

Project goals

Semantic part-based models of categories We propose a novel *correspondence* driven *annotation* and *learning* framework for part discovery that overcomes some of the drawbacks of existing techniques

Current techniques for annotation

Obtaining annotations can be hard

Names can be *misleading* Where is the *elbow* of a horse? Hard to localize

diverse categories

What are the keypoints? Can you name them?

Proposed annotation framework Mark semantic correspondence

Humans can mark correspondences *without* knowing the names of the parts [HCOMP 12]

Annotators are shown pairs of images, examples of landmarks and GUI instructions Example annotations collected

Part Discovery from Partial Correspondence

Subhransu MajiGregory ShakhnarovichToyota Technological Institute at Chicago

Annotations induce a semantic graph

Partial correspondence between a pair Obtain patch correspondences

least squares estimate of a similarity transform

Depth-first exploration of the graph

Automatically corrects for annotation bias

Breadth-first exploration of the graph

Can find a match as long as there is a path from the source in the semantic graph

Learning part detectors

Sample seed windows Find similar patches using the semantic graph Learn a robust appearance model

Where to sample seed windows?

clicked landmarks saliency map Sample uniformly on the seeds Reflects the underlying frequency of parts

Learning an appearance model

Evaluating parts

Dataset: 288 images of churches collected from Flickr, 1000 pairs of correspondence

nans supply the lab

References [HCOMP 12] *Part annotation via pairwise correspondence*, Subhransu Maji and Gregory Shakhnarovich, AAAI Human Computation Workshop, 2012 [Discriminative Patches] *Unsupervised discovery of mid-level discriminative patches*, S.Singh, A. Gupta, and A. Efros, ECCV 2012 [DPM] *Object detection with discriminatively trained part-based models*, P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, IEEE TPAMI, 2010 [Itti & Koch] Computational modeling of visual attention, L. Itti, and C. Koch, Nature reviews neuroscience, 2(3), 2011