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Introduction
®0

Motivation: Object Recognition

o Affine invariant features, SIFT.
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o SIFT Feature Matching [Lowe 1999, van Gool 2004]

(b) Recognition
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Object Recognition in Band-Limited Sensor Networks

O Compress scalable SIFT tree [Girod et al. 2009]
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Problem Statement
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@ L camera sensors observe a single object in 3-D.

@ The mutual information between cameras are unknown, cross-sensor communication is
prohibited.

© On each camera, seek an encoding function for a nonnegative, sparse histogram x;
fix;eRP -y, eR?
@ On the base station, upon receiving y;, Y5, - ,Y;, simultaneously recover
X1, X2, 5 X[,

and classify the object class in space.
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Introduction
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Key Observations

08

an :
|
;

1R

| 0 L
200 00 600 800 1000 200 400 600 El 1000

(a) Histogram 1 (b) Histogram 2

o All histograms are nonnegative and sparse.
o Multiple-view histograms share joint sparse patterns.

o Classification is based on the similarity measure in £2-norm (linear kernel) or £}-norm
(intersection kernel).
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Random Projection
L]

Compress SIFT Histograms: Random Projection

y = Ax

Coefficients of A € RY*D are drawn from zero-mean Gaussian distribution.

Johnson-Lindenstrauss Lemma [Johnson & Lindenstrauss 1984, Frankl 1988]

For n number of point cloud in RP, given distortion threshold ¢, for any
d > O(e?log n),
a Gaussian random projection f(x) = Ax € R? preserves pairwise ¢2-distance

(1= 9llxi = xl13 < NI (xi) = FEIZ < (1 + €)llxi — x1l13.
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Random Projection
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From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.
@ Problem I1: Gaussian projection does not preserve ¢!-distance (for intersection kernels).

© Problem IllI: Difficult (if not impossible) to incorporate multiple-view information.
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Random Projection
[ ]

From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

@ Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.
@ Problem I1: Gaussian projection does not preserve ¢!-distance (for intersection kernels).

© Problem IllI: Difficult (if not impossible) to incorporate multiple-view information.

Compressive sensing provides principled solutions to the above problems. )
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Distributed Object Recognition
[ Je]

Compressive Sensing

Noise-free case

Assume xg is sufficiently k-sparse and mild condition on A,
(P1) :  min||x||1 subject to y = Ax

recovers the exact solution.
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Distributed Object Recognition
[ Je]

Compressive Sensing

Noise-free case

Assume xg is sufficiently k-sparse and mild condition on A,
(P1) :  min||x||1 subject to y = Ax

recovers the exact solution.

@ Matching Pursuit [Mallat-Zhang 1993]

@ |Initialization:
o y = [A; —A]X, where X >0

o k—0;% —0; ¢ — y; Sparse support Z = ()
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Distributed Object Recognition
[ Je]

Compressive Sensing

Noise-free case

Assume xg is sufficiently k-sparse and mild condition on A,
(P1) :  min||x||1 subject to y = Ax

recovers the exact solution.

@ Matching Pursuit [Mallat-Zhang 1993]

@ |Initialization:
o y = [A; —A]X, where X >0

o k—0;% —0; ¢ — y; Sparse support Z = ()

Q k+— k+1:
o i=arg manQI{aJ-Trkfl}
o Update: Z =TZ U {i}; x; = a;rrkfl;
rk = k=1 xjaj
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Distributed Object Recognition
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Compressive Sensing

Noise-free case

Assume xg is sufficiently k-sparse and mild condition on A,
(P1) :  min||x||1 subject to y = Ax

recovers the exact solution.

@ Matching Pursuit [Mallat-Zhang 1993]

@ |Initialization:
o y = [A; —A]X, where X >0

o k—0;% —0; ¢ — y; Sparse support Z = ()

Q k+— k+1:
o i=arg manQI{aJ-Trkfl}

o Update: Z =TZ U {i}; x; = a;rrkfl;
K _ k=1

4 — xja;

@ If: |Ir¥|l2 > ¢, go to STEP 2; Berkeley

Else: output ¥ o
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Distributed Object Recognition
oe

Other Fast /:-Min Routines

@ Homotopy Methods:

o Polytope Faces Pursuit (PFP) [Plumbley 2006]
o Least Angle Regression (LARS) [Efron-Hastie-Johnstone-Tibshirani 2004]

@ Gradient Projection Methods

o Gradient Projection Sparse Representation (GPSR) [Figueiredo-Nowak-Wright 2007]

o Truncated Newton Interior-Point Method (TNIPM) [Kim-Koh-Lustig-Boyd-Gorinevsky 2007]
© Iterative Thresholding Methods

o Soft Thresholding [Donoho 1995]

o Sparse Reconstruction by Separable Approximation (SpaRSA) [Wright-Nowak-Figueiredo 2008]
@ Proximal Gradient Methods [Nesterov 1983, Nesterov 2007]

o FISTA [Beck-Teboulle 2009]
o Nesterov's Method (NESTA) [Becker-Bobin-Candés 2009]

MATLAB Toolboxes

o SparseLab: http://sparselab.stanford.edu/
@ ¢! Homotopy: http://users.ece.gatech.edu/~sasif/homotopy/index.html
o SpaRSA: http://www.1lx.it.pt/~mtf/SpaRSA/
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Distributed Object Recognition
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Distributed Object Recognition in Smart Camera Networks

QOutlines:

© How to enforce nonnegativity to decode SIFT histograms?

@ How to enforce joint sparsity across multiple camera views?
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Distributed Object Recognition
(o] lo}

Enforcing Nonnegativity

o Polytope Pursuit Algorithms (MP, PFP, LARS):
@ Algebraically: Do not add antipodal vertexes

y= [A:i

@ Geometrically: Pursuit on positive faces

o Interior-Point Algorithms (Homotopy, SpaRSA):
Remove any sparse support that have negative coefficients.
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Distributed Object Recognition
ooe

Sparse Innovation Model

o Definition (SIM):

X1 = X-+z,

X, = X4z

X is called the joint sparse component, and z; is called an innovation.
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Distributed Object Recognition
ooe

Sparse Innovation Model

o Definition (SIM):

X1 = X-+z,

X, = X4z

X is called the joint sparse component, and z; is called an innovation.

e Joint recovery of SIM

X
y1 ALAL O - 0 2
v Apo oAl |,
& = AX eRI

@ New histogram vector is nonnegative and sparse.
@ Joint sparsity % is automatically determined by £'-min: No prior training, no assumption about fixing
cameras.
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Experiment
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CITRIC: Wireless Smart Camera Platform

o CITRIC platform o Available library functions

© Full support Intel IPP Library and OpenCV.
@ JPEG compression: 10 fps.

© Edge detector: 3 fps.

1.3 MegaPixel

Camera © Background Subtraction: 5 fps.
@ SIFT detector: 10 sec per frame.

13-624 MHz
Intel PXA270
Microprocessor

64 MB
Mobile 8
SDRAM N

16 MB NOR Flash  Power Management IC

o Academic users:
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Experiment
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Experiment: COIL-100 object database

o Database: 100 objects, each provides 72 images captured with 5 degree difference.
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o Dense sampling of overlapping 8 x 8 grids. PCA-SIFT descriptor.
o 4-level hierarchical k-means (k = 10): Leaf-node histogram is 1000-D.
o Classifier via intersection-kernel SVM: 10 random training images per class.

o Setup:
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COIL 100 Multiview Dataset ( ntrain=10)
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Conclusion
o

Distributed Object Recognition in Band-Limited Smart Camera Networks

@ To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

@ Gaussian random projection as universal dimensionality reduction function: J-L lemma.

@ /¢'-minimization exploits two properties of SIFT histograms:
o Sparsity.
o Nonnegativity.

@ Sparse innovation model exploits joint sparsity of multiple-view histograms.

© Complete system implemented on Berkeley CITRIC sensors.
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Berkeley Multiple-view Wireless Database
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