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Generalized Additive Models

• Why use them?

• Efficiency : can be efficiently evaluated

• Interpretability : Simple generalization of linear 
classifiers, i.e., may lead to models that are interpretable

• Well known in the statistics community

• Generalized Additive Models (Hastie & Tibshirani ’90)

• However traditional learning algorithms do not scale well 
(e.g. “backfitting algorithm”)

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)



Additive kernels in computer vision

• Images are represented as histograms of low level features such 
as color and texture [Swain and Ballard 01, Odone et al. 05]

• Histogram based similarity measures are typically additive

• Other examples of additive kernels based on approximate 
correspondence : 

Pyramid Match Kernel, 
Grauman and Darrell, CVPR’05

Spatial Pyramid Match Kernel,
Lazebnik, Schmidt and Ponce, CVPR’06

K�2(x,y) =
X 2xiyi

xi + yi
Kmin(x,y) =

X
min(xi, yi)



Directly learning additive classifiers

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)

A SVM like optimization framework
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Loss function on the data
e.g. hinge loss function

Regularization
e.g. derivative norm
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Strategy for learning additive classifiers

Smoothness penalty 
on the weights
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Strategy for learning additive classifiers

• Search for representations of the function and regularization for 
which the optimization can be efficiently solved

• In particular we want to leverage the latest methods for 
learning linear classifiers (almost linear time algorithms)

Smoothness penalty 
on the weights
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Spline embeddings : motivation

• Represent each function using a uniformly spaced spline basis

• Motivated by our earlier analysis that splines approximate additive classifiers well

• Popularized by Eilers and Marx (P-Splines ’02, ’04) for additive modeling

• Well known in graphics (DeBoor ’01)

• Question:  What is the regularization on w?

Figure from Eilers & Marx ’04

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)
X

i

wi�i



Spline embeddings : representation
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

Project data onto a uniformly spaced spline basis



Spline embeddings : regularization
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

D0 = I

R(f) = wTHw H = DTDRegularization

Penalize differences between adjacent weights
Ensures that the learned function is smooth

Similar to Penalized Splines of Eilers and Marx ’02



Spline embeddings : optimization
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

Optimization

D0 = I

R(f) = wTHw H = DTDRegularization

c(w) =

�

2

wTDT
d Ddw +

1

n

X

k

max

�
0, 1� y

k
�
wT�(x

k
)

��



Spline embeddings : linear case
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

D0 = I

Regularization zero order differences [Maji and Berg, ICCV ’09]

Reduces to a standard linear SVM

Projected features are sparse. At most k non-zero 
entries for a basis of degree k.

Optimization
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Spline embeddings : general case
f(x) = wT�(x)

Linear'B)Spline' Quadra0c'B)Spline' Cubic'B)Spline'

Representation

Optimization

Regularization Penalize first order differences. Non-standard SVM 
due to regularization [Eilers & Marx ’02]

Can offer better smoothness when some bins have 
few data points
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Spline embeddings : linearization

�

Original Problem
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Spline embeddings : linearization
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Re-Parameterization of the weight
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Spline embeddings : linearization

�

Equivalently a change of basis
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Re-Parameterization of the features
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Spline embeddings : linearization
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1 =  T 

Implicit kernel

Re-Parameterization of the features



Spline embeddings : visualizing the kernel

Various basis and regularization

Fixing order(regularization)=1, and varying degree(basis)

Smooth variants of the min kernel



Spline embeddings : visualizing the basis

Various basis and regularization

�i(x) = (x� ⌧i)
r
+

The basis are equivalent to truncated polynomial basis if:
degree(basis) - order(regularization) = 1 [DeBoor ’01]



Solving the optimization efficiently
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Original problem :  non-standard regularization
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Modified problem : dense features (memory bottleneck)



Solving the optimization efficiently
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Modified problem : dense features (memory bottleneck)

Solution : implicit representation
maintain:

classification: f(x) = wT
d �(x) O(d) vs O(n)



Solving the optimization efficiently
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Modified problem : dense features (memory bottleneck)

update: 

Solution : implicit representation
maintain:

classification: f(x) = wT
d �(x) O(d) vs O(n)



Solving the optimization efficiently
Computing the updates

maintain:

classification: f(x) = wT
d �(x)

update: 



Solving the optimization efficiently

Given n linearly spaced basis of degree d, computing 
updates to wd  takes O(n2) time.

Computing the updates
maintain:

classification: f(x) = wT
d �(x)

update: 



Solving the optimization efficiently

Given n linearly spaced basis of degree d, computing 
updates to wd  takes O(n2) time.

Computing the updates
maintain:

classification: f(x) = wT
d �(x)

update: 

However, one can compute it on O(nd) by exploiting the 
structure of D (see paper below)

S.	  Maji,	  Linearized	  Smooth	  Addi4ve	  Classifiers,	  ECCV	  WS	  2012



Solving the optimization efficiently

Given n linearly spaced basis of degree d, computing 
updates to wd  takes O(n2) time.

Computing the updates
maintain:

classification: f(x) = wT
d �(x)

update: 

However, one can compute it on O(nd) by exploiting the 
structure of D (see paper below)

S.	  Maji,	  Linearized	  Smooth	  Addi4ve	  Classifiers,	  ECCV	  WS	  2012

Hence these classifiers can be trained with very low 
memory overhead, without compromising training time 



Spline embeddings : computational tradeoffs
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Spline embeddings : computational tradeoffs

spline degree
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linear quadratic cubic

Standard linear solver

Test time increases linearly
Accuracy increases

Training time increases linearly

5.96s, 90.23% 7.26s, 90.34% 10.08s, 90.39%

Experiments on DC pedestrian dataset ( n = 20)
IKSVM training time : 360s



Spline embeddings : computational tradeoffs

spline degree
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Custom solver for order > 1

Test time constant

Accuracy peaks at D1
This suggests that first order 
smoothness is sufficient

Training time increases linearly

5.96s  
90.23%

32.43s
91.20%

246.87s
89.06%

Experiments on DC pedestrian dataset ( n = 20)
IKSVM training time : 360s



Spline embeddings : computational tradeoffs
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Spline embeddings : computational tradeoffs

spline degree

re
gu

la
ri

za
tio

n
or

de
r

D0

D1

D2

linear quadratic cubic

Useful regime for most datasets

most accurate
closely approximates IKSVM

fastest

Experiments on MNIST, INRIA pedestrians, Caltech 101, DC pedestrians, etc
All these are still an order of magnitude faster than traditional SVM solver. 
These have the same memory overhead as linear SVMs since the features are 
computed online.



General basis expansion

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)
X

i

wi�i

local splines are the basis

In general can choose any orthonormal basis



Fourier embeddings : representation

Examples: Trigonometric functions, Wavelets, etc.

f(x) =
X

wi i(x)

 1(x), 1(x), . . . , n(x)

An orthonormal basis

Z b

a
 i(x) j(x)�(x)dx = �i,j

Representation



Fourier embeddings : regularization

f(x) =
X

wi i(x)

 1(x), 1(x), . . . , n(x)

An orthonormal basis

Z b

a
 i(x) j(x)�(x)dx = �i,j

Representation

R(f) = wTHw

Regularization : penalize d’th order derivative
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Similar to the spline case (different basis)
Requires the basis to be differentiable



Fourier embeddings : optimization
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Fourier embeddings : optimization

Optimization
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H is not diagonal - cannot directly use fast linear solvers
In general it is not structured either (unlike splines)
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Practical solution
Pick orthogonal basis with orthogonal derivatives
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Fourier embeddings : optimization

Optimization
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Examples: Trigonometric functions, One of Jacobi, Laguerre or 
Hermite polynomials

M.	  Webster,	  Orthogonal	  polynomials	  with	  orthogonal	  derivaFves.	  Mathema'sche	  Zeitschri.,	  39:634–638,	  1935



Fourier Embeddings : Two practical ones

Two families of orthogonal basis with orthogonal derivatives

Embeddings that penalize the first and second order derivatives

Learning : project data onto the first few basis and use a linear 
solver such as LIBLINEAR

Fourier features are low dimensional and dense, as opposed to 
spline features which are high dimensional but sparse. 



Comparison of various additive classifiers

DC pedestrian dataset 



Comparison of various additive classifiers

MNIST dataset



Comparison of various additive classifiers



Software

• Code to train large scale additive classifiers. Provides functions:

• train : input (y,x) and outputs additive classifiers

• choice of various encodings, regularizations. 

• encodings are computed online

• implements efficient weight updates for splines features

• classify : takes a learned classifier and features, outputs 
decision values

• encode : returns encoded features which can be directly 
used with any linear solver

• Download at:

• http://ttic.uchicago.edu/~smaji/libspline-release1.0.tar.gz

http://ttic.uchicago.edu/~smaji/libspline-release1.0.tar.gz
http://ttic.uchicago.edu/~smaji/libspline-release1.0.tar.gz


Conclusions

• We discussed methods to directly learn additive classifiers 
based on a regularized loss minimization

• We proposed two kinds of basis for which the learning problem 
can be efficiently solved, Spline and Fourier embeddings

• Spline embeddings are sparse, easy to compute, and can be 
used to learn classifiers with almost no memory overhead, 
compared to learning linear classifiers.

• Fourier embeddings (Trigonometric and Hermite) are low 
dimensional, but are relatively expensive to compute, hence 
are useful in setting where features can be stored in memory

• More experimental details and code can be found on the 
author’s website (ttic.uchicago.edu/~smaji)


