
Workshop	 on	 Web-‐scale	 Vision	 and	 Social	 Media
ECCV	 2012,	 Firenze,	 Italy

October,	 2012

Linearized Smooth Additive Classifiers
Subhransu Maji

Research Assistant Professor
Toyota Technological Institute at Chicago

Generalized Additive Models

• Why use them?

• Efficiency : can be efficiently evaluated

• Interpretability : Simple generalization of linear
classifiers, i.e., may lead to models that are interpretable

• Well known in the statistics community

• Generalized Additive Models (Hastie & Tibshirani ’90)

• However traditional learning algorithms do not scale well
(e.g. “backfitting algorithm”)

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)

Additive kernels in computer vision

• Images are represented as histograms of low level features such
as color and texture [Swain and Ballard 01, Odone et al. 05]

• Histogram based similarity measures are typically additive

• Other examples of additive kernels based on approximate
correspondence :

Pyramid Match Kernel,
Grauman and Darrell, CVPR’05

Spatial Pyramid Match Kernel,
Lazebnik, Schmidt and Ponce, CVPR’06

K�2(x,y) =
X 2xiyi

xi + yi
Kmin(x,y) =

X
min(xi, yi)

Directly learning additive classifiers

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)

A SVM like optimization framework

min
f2F

X

k

l
�
yk, f(xk)

�
+ �R(f)

x

k 2 Rd

yk 2 {+1,�1}

l
�
yk, f(xk

)

�
= max(0, 1� ykf(xk

))

Loss function on the data
e.g. hinge loss function

Regularization
e.g. derivative norm

Strategy for learning additive classifiers

min
f2F

X

k

l
�
yk, f(xk)

�
+ �R(f)

x

k 2 Rd

yk 2 {+1,�1}

Strategy for learning additive classifiers

min
f2F

X

k

l
�
yk, f(xk)

�
+ �R(f)

x

k 2 Rd

yk 2 {+1,�1}

Basis expansion

fi =
X

j

wi
j�

i
j

Strategy for learning additive classifiers

Smoothness penalty
on the weights

min
f2F

X

k

l
�
yk, f(xk)

�
+ �R(f)

x

k 2 Rd

yk 2 {+1,�1}

Basis expansion

fi =
X

j

wi
j�

i
j

Strategy for learning additive classifiers

• Search for representations of the function and regularization for
which the optimization can be efficiently solved

• In particular we want to leverage the latest methods for
learning linear classifiers (almost linear time algorithms)

Smoothness penalty
on the weights

min
f2F

X

k

l
�
yk, f(xk)

�
+ �R(f)

x

k 2 Rd

yk 2 {+1,�1}

Basis expansion

fi =
X

j

wi
j�

i
j

Spline embeddings : motivation

• Represent each function using a uniformly spaced spline basis

• Motivated by our earlier analysis that splines approximate additive classifiers well

• Popularized by Eilers and Marx (P-Splines ’02, ’04) for additive modeling

• Well known in graphics (DeBoor ’01)

• Question: What is the regularization on w?

Figure from Eilers & Marx ’04

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)
X

i

wi�i

Spline embeddings : representation
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

Project data onto a uniformly spaced spline basis

Spline embeddings : regularization
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

D0 = I

R(f) = wTHw H = DTDRegularization

Penalize differences between adjacent weights
Ensures that the learned function is smooth

Similar to Penalized Splines of Eilers and Marx ’02

Spline embeddings : optimization
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

Optimization

D0 = I

R(f) = wTHw H = DTDRegularization

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Spline embeddings : linear case
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

D0 = I

Regularization zero order differences [Maji and Berg, ICCV ’09]

Reduces to a standard linear SVM

Projected features are sparse. At most k non-zero
entries for a basis of degree k.

Optimization

c(w) =

�

2

wTw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Spline embeddings : general case
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

Optimization

Regularization Penalize first order differences. Non-standard SVM
due to regularization [Eilers & Marx ’02]

Can offer better smoothness when some bins have
few data points

c(w) =

�

2

wTDT
1 D1w +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Spline embeddings : linearization

�

Original Problem

. . .

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Spline embeddings : linearization

�

Re-Parameterization of the weight

c(w) =

�

2

wTw +

1

n

X

k

max

�
0, 1� y

k
�
wTD�T

1 �(x

k
)

��

D�T
1 =

0

BBBBBB@

1 1 . . . 1 1
0 1 . . . 1 1

0 . . . 1 1
. . .

1 1
0 1

1

CCCCCCA

Upper TriangularOriginal Problem

. . .

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Spline embeddings : linearization

�

Equivalently a change of basis

. . .

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Re-Parameterization of the features

c(w) =

�

2

wTw +

1

n

X

k

max

�
0, 1� y

k
�
wTD�T

1 �(x

k
)

��

D�T
1 =

0

BBBBBB@

1 1 . . . 1 1
0 1 . . . 1 1

0 . . . 1 1
. . .

1 1
0 1

1

CCCCCCA

Upper Triangular

. . .

 = D�T
1 �

Spline embeddings : linearization

�

Equivalently a change of basis

. . .

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

c(w) =

�

2

wTw +

1

n

X

k

max

�
0, 1� y

k
�
wTD�T

1 �(x

k
)

��

. . .

 = D�T
1 �

K1
1 = T

Implicit kernel

Re-Parameterization of the features

Spline embeddings : visualizing the kernel

Various basis and regularization

Fixing order(regularization)=1, and varying degree(basis)

Smooth variants of the min kernel

Spline embeddings : visualizing the basis

Various basis and regularization

�i(x) = (x� ⌧i)
r
+

The basis are equivalent to truncated polynomial basis if:
degree(basis) - order(regularization) = 1 [DeBoor ’01]

Solving the optimization efficiently

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Original problem : non-standard regularization

Solving the optimization efficiently

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Original problem : non-standard regularization

c(w) =

�

2

wTw +

1

n

X

k

max

�
0, 1� y

k
�
wTD�T

d �(x

k
)

��

Modified problem : dense features (memory bottleneck)

Solving the optimization efficiently

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Original problem : non-standard regularization

c(w) =

�

2

wTw +

1

n

X

k

max

�
0, 1� y

k
�
wTD�T

d �(x

k
)

��

Modified problem : dense features (memory bottleneck)

Solution : implicit representation
maintain:

classification: f(x) = wT
d �(x) O(d) vs O(n)

Solving the optimization efficiently

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��

Original problem : non-standard regularization

c(w) =

�

2

wTw +

1

n

X

k

max

�
0, 1� y

k
�
wTD�T

d �(x

k
)

��

Modified problem : dense features (memory bottleneck)

update:

Solution : implicit representation
maintain:

classification: f(x) = wT
d �(x) O(d) vs O(n)

Solving the optimization efficiently
Computing the updates

maintain:

classification: f(x) = wT
d �(x)

update:

Solving the optimization efficiently

Given n linearly spaced basis of degree d, computing
updates to wd takes O(n2) time.

Computing the updates
maintain:

classification: f(x) = wT
d �(x)

update:

Solving the optimization efficiently

Given n linearly spaced basis of degree d, computing
updates to wd takes O(n2) time.

Computing the updates
maintain:

classification: f(x) = wT
d �(x)

update:

However, one can compute it on O(nd) by exploiting the
structure of D (see paper below)

S.	 Maji,	 Linearized	 Smooth	 Addi4ve	 Classifiers,	 ECCV	 WS	 2012

Solving the optimization efficiently

Given n linearly spaced basis of degree d, computing
updates to wd takes O(n2) time.

Computing the updates
maintain:

classification: f(x) = wT
d �(x)

update:

However, one can compute it on O(nd) by exploiting the
structure of D (see paper below)

S.	 Maji,	 Linearized	 Smooth	 Addi4ve	 Classifiers,	 ECCV	 WS	 2012

Hence these classifiers can be trained with very low
memory overhead, without compromising training time

Spline embeddings : computational tradeoffs

spline degree

re
gu

la
ri

za
tio

n
or

de
r

D0

D1

D2

linear quadratic cubic

Spline embeddings : computational tradeoffs

spline degree

re
gu

la
ri

za
tio

n
or

de
r

D0

D1

D2

linear quadratic cubic

Standard linear solver

Test time increases linearly
Accuracy increases

Training time increases linearly

5.96s, 90.23% 7.26s, 90.34% 10.08s, 90.39%

Experiments on DC pedestrian dataset (n = 20)
IKSVM training time : 360s

Spline embeddings : computational tradeoffs

spline degree

re
gu

la
ri

za
tio

n
or

de
r

D0

D1

D2

linear quadratic cubic

Custom solver for order > 1

Test time constant

Accuracy peaks at D1
This suggests that first order
smoothness is sufficient

Training time increases linearly

5.96s
90.23%

32.43s
91.20%

246.87s
89.06%

Experiments on DC pedestrian dataset (n = 20)
IKSVM training time : 360s

Spline embeddings : computational tradeoffs

spline degree

re
gu

la
ri

za
tio

n
or

de
r

D0

D1

D2

linear quadratic cubic

Useful regime for most datasets

Spline embeddings : computational tradeoffs

spline degree

re
gu

la
ri

za
tio

n
or

de
r

D0

D1

D2

linear quadratic cubic

Useful regime for most datasets

most accurate
closely approximates IKSVM

fastest

Spline embeddings : computational tradeoffs

spline degree

re
gu

la
ri

za
tio

n
or

de
r

D0

D1

D2

linear quadratic cubic

Useful regime for most datasets

most accurate
closely approximates IKSVM

fastest

Experiments on MNIST, INRIA pedestrians, Caltech 101, DC pedestrians, etc
All these are still an order of magnitude faster than traditional SVM solver.
These have the same memory overhead as linear SVMs since the features are
computed online.

General basis expansion

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)
X

i

wi�i

local splines are the basis

In general can choose any orthonormal basis

Fourier embeddings : representation

Examples: Trigonometric functions, Wavelets, etc.

f(x) =
X

wi i(x)

 1(x), 1(x), . . . , n(x)

An orthonormal basis

Z b

a
 i(x) j(x)�(x)dx = �i,j

Representation

Fourier embeddings : regularization

f(x) =
X

wi i(x)

 1(x), 1(x), . . . , n(x)

An orthonormal basis

Z b

a
 i(x) j(x)�(x)dx = �i,j

Representation

R(f) = wTHw

Regularization : penalize d’th order derivative

Hi,j =

Z b

a

d
i (x)

d
j (x)w(x)dx

Z b

a
f

d(x)2�(x)dx =

Z b

a
wiwj

d
i (x)

d
j (x)�(x)dx

Similar to the spline case (different basis)
Requires the basis to be differentiable

Fourier embeddings : optimization

f(x) =
X

wi i(x)

 1(x), 1(x), . . . , n(x)

An orthonormal basis

Regularization : penalize d’th order derivative

Hi,j =

Z b

a

d
i (x)

d
j (x)w(x)dx

Optimization

c(w) =

�

2

wTHw +

1

n

X

k

max

�
0, 1� y

k
�
wT (x

k
)

��

R(f) = wTHw

Z b

a
f

d(x)2�(x)dx =

Z b

a
wiwj

d
i (x)

d
j (x)�(x)dx

Z b

a
 i(x) j(x)�(x)dx = �i,j

Representation

Fourier embeddings : optimization

Optimization

c(w) =

�

2

wTHw +

1

n

X

k

max

�
0, 1� y

k
�
wT (x

k
)

��

H is not diagonal - cannot directly use fast linear solvers
In general it is not structured either (unlike splines)

Fourier embeddings : optimization

Optimization

c(w) =

�

2

wTHw +

1

n

X

k

max

�
0, 1� y

k
�
wT (x

k
)

��

H is not diagonal - cannot directly use fast linear solvers
In general it is not structured either (unlike splines)

Practical solution
Pick orthogonal basis with orthogonal derivatives

Cross terms disappear, i.e., H is diagonal againZ b

a
f

d(x)2�(x)dx =

Z b

a
wiwj

d
i (x)

d
j (x)�(x)dx / w

2
i

Fourier embeddings : optimization

Optimization

c(w) =

�

2

wTHw +

1

n

X

k

max

�
0, 1� y

k
�
wT (x

k
)

��

H is not diagonal - cannot directly use fast linear solvers
In general it is not structured either (unlike splines)

Practical solution
Pick orthogonal basis with orthogonal derivatives

Cross terms disappear, i.e., H is diagonal againZ b

a
f

d(x)2�(x)dx =

Z b

a
wiwj

d
i (x)

d
j (x)�(x)dx / w

2
i

Examples: Trigonometric functions, One of Jacobi, Laguerre or
Hermite polynomials

M.	 Webster,	 Orthogonal	 polynomials	 with	 orthogonal	 derivaFves.	 Mathema'sche	 Zeitschri.,	 39:634–638,	 1935

Fourier Embeddings : Two practical ones

Two families of orthogonal basis with orthogonal derivatives

Embeddings that penalize the first and second order derivatives

Learning : project data onto the first few basis and use a linear
solver such as LIBLINEAR

Fourier features are low dimensional and dense, as opposed to
spline features which are high dimensional but sparse.

Comparison of various additive classifiers

DC pedestrian dataset

Comparison of various additive classifiers

MNIST dataset

Comparison of various additive classifiers

Software

• Code to train large scale additive classifiers. Provides functions:

• train : input (y,x) and outputs additive classifiers

• choice of various encodings, regularizations.

• encodings are computed online

• implements efficient weight updates for splines features

• classify : takes a learned classifier and features, outputs
decision values

• encode : returns encoded features which can be directly
used with any linear solver

• Download at:

• http://ttic.uchicago.edu/~smaji/libspline-release1.0.tar.gz

http://ttic.uchicago.edu/~smaji/libspline-release1.0.tar.gz
http://ttic.uchicago.edu/~smaji/libspline-release1.0.tar.gz

Conclusions

• We discussed methods to directly learn additive classifiers
based on a regularized loss minimization

• We proposed two kinds of basis for which the learning problem
can be efficiently solved, Spline and Fourier embeddings

• Spline embeddings are sparse, easy to compute, and can be
used to learn classifiers with almost no memory overhead,
compared to learning linear classifiers.

• Fourier embeddings (Trigonometric and Hermite) are low
dimensional, but are relatively expensive to compute, hence
are useful in setting where features can be stored in memory

• More experimental details and code can be found on the
author’s website (ttic.uchicago.edu/~smaji)

