Workshop on Web-scale Vision and Social Media ECCV 2012, Firenze, Italy October, 2012
 Linearized Smooth Additive Classifiers

Subhransu Maji
Research Assistant Professor
Toyota Technological Institute at Chicago

Generalized Additive Models

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)
$$

- Why use them?
- Efficiency : can be efficiently evaluated
- Interpretability : Simple generalization of linear classifiers, i.e., may lead to models that are interpretable
- Well known in the statistics community
- Generalized Additive Models (Hastie \& Tibshirani '90)
- However traditional learning algorithms do not scale well (e.g."backfitting algorithm")

Additive kernels in computer vision

- Images are represented as histograms of low level features such as color and texture [Swain and Ballard OI, Odone et al.05]
- Histogram based similarity measures are typically additive

$$
K_{\min }(\mathbf{x}, \mathbf{y})=\sum \min \left(x_{i}, y_{i}\right) \quad K_{\chi^{2}}(\mathbf{x}, \mathbf{y})=\sum \frac{2 x_{i} y_{i}}{x_{i}+y_{i}}
$$

- Other examples of additive kernels based on approximate correspondence :

Pyramid Match Kernel,
Grauman and Darrell, CVPR’05

Spatial Pyramid Match Kernel, Lazebnik, Schmidt and Ponce, CVPR'06

Directly learning additive classifiers

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)
$$

A SVM like optimization framework

 e.g. hinge loss function
$l\left(y^{k}, f\left(\mathbf{x}^{k}\right)\right)=\max \left(0,1-y^{k} f\left(\mathbf{x}^{k}\right)\right)$

Strategy for learning additive classifiers

$$
\begin{aligned}
\mathbf{x}^{k} & \in \mathbb{R}^{d} \\
y^{k} & \in\{+1,-1\}
\end{aligned}
$$

Strategy for learning additive classifiers

$$
\min _{f \in F} \sum_{k} l\left(y^{k}, f\left(\mathbf{x}^{k}\right)\right)+\lambda R(f) \quad \begin{aligned}
& \mathbf{x}^{k} \in \mathbb{R}^{d} \\
& y^{k} \in\{+1,-1\}
\end{aligned}
$$

Basis expansion

Strategy for learning additive classifiers

$$
\begin{aligned}
& \mathbf{x}^{k} \in \mathbb{R}^{d} \\
& y^{k} \in\{+1,-1\}
\end{aligned}
$$

Smoothness penalty on the weights

Basis expansion

$$
\min _{f \in F} \sum_{k} l\left(y^{k}, f\left(\mathbf{x}^{k}\right)\right)+\lambda R(f) \quad \begin{aligned}
& \mathbf{x}^{k} \in \mathbb{R}^{d} \\
& y^{k} \in\{+1,-1\}
\end{aligned}
$$

Basis expansion

- Search for representations of the function and regularization for which the optimization can be efficiently solved
- In particular we want to leverage the latest methods for learning linear classifiers (almost linear time algorithms)

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)
$$

- Represent each function using a uniformly spaced spline basis
- Motivated by our earlier analysis that splines approximate additive classifiers well
- Popularized by Eilers and Marx (P-Splines '02, '04) for additive modeling
- Well known in graphics (DeBoor '01)
- Question: What is the regularization on \mathbf{w} ?

Figure from Eilers \& Marx '04

Spline embeddings : representation

Representation $\quad f(x)=\mathbf{w}^{T} \mathbf{\Phi}(x)$

Linear B-Spline

Quadratic B-Spline

Cubic B-Spline

Project data onto a uniformly spaced spline basis

Spline embeddings : regularization

Representation $\quad f(x)=\mathbf{w}^{T} \mathbf{\Phi}(x)$

Linear B-Spline

Quadratic B-Spline

Cubic B-Spline

Regularization $\quad R(f)=\mathbf{w}^{T} \mathbf{H w} \quad \mathbf{H}=\mathbf{D}^{T} \mathbf{D}$

$$
\mathbf{D}_{0}=\mathbf{I} \quad \mathbf{D}_{1}=\left(\begin{array}{rrrrrl}
1 & & & & & \\
-1 & 1 & & & & \\
& -1 & 1 & & & \\
& & \cdots & & & \\
& & & -1 & 1
\end{array}\right) \quad \mathbf{D}_{2}=\left(\begin{array}{rrrrr}
1 & & & & \\
-2 & 1 & & & \\
& 1 & -2 & 1 & \\
& & & & \cdots \\
& & & & 1
\end{array}\right)
$$

Penalize differences between adjacent weights Ensures that the learned function is smooth Similar to Penalized Splines of Eilers and Marx '02

Spline embeddings : optimization

Representation $\quad f(x)=\mathbf{w}^{T} \boldsymbol{\Phi}(x)$

Linear B-Spline

Quadratic B-Spline

Cubic B-Spline

Regularization

$$
\mathbf{D}_{0}=\mathbf{I} \quad \mathbf{D}_{1}=\left(\begin{array}{rrrrr}
1 & & & & \\
-1 & 1 & & & \\
& -1 & 1 & & \\
& & \cdots & & \\
& & & -1 & 1
\end{array}\right) \quad \mathbf{D}_{2}=\left(\begin{array}{cccccc}
1 & & & & & \\
-2 & 1 & & & \\
& 1 & -2 & 1 & \\
& & & \cdots & \\
& & & & 1 & -2
\end{array}\right)
$$

Optimization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Spline embeddings : linear case

Representation

Linear B-Spline

Regularization

$$
\mathbf{D}_{0}=\mathbf{I}
$$

$$
f(x)=\mathbf{w}^{T} \boldsymbol{\Phi}(x)
$$

Quadratic B-Spline

Cubic B-Spline

\square

Spline embeddings : general case

Representation $\quad f(x)=\mathbf{w}^{T} \boldsymbol{\Phi}(x)$

Linear B-Spline

Quadratic B-Spline

Cubic B-Spline

Regularization
$\mathbf{D}_{1}=\left(\begin{array}{rrrrr}1 & & & & \\ -1 & 1 & & & \\ & -1 & 1 & & \\ & & \cdots & & \\ & & & & -1\end{array}\right)$

Optimization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{1}^{T} \mathbf{D}_{1} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Spline embeddings : linearization

Original Problem

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

$$
\mathbf{D}_{1}^{-T}=\left(\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
0 & 1 & \ldots & 1 & 1 \\
& 0 & \ldots & 1 & 1 \\
& & \ldots & & \\
& & & 1 & 1 \\
& & & 0 & 1
\end{array}\right)
$$

Upper Triangular

Original Problem

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \mathbf{\Phi}\left(x^{k}\right)\right)\right)
$$

Re-Parameterization of the weight

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \mathbf{D}_{1}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Equivalently a change of basis

$$
\mathbf{D}_{1}^{-T}=\left(\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
0 & 1 & \ldots & 1 & 1 \\
& 0 & \ldots & 1 & 1 \\
& & \ldots & & \\
& & & 1 & 1 \\
& & & 0 & 1
\end{array}\right)
$$

Upper Triangular

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Re-Parameterization of the features

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \mathbf{D}_{1}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Spline embeddings : linearization

Implicit kernel

Equivalently a change of basis

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Re-Parameterization of the features

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \mathbf{D}_{1}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Spline embeddings : visualizing the kernel

Various basis and regularization

Linear B-Spline

Quadratic B-Spline

Cubic B-Spline

Fixing order(regularization)=I, and varying degree(basis)

$K_{\text {min }}$

K_{1}^{1}

K_{2}^{1}

$K_{\text {min }}-K_{2}^{1}$

K_{3}^{1}

$K_{\text {min }}-K_{3}^{1}$

Smooth variants of the min kernel

Spline embeddings : visualizing the basis

Various basis and regularization

Linear B-Spline

Quadratic B-Spline

$$
\phi_{i}(x)=\left(x-\tau_{i}\right)_{+}^{r}
$$

The basis are equivalent to truncated polynomial basis if: degree(basis) - order(regularization) $=1$ [DeBoor '0I]

Solving the optimization efficiently

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Original problem : non-standard regularization

Solving the optimization efficiently

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Original problem : non-standard regularization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \mathbf{D}_{d}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Modified problem : dense features (memory bottleneck)

Solving the optimization efficiently

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Original problem : non-standard regularization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \mathbf{D}_{d}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Modified problem : dense features (memory bottleneck) Solution : implicit representation maintain: $\quad \mathbf{w}_{d}=\mathbf{D}_{d}^{-1} \mathbf{w}$ classification: $f(x)=\mathbf{w}_{d}^{T} \boldsymbol{\Phi}(x) \longleftarrow \mathrm{O}(\mathrm{d})$ vs $\mathrm{O}(\mathrm{n})$

Solving the optimization efficiently

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{D}_{d}^{T} \mathbf{D}_{d} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Original problem : non-standard regularization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \mathbf{D}_{d}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)\right)\right)
$$

Modified problem : dense features (memory bottleneck) Solution : implicit representation maintain: $\quad \mathbf{w}_{d}=\mathbf{D}_{d}^{-1} \mathbf{w}$ classification: $f(x)=\mathbf{w}_{d}^{T} \boldsymbol{\Phi}(x) \longleftarrow \mathrm{O}(\mathrm{d})$ vs $\mathrm{O}(\mathrm{n})$
update: $\mathbf{w} \leftarrow \mathbf{w}-\eta \mathbf{D}_{d}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)$

$$
\mathbf{w}_{d} \leftarrow \mathbf{w}_{d}-\eta \mathbf{L}_{d} \boldsymbol{\Phi}\left(x^{k}\right)
$$

$$
\mathbf{L}_{d}=\mathbf{D}_{d}^{-1} \mathbf{D}_{d}^{-T}
$$

Solving the optimization efficiently

Computing the updates

maintain: $\quad \mathbf{w}_{d}=\mathbf{D}_{d}^{-1} \mathbf{w}$
classification: $\quad f(x)=\mathbf{w}_{d}^{T} \boldsymbol{\Phi}(x)$
update: $\mathbf{w} \leftarrow \mathbf{w}-\eta \mathbf{D}_{d}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)$

$$
\mathbf{w}_{d} \leftarrow \mathbf{w}_{d}-\eta \mathbf{L}_{d} \boldsymbol{\Phi}\left(x^{k}\right)
$$

$$
\mathbf{L}_{d}=\mathbf{D}_{d}^{-1} \mathbf{D}_{d}^{-T}
$$

Solving the optimization efficiently

Computing the updates

maintain: $\quad \mathbf{w}_{d}=\mathbf{D}_{d}^{-1} \mathbf{w}$ classification: $\quad f(x)=\mathbf{w}_{d}^{T} \boldsymbol{\Phi}(x)$

$$
\begin{aligned}
\text { update: } \quad \mathbf{w} & \leftarrow \mathbf{w}-\eta \mathbf{D}_{d}^{-T} \boldsymbol{\Phi}\left(x^{k}\right) \\
\mathbf{w}_{d} & \leftarrow \mathbf{w}_{d}-\eta \mathbf{L}_{d} \boldsymbol{\Phi}\left(x^{k}\right)
\end{aligned} \quad \mathbf{L}_{d}=\mathbf{D}_{d}^{-1} \mathbf{D}_{d}^{-T}
$$

Given n linearly spaced basis of degree d, computing updates to w_{d} takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.

Solving the optimization efficiently

Computing the updates

maintain: $\quad \mathbf{w}_{d}=\mathbf{D}_{d}^{-1} \mathbf{w}$ classification: $\quad f(x)=\mathbf{w}_{d}^{T} \boldsymbol{\Phi}(x)$

$$
\begin{aligned}
\text { update: } \quad \mathbf{w} & \leftarrow \mathbf{w}-\eta \mathbf{D}_{d}^{-T} \boldsymbol{\Phi}\left(x^{k}\right) \\
\mathbf{w}_{d} & \leftarrow \mathbf{w}_{d}-\eta \mathbf{L}_{d} \boldsymbol{\Phi}\left(x^{k}\right)
\end{aligned} \quad \mathbf{L}_{d}=\mathbf{D}_{d}^{-1} \mathbf{D}_{d}^{-T}
$$

Given n linearly spaced basis of degree d, computing updates to w_{d} takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.
However, one can compute it on $\mathrm{O}(\mathrm{nd})$ by exploiting the structure of D (see paper below)

Solving the optimization efficiently

Computing the updates

maintain: $\quad \mathbf{w}_{d}=\mathbf{D}_{d}^{-1} \mathbf{w}$
classification: $\quad f(x)=\mathbf{w}_{d}^{T} \boldsymbol{\Phi}(x)$
update: $\mathbf{w} \leftarrow \mathbf{w}-\eta \mathbf{D}_{d}^{-T} \boldsymbol{\Phi}\left(x^{k}\right)$

$$
\mathbf{L}_{d}=\mathbf{D}_{d}^{-1} \mathbf{D}_{d}^{-T}
$$

Given n linearly spaced basis of degree d, computing updates to w_{d} takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.
However, one can compute it on $O(n d)$ by exploiting the structure of D (see paper below)

Hence these classifiers can be trained with very low memory overhead, without compromising training time

Spline embeddings : computational tradeoffs

Spline embeddings : computational tradeoffs

Standard linear solver
 Accuracy increases
 Test time increases linearly
 Training time increases linearly
 5.96s, 90.23\% 7.26s, 90.34\% 10.08s, 90.39\%
 linear
 quadratic cubic spline degree

Experiments on DC pedestrian dataset ($\mathrm{n}=20$) IKSVM training time : 360s

Spline embeddings : computational tradeoffs

Experiments on DC pedestrian dataset ($\mathrm{n}=20$) IKSVM training time : 360s

Spline embeddings : computational tradeoffs

Spline embeddings : computational tradeoffs

Spline embeddings : computational tradeoffs

Experiments on MNIST, INRIA pedestrians, Caltech IOI, DC pedestrians, etc All these are still an order of magnitude faster than traditional SVM solver. These have the same memory overhead as linear SVMs since the features are computed online.

General basis expansion

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)
$$

In general can choose any orthonormal basis

Fourier embeddings : representation

Representation

$$
f(x)=\sum w_{i} \psi_{i}(x)
$$

$$
\begin{gathered}
\psi_{1}(x), \psi_{1}(x), \ldots, \psi_{n}(x) \\
\int_{a}^{b} \psi_{i}(x) \psi_{j}(x) \gamma(x) d x=\delta_{i, j}
\end{gathered}
$$

An orthonormal basis
Examples:Trigonometric functions, Wavelets, etc.

Fourier embeddings : regularization

Representation

$$
f(x)=\sum w_{i} \psi_{i}(x)
$$

$$
\begin{gathered}
\psi_{1}(x), \psi_{1}(x), \ldots, \psi_{n}(x) \\
\int_{a}^{b} \psi_{i}(x) \psi_{j}(x) \gamma(x) d x=\delta_{i, j}
\end{gathered}
$$

An orthonormal basis
Regularization : penalize d'th order derivative

$$
\begin{aligned}
& \int_{a}^{b} f^{d}(x)^{2} \gamma(x) d x=\int_{a}^{b} w_{i} w_{j} \psi_{i}^{d}(x) \psi_{j}^{d}(x) \gamma(x) d x \\
& R(f)=\mathbf{w}^{T} \mathbf{H} \mathbf{w} \quad \mathbf{H}_{i, j}=\int_{a}^{b} \psi_{i}^{d}(x) \psi_{j}^{d}(x) w(x) d x
\end{aligned}
$$

Similar to the spline case (different basis) Requires the basis to be differentiable

Fourier embeddings : optimization

Representation

$$
f(x)=\sum w_{i} \psi_{i}(x)
$$

$$
\begin{gathered}
\psi_{1}(x), \psi_{1}(x), \ldots, \psi_{n}(x) \\
\int_{a}^{b} \psi_{i}(x) \psi_{j}(x) \gamma(x) d x=\delta_{i, j}
\end{gathered}
$$

An orthonormal basis
Regularization : penalize d'th order derivative

$$
\begin{aligned}
& \int_{a}^{b} f^{d}(x)^{2} \gamma(x) d x=\int_{a}^{b} w_{i} w_{j} \psi_{i}^{d}(x) \psi_{j}^{d}(x) \gamma(x) d x \\
& R(f)=\mathbf{w}^{T} \mathbf{H} \mathbf{w} \quad \mathbf{H}_{i, j}=\int_{a}^{b} \psi_{i}^{d}(x) \psi_{j}^{d}(x) w(x) d x
\end{aligned}
$$

Optimization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{H} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Psi}\left(x^{k}\right)\right)\right)
$$

Fourier embeddings : optimization

Optimization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{H w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Psi}\left(x^{k}\right)\right)\right)
$$

H is not diagonal - cannot directly use fast linear solvers In general it is not structured either (unlike splines)

Fourier embeddings : optimization

Optimization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{H} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Psi}\left(x^{k}\right)\right)\right)
$$

H is not diagonal - cannot directly use fast linear solvers In general it is not structured either (unlike splines)

Practical solution

Pick orthogonal basis with orthogonal derivatives Cross terms disappear, i.e., H is diagonal again

$$
\int_{a}^{b} f^{d}(x)^{2} \gamma(x) d x=\int_{a}^{b} w_{i} w_{j} \psi_{i}^{d}(x) \psi_{j}^{d}(x) \gamma(x) d x \propto w_{i}^{2}
$$

Fourier embeddings : optimization

Optimization

$$
c(\mathbf{w})=\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{H} \mathbf{w}+\frac{1}{n} \sum_{k} \max \left(0,1-y^{k}\left(\mathbf{w}^{T} \boldsymbol{\Psi}\left(x^{k}\right)\right)\right)
$$

H is not diagonal - cannot directly use fast linear solvers In general it is not structured either (unlike splines)

Practical solution

Pick orthogonal basis with orthogonal derivatives Cross terms disappear, i.e., H is diagonal again

$$
\int_{a}^{b} f^{d}(x)^{2} \gamma(x) d x=\int_{a}^{b} w_{i} w_{j} \psi_{i}^{d}(x) \psi_{j}^{d}(x) \gamma(x) d x \propto w_{i}^{2}
$$

Examples:Trigonometric functions, One of Jacobi, Laguerre or Hermite polynomials

Fourier Embeddings :Two practical ones

Two families of orthogonal basis with orthogonal derivatives
Trigonometric
$x \in[-1,1], w(x)=1$
Hermite
$x \in N(0,1), w(x)=e^{-x^{2} / 2}$
$\Psi_{n}^{1}(x)=\left\{\frac{\cos (n \pi x)}{n}, \frac{\sin (n \pi x)}{n}\right\} \quad \Psi_{n}^{1}(x)=\frac{H_{n}(x)}{\sqrt{n n!}}$
$\left.\Psi_{n}^{2}(x)=\left\{\frac{\cos (n \pi x)}{n^{2}}, \frac{\sin (n \pi x)}{n^{2}}\right\} \right\rvert\, \Psi_{1}^{2}(x)=\Psi_{1}^{1}(x), \Psi_{n}^{2}(x)=\frac{H_{n}(x)}{\sqrt{n(n-1) n!}}, n>1$
Embeddings that penalize the first and second order derivatives
Learning : project data onto the first few basis and use a linear solver such as LIBLINEAR

Fourier features are low dimensional and dense, as opposed to spline features which are high dimensional but sparse.

Comparison of various additive classifiers

Method	Test Accuracy	Training Time	
SVM (linear) + LIBLINEAR	81.49 (1.29)	$\begin{gathered} \hline 3.8 \mathrm{~s} \\ 363.1 \mathrm{~s} \end{gathered}$	
SVM (min) + LIBSVM	89.05 (1.42)		
		online	batch
B-Spline (\mathbf{D}_{0}, Linear, $n=05$)	88.51 (1.35)	5.9s	-
B-Spline (\mathbf{D}_{0}, Cubic, $n=05$)	89.00 (1.44)	10.8s	-
B-Spline (\mathbf{D}_{1}, Linear, $n=10$)	89.56 (1.35)	17.2 s	-
B-Spline (\mathbf{D}_{1}, \quad Cubic, $n=10$)	89.25 (1.39)	19.2 s	-
Fourier ($d=1, n=4$)	88.44 (1.43)	159.9s	12.7 s ($4 \times$ memory)
Hermite ($d=1, n=4$)	87.67 (1.26)	35.5 s	12.6 s ($4 \times$ memory)

DC pedestrian dataset

Method	Test Error	Training Time
SVM (linear) + LIBLINEAR	1.44\%	6.2 s
SVM (min) + LIBSVM	0.79\%	~ 2.5 hours
B-Spline (\mathbf{D}_{0}, Linear, $\left.n=20\right)$	0.88\%	31.6s
B-Spline (\mathbf{D}_{0}, Cubic, $\left.n=20\right)$	0.86\%	51.6 s
B-Spline (\mathbf{D}_{1}, Linear, $n=40$)	0.81\%	157.7 s
B-Spline (\mathbf{D}_{1}, Cubic, $n=40$)	0.82\%	244.9 s
Hermite ($d=1, n=4$)	1.06\%	358.6 s

MNIST dataset

Comparison of various additive classifiers

Dataset	Linear		Piecewise Linear		IK SVM	
	Time	Accuracy	Time	Accuracy	Time	Accuracy
INRIA pedestrians	20s	see curve	76s	see curve	$\sim 3 \mathrm{hr}$	see curve
Caltech101, 15 examples	18.6s	41.2\%	238s	49.9\%	844s	50.1\%
Caltech101, 30 examples	40.5s	46.2\%	291s	55.4\%	2686s	56.5\%

INRIA Pedestrian Detections

- Code to train large scale additive classifiers. Provides functions:
- train : input (y, \mathbf{x}) and outputs additive classifiers
- choice of various encodings, regularizations.
- encodings are computed online
- implements efficient weight updates for splines features
- classify : takes a learned classifier and features, outputs decision values
- encode : returns encoded features which can be directly used with any linear solver
- Download at:
- http://ttic.uchicago.edu/~smaji/libspline-releasel.0.tar.gz

Conclusions

- We discussed methods to directly learn additive classifiers based on a regularized loss minimization
- We proposed two kinds of basis for which the learning problem can be efficiently solved, Spline and Fourier embeddings
- Spline embeddings are sparse, easy to compute, and can be used to learn classifiers with almost no memory overhead, compared to learning linear classifiers.
- Fourier embeddings (Trigonometric and Hermite) are low dimensional, but are relatively expensive to compute, hence are useful in setting where features can be stored in memory
- More experimental details and code can be found on the author's website (ttic.uchicago.edu/~smaji)

