
1. Overview

Goal: Obtain high quality image annotation with low cost (annotation effort)!
!

                     !
                    !
!

! ! ! ! !   low quality annotation                    high quality annotation           !
Approach: Bayesian active learning!
‣ Minimize uncertainty in the boundary of MAP prediction !
‣ Tradeoff uncertainty reduction and cost of annotation !

Contributions!
• Entropy bounds that measure the expected perturbation that change MAP prediction.!

• Coarse to fine approach for pixel-accurate annotation that saves 33% in cost.!

2. Active learning in structured spaces

Traditional Active learning!
‣ Active learner picks which data points to label. Typically assume data is i.i.d.!

Bayesian active learning in structured spaces!
!
• Deals with correlated labels, e.g. labels of a single image (non i.i.d. setting)!

• Basic idea: Construct a probability function over the label space and reduce its 
uncertainty with minimal annotation cost (clicks)!

3. Active annotation framework

Approach!
!
• Let,                                   be the set of labels for image x for n pixels!

• Let,                                   be the set of annotations obtained till time t           !

• Let, p(y)  be the joint probability of the labels given the data x and annotations till time t!

Bayesian experimental design!
• Given: !
‣ a function that measures the uncertainty of the labels given the annotation, U(A) !
‣ a function that measures the cost of annotation, C(a)!

• Pick the annotation task the provides the highest uncertainty reduction/unit cost, i.e.,:!
!

!

!

• Uncertainty,  U(A) = H (p), is defined as the entropy!
!
!
!
!
!

• Computing entropy is exponential in the size of the patch. for many useful cases, 
however MAP estimation is tractable for some of these (e.g., via Graph-cuts, MPLP)!

!

!

4. Markov Random Fields (MRFs) for image labeling

• Popular for image segmentation (e.g. Grabcut model, Blake et al., 2004) !

• Let an annotation of an n pixel image be described as a n-tuple!

• The overall score of the pixel label is given by:!
!
!

!

• The MAP estimate can be obtained via. Graph cuts (Boykov et al., 2001)The MA    !

5. MAP perturbations

The Perturb MAX model (Papandreou and Yuille, 2011, Tarlow 2012, Gane 2014)!
• Random functions !
!

!

!

MAP perturbations upper bound the partition function (Hazan & Jaakkola 2012) !
!!
• Let be i.i.d. Gumbel random variables with zero mean  !
!

!

!

!

6. Measuring uncertainty in the boundary of MAP prediction 

For Perturb MAX models with Gumbel random variables!
!!!!!!
• Where,!
!!!

Proof idea: !
!!!
• Conjugate duality: !
!

• Use MAP perturb. upper bounds.!

• The optimal theta attains the perturb-max model p(y).  !

• The linear term cancels out.  !
!

Uncertainty measure!
!!
• Nonnegative (upper bounds the entropy).!

• Attains its minimal value for the zero-one distribution (zero mean perturbations).!

• Attains its maximal value for the uniform distribution (symmetry).   !
!

7. Active boundary annotation

!
!!!!!!!!!!!
!

!

!

Coarse-to-fine boundary refinement!
• We start from a coarse boundary and repeatedly the!
‣ regions are picked by the algorithm, refinement is done by the user!
‣ Cost of refinement = number of points in the polygons (boundary complexity)!

• We don’t know the truth, so we can compute expectations of cost and uncertainty!

8. Experimental evaluation

An example coarse-to-fine refinement (sampled regions for various strategies)!
!!!!!!!!!!!!

!

Active annotation results!

 !!
9. Conclusions and future work


We proposed a new uncertainty measure!
• Avoids expensive MCMC sampling by randomly perturbing the model and using a MAP 

solver as a black box tool. !

• Applications for parameter estimation and active learning in a number of areas such as 
matchings, parse trees, and other combinatorial structures.!

Active learning in structured spaces!
• Sampling based approach allows us to consider non-decomposable cost functions. For 

the boundary annotation task we used boundary complexity, which is not possible to 
compute with marginal estimates.!

• This led to 33% savings in annotation time for pixel-accurate boundary annotations.!

Challenges!
• MAP perturbation based entropy bounds for higher dimensional perturbations.!

• Beyond super-modular functions in the context of active learning.!
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Local potentials !
Gaussian mixture models on LAB space

Pairwise potentials !
smoothness contraints on adjacent pixels
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