| Introduction<br>0000 | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|----------------------|-------------------|--------------------------------|------------|------------|
|                      |                   |                                |            |            |

# Multiple-View Object Recognition in Band-Limited Distributed Camera Networks

Allen Y. Yang

Subhransu Maji, Mario Christoudas, Trevor Darrell, Jitendra Malik, and Shankar Sastry

ICDSC, August 31, 2009



| Introduction<br>••••• | Random Projection         | Distributed Object Recognition | Experiment | Conclusion |
|-----------------------|---------------------------|--------------------------------|------------|------------|
| Motivation: C         | <b>Object Recognition</b> |                                |            |            |

• Affine invariant features, SIFT.



• SIFT Feature Matching [Lowe 1999, van Gool 2004]



(a) Autostitch

(b) Recognition

Ber

-∢ ≣⇒

• Bag of Words [Nister 2006]





Ocompress scalable SIFT tree [Girod et al. 2009]



Ø Multiple-view SIFT feature selection [Darrell et al. 2008]





| Introduction | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|--------------|-------------------|--------------------------------|------------|------------|
| 0000         |                   | 00000                          | 000        |            |
| Problem Sta  | tement            |                                |            |            |



- **1** L camera sensors observe a single object in 3-D.
- Phe mutual information between cameras are unknown, cross-sensor communication is prohibited.
- On each camera, seek an encoding function for a nonnegative, sparse histogram x<sub>i</sub>

$$f: \mathbf{x}_i \in \mathbb{R}^D \mapsto \mathbf{y}_i \in \mathbb{R}^d$$

**()** On the base station, upon receiving  $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_L$ , simultaneously recover

$$\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_L,$$

and classify the object class in space.



| Introduction | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|--------------|-------------------|--------------------------------|------------|------------|
| 0000         | 00                | 00000                          | 000        | 00         |
| Key Observ   | rations           |                                |            |            |
|              |                   |                                |            |            |





- All histograms are nonnegative and sparse.
- Multiple-view histograms share joint sparse patterns.
- Classification is based on the similarity measure in  $\ell^2$ -norm (linear kernel) or  $\ell^1$ -norm (intersection kernel).

| Introduction | Random Projection<br>●○ | Distributed Object Recognition | Experiment | Conclusion |
|--------------|-------------------------|--------------------------------|------------|------------|
| Compress SIF | T Histograms: Ra        | andom Projection               |            |            |

 $\mathbf{y} = A\mathbf{x}$ 

Coefficients of  $A \in \mathbb{R}^{d \times D}$  are drawn from zero-mean Gaussian distribution.



Johnson-Lindenstrauss Lemma [Johnson & Lindenstrauss 1984, Frankl 1988]

For *n* number of point cloud in  $\mathbb{R}^D$ , given distortion threshold  $\epsilon$ , for any

 $d > O(\epsilon^2 \log n),$ 

a Gaussian random projection  $f(x) = Ax \in \mathbb{R}^d$  preserves pairwise  $\ell^2$ -distance

 $(1-\epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \leq \|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2^2 \leq (1+\epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2^2.$ 





- **9** Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.
- **Problem II:** Gaussian projection **does not preserve**  $\ell^1$ -**distance** (for intersection kernels).
- **OPROVED III:** Difficult (if not impossible) to incorporate **multiple-view** information.



**3** 





- **Problem I:** J-L lemma does not provide means to reconstruct histogram hierarchy.
- **Problem II:** Gaussian projection **does not preserve**  $\ell^1$ -**distance** (for intersection kernels).
- **OProblem III:** Difficult (if not impossible) to incorporate **multiple-view** information.

Compressive sensing provides principled solutions to the above problems.



| Introduction               | Random Projection         | Distributed Object Recognition                               | Experiment | Conclusion |
|----------------------------|---------------------------|--------------------------------------------------------------|------------|------------|
| - 0000                     |                           | 0000                                                         | 000        | 00         |
| Compressiv                 | e Sensing                 |                                                              |            |            |
|                            | 0                         |                                                              |            |            |
|                            |                           |                                                              |            |            |
| Noise-free case            | e                         |                                                              |            |            |
| Assume $\mathbf{x}_0$ is s | sufficiently k-sparse and | d mild condition on A,                                       |            |            |
|                            |                           |                                                              |            |            |
|                            | $(P_1)$ :                 | min $\ \mathbf{x}\ _1$ subject to $\mathbf{y} = A\mathbf{x}$ |            |            |
|                            |                           |                                                              |            |            |
| recovers the e             | xact solution.            |                                                              |            |            |



| Introduction | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|--------------|-------------------|--------------------------------|------------|------------|
| 0000         |                   | ● <b>○</b> ○○○                 | 000        |            |
| Compressive  | Sensing           |                                |            |            |

### Noise-free case

Assume  $x_0$  is sufficiently k-sparse and mild condition on A,

```
(P_1): min \|\mathbf{x}\|_1 subject to \mathbf{y} = A\mathbf{x}
```

recovers the exact solution.

- Matching Pursuit [Mallat-Zhang 1993]
- Initialization:
  - $\mathbf{y} = [A; -A]\mathbf{\tilde{x}}$ , where  $\mathbf{\tilde{x}} \ge 0$
  - $k \leftarrow 0$ ;  $\tilde{\mathbf{x}} \leftarrow 0$ ;  $\mathbf{r}^0 \leftarrow \mathbf{y}$ ; Sparse support  $\mathcal{I} = \emptyset$





| Introduction | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|--------------|-------------------|--------------------------------|------------|------------|
| 0000         |                   | ● <b>○</b> ○○○                 | 000        |            |
| Compressive  | Sensing           |                                |            |            |

### Noise-free case

Assume  $x_0$  is sufficiently k-sparse and mild condition on A,

```
(P_1): min \|\mathbf{x}\|_1 subject to \mathbf{y} = A\mathbf{x}
```

recovers the exact solution.

- Matching Pursuit [Mallat-Zhang 1993]
- Initialization:
  - $\mathbf{y} = [A; -A]\tilde{\mathbf{x}}$ , where  $\tilde{\mathbf{x}} \ge 0$
  - $k \leftarrow 0$ ;  $\tilde{\mathbf{x}} \leftarrow 0$ ;  $\mathbf{r}^0 \leftarrow \mathbf{y}$ ; Sparse support  $\mathcal{I} = \emptyset$



| Introduction | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|--------------|-------------------|--------------------------------|------------|------------|
| 0000         |                   | 0000                           | 000        |            |
| Compressive  | Sensing           |                                |            |            |

### Noise-free case

Assume  $x_0$  is sufficiently k-sparse and mild condition on A,

```
(P_1): min \|\mathbf{x}\|_1 subject to \mathbf{y} = A\mathbf{x}
```

recovers the exact solution.

- Matching Pursuit [Mallat-Zhang 1993]
- Initialization:
  - $\mathbf{y} = [A; -A]\mathbf{\tilde{x}}$ , where  $\mathbf{\tilde{x}} \ge 0$
  - $k \leftarrow 0$ ;  $\tilde{\mathbf{x}} \leftarrow 0$ ;  $\mathbf{r}^0 \leftarrow \mathbf{y}$ ; Sparse support  $\mathcal{I} = \emptyset$

If: ||r<sup>k</sup>||<sub>2</sub> > ε, go to STEP 2;
Else: output x̃



< ∃→

| Introduction        | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|---------------------|-------------------|--------------------------------|------------|------------|
| Other Fast $\ell^1$ | -Min Routines     |                                |            |            |

- I Homotopy Methods:
  - Polytope Faces Pursuit (PFP) [Plumbley 2006]
  - Least Angle Regression (LARS) [Efron-Hastie-Johnstone-Tibshirani 2004]
- Ø Gradient Projection Methods
  - Gradient Projection Sparse Representation (GPSR) [Figueiredo-Nowak-Wright 2007]
  - Truncated Newton Interior-Point Method (TNIPM) [Kim-Koh-Lustig-Boyd-Gorinevsky 2007]
- **Iterative Thresholding** Methods
  - Soft Thresholding [Donoho 1995]
  - Sparse Reconstruction by Separable Approximation (SpaRSA) [Wright-Nowak-Figueiredo 2008]
- Proximal Gradient Methods [Nesterov 1983, Nesterov 2007]
  - FISTA [Beck-Teboulle 2009]
  - Nesterov's Method (NESTA) [Becker-Bobin-Candés 2009]

## MATLAB Toolboxes

- SparseLab: http://sparselab.stanford.edu/
- $\ell^1$  Homotopy: http://users.ece.gatech.edu/~sasif/homotopy/index.html
- SpaRSA: http://www.lx.it.pt/~mtf/SpaRSA/



| Introduction  | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|---------------|-------------------|--------------------------------|------------|------------|
| 0000          |                   | 00000                          | 000        |            |
| Distributed O | bject Recognition | in Smart Camera Netwo          | orks       |            |

Outlines:

- O How to enforce nonnegativity to decode SIFT histograms?
- **②** How to enforce joint sparsity across multiple camera views?



| Introduction            | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|-------------------------|-------------------|--------------------------------|------------|------------|
| 0000                    |                   | 00000                          | 000        |            |
| Enforcing Nonnegativity |                   |                                |            |            |

- Polytope Pursuit Algorithms (MP, PFP, LARS):
  - Algebraically: Do not add antipodal vertexes

$$\mathbf{y} = [A; -A]\tilde{\mathbf{x}}$$

**Geometrically:** Pursuit on positive faces



• Interior-Point Algorithms (Homotopy, SpaRSA): Remove any sparse support that have negative coefficients.



-

| Introduction            | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|-------------------------|-------------------|--------------------------------|------------|------------|
| 0000                    |                   | 00000                          | 000        |            |
| Sparse Innovation Model |                   |                                |            |            |

• Definition (SIM):

$$\begin{aligned} \mathbf{x}_1 &= \tilde{\mathbf{x}} + \mathbf{z}_1, \\ &\vdots \\ \mathbf{x}_L &= \tilde{\mathbf{x}} + \mathbf{z}_L. \end{aligned}$$

 $\tilde{x}$  is called the **joint sparse** component, and  $z_i$  is called an **innovation**.



| Introduction            | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|-------------------------|-------------------|--------------------------------|------------|------------|
| 0000                    |                   | 00000                          | 000        |            |
| Sparse Innovation Model |                   |                                |            |            |

• Definition (SIM):

 $\begin{aligned} \mathbf{x}_1 &= \tilde{\mathbf{x}} + \mathbf{z}_1, \\ &\vdots \\ \mathbf{x}_L &= \tilde{\mathbf{x}} + \mathbf{z}_L. \end{aligned}$ 

 $\tilde{x}$  is called the **joint sparse** component, and  $z_i$  is called an **innovation**.

Joint recovery of SIM

$$\begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_L \end{bmatrix} = \begin{bmatrix} A_1 & A_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ A_L & 0 & \cdots & 0 & A_L \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{x}} \\ \mathbf{z}_1 \\ \vdots \\ \mathbf{z}_L \end{bmatrix}$$
$$\Leftrightarrow \qquad \mathbf{y}' = A' \mathbf{x}' \in \mathbb{R}^{dL}.$$

- **()** New histogram vector is **nonnegative** and **sparse**.
- **2** Joint sparsity  $\tilde{x}$  is automatically determined by  $\ell^1$ -min: No prior training, no assumption about fixing cameras.



4 B K 4 B K

| Introduction | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|--------------|-------------------|--------------------------------|------------|------------|
| 0000         |                   | 00000                          | 000        |            |
| CITRIC: Wire | less Smart Camera | a Platform                     |            |            |

CITRIC platform



- Available library functions
  - **1** Full support Intel IPP Library and OpenCV.
  - **② JPEG compression**: 10 fps.
  - Edge detector: 3 fps.
  - Background Subtraction: 5 fps.
  - **§ SIFT detector**: 10 sec per frame.

• Academic users:





< 글 > < 글 >

| Introduction  | Random Projection | Distributed Object Recognition | Experiment | Conclusion |
|---------------|-------------------|--------------------------------|------------|------------|
| 0000          | 00                | 00000                          | 000        | 00         |
| Experiment: ( | COIL-100 object d | atabase                        |            |            |

• Database: 100 objects, each provides 72 images captured with 5 degree difference.



#### • Setup:

- $\bullet\,$  Dense sampling of overlapping 8  $\times$  8 grids. PCA-SIFT descriptor.
- 4-level hierarchical k-means (k = 10): Leaf-node histogram is 1000-D.
- Classifier via intersection-kernel SVM: 10 random training images per class.





| Introduction  | Random Projection | Distributed Object Recognition | Experiment   | Conclusion |
|---------------|-------------------|--------------------------------|--------------|------------|
| Distributed O | biect Recognition | in Band-Limited Smart          | Camera Netwo | orks       |

- To harness the smart camera capacity, the system is separated in two components: distributed feature extraction and centralized recognition.
- **@** Gaussian random projection as universal dimensionality reduction function: J-L lemma.
- **0**  $\ell^1$ -minimization exploits two properties of SIFT histograms:
  - Sparsity.
  - Nonnegativity.
- **O** Sparse innovation model exploits joint sparsity of multiple-view histograms.
- Ocomplete system implemented on Berkeley CITRIC sensors.



4 B 6 4 B 6

| Introduction | Random Projection | Distributed Object Recognition | Experiment | Conclusion      |
|--------------|-------------------|--------------------------------|------------|-----------------|
|              |                   |                                |            | $\circ \bullet$ |

### Berkeley Multiple-view Wireless Database





(a) Campanile



(b) Bowles









< 注 > < 注 >

(c) Sather Gate



http://www.eecs.berkeley.edu/~yang Multiple-View Object Recognition