sin(n\pi x)}{n^2}\} \quad \Psi_1^2(x) = \Psi_1^1(x), \quad \Psi_n^2(x) = \frac{H_n(x)}{\sqrt{n(n-1)n!}}, \quad n > 1$

Embeddings that penalize the first and second order derivatives

Learning : project data onto the first few basis and use a linear solver such as LIBLINEAR

Fourier features are low dimensional and dense, as opposed to spline features which are high dimensional but sparse.

Comparison of various additive classifiers

Test Accuracy	г -	Training Time		
81.49 (1.29)		3.8s		
89.05(1.42)	363.1s			
	online	batch		
88.51(1.35)	5.9 s	-		
89.00 (1.44)	10.8s	2		
89.56 (1.35)	17.2s	-		
89.25(1.39)	19.2s	-		
88.44(1.43)	159.9s	12.7s (4× memory)		
87.67 (1.26)	35.5s	$12.6s (4 \times \text{memory})$		
	$81.49 (1.29) \\89.05 (1.42) \\88.51 (1.35) \\89.00 (1.44) \\89.56 (1.35) \\89.25 (1.39) \\88.44 (1.43) \\$	$\begin{array}{c} 81.49 \ (1.29) \\ 89.05 \ (1.42) \\ \hline \\ 88.51 \ (1.35) \\ 89.00 \ (1.44) \\ 10.8s \\ 89.56 \ (1.35) \\ 17.2s \\ 89.25 \ (1.39) \\ 19.2s \\ 88.44 \ (1.43) \\ 159.9s \\ \end{array}$		

DC pedestrian dataset

Comparison of various additive classifiers

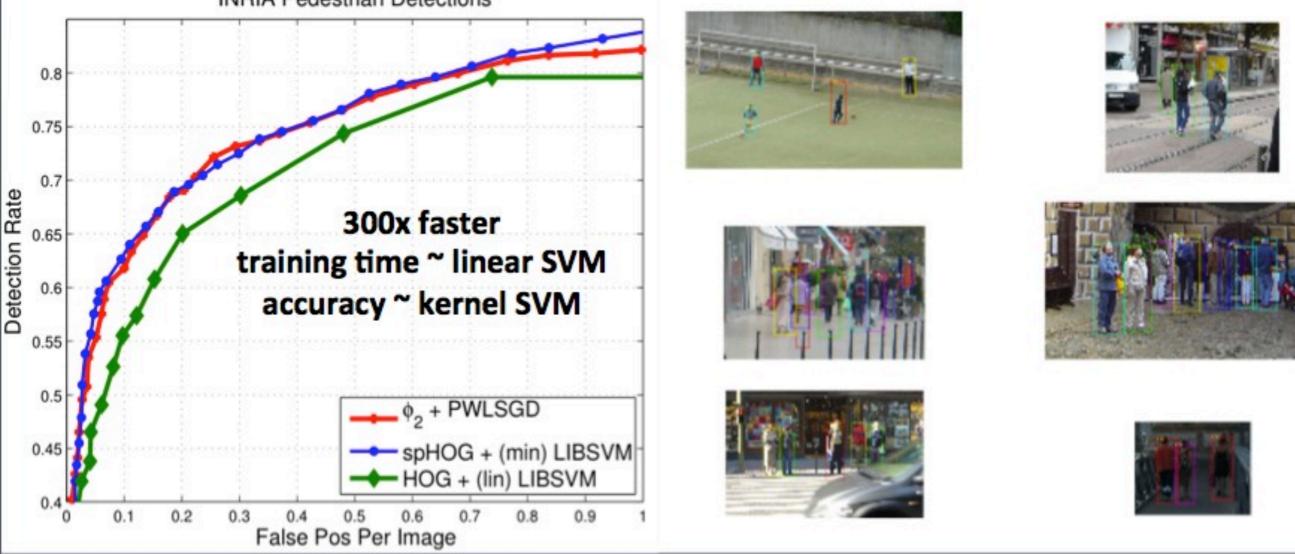
Method	Test Error	Training Time
SVM (linear) + LIBLINEAR	1.44%	6.2s
SVM $(min) + LIBSVM$	0.79%	$\sim 2.5 \text{ hours}$
B-Spline (\mathbf{D}_0 , Linear, $n = 20$)	0.88%	31.6s
B-Spline (\mathbf{D}_0 , Cubic, $n = 20$)	0.86%	51.6s
B-Spline (D ₁ , Linear, $n = 40$)	0.81%	157.7s
B-Spline (\mathbf{D}_1 , Cubic, $n = 40$)	0.82%	244.9s
Hermite $(d = 1, n = 4)$	1.06%	358.6s

MNIST dataset

Comparison of various additive classifiers

Dataset	Linear		Piecewise Linear		IK SVM	
	Time	Accuracy	Time	Accuracy	Time	Accuracy
INRIA pedestrians	20s	see curve	76s	see curve	~ 3 hr	see curve
Caltech101, 15 examples	18.6s	41.2%	238s	49.9%	844s	50.1%
Caltech101, 30 examples	40.5s	46.2%	291s	55.4%	2686s	56.5%

INRIA Pedestrian Detections



Software

- Code to train large scale additive classifiers. Provides functions:
 - train : input (y,x) and outputs additive classifiers
 - choice of various encodings, regularizations.
 - encodings are computed online
 - implements efficient weight updates for splines features
 - classify : takes a learned classifier and features, outputs decision values
 - encode : returns encoded features which can be directly used with any linear solver
- Download at:
 - http://ttic.uchicago.edu/~smaji/libspline-release1.0.tar.gz

Conclusions

- We discussed methods to directly learn additive classifiers based on a regularized loss minimization
- We proposed two kinds of basis for which the learning problem can be efficiently solved, Spline and Fourier embeddings
 - Spline embeddings are sparse, easy to compute, and can be used to learn classifiers with *almost no memory overhead*, compared to learning linear classifiers.
 - Fourier embeddings (Trigonometric and Hermite) are low dimensional, but are relatively expensive to compute, hence are useful in setting where features can be stored in memory
- More experimental details and code can be found on the author's website (ttic.uchicago.edu/~smaji)