Bilinear Models for Fine-grained Visual Recognition

Tsung-Yu Lin Aruni RoyChowdhury Subhransu Maji

College of Information and Computer Sciences University of Massachusetts, Amherst

Fine-grained visual recognition

Example: distinguish between closely related categories

California gull

Ringed beak gull

- inter-category variation v.s intra-category variation
 - Iocation, pose, viewpoint, background, lighting, gender, season, etc

Part-based models

Localize parts and compare corresponding locations

Factor out the variation due to pose, viewpoint and location

General image classification

- Classical approaches: Image as a collection of patches
 - Orderless pooling and no explicit modelling of pose or viewpoint
 - Variants such as Fisher vectors work well for image classification

Modern approaches: CNN, Fisher vector CNN [Cimpoi et al., CVPR15]

Tradeoffs

Part-based models

- ✓ Higher accuracy
- x Part detection is slow
- x Requires part annotations

Examples:

- Birdlets [Farrell et al.]
- Part-based RCNN [Zhang et al.]
- Pose-normalized CNNs [Branson et al.]

- ◆ Image classification models
 ✓ Only requires image label
 ✓ Faster evaluation
 - x Lower accuracy
- Examples:
 - Bag-of-visual-words [Csurka et al.]
 - Fisher vector [Jégou et al.]
 - VLAD [Perronnin et al.]
 - CNNs [Krizhevsky et al.,]

We propose bilinear models

- Generalizes both part-based and bag-of-visual-words models
- Better accuracy than part-based models w/o part annotations
- Allows fine-tuning of features for bag-of-visual-words models

Bilinear models for classification

♦ A bilinear model for classification is a four-tuple

Bilinear models for classification

♦ A bilinear model for classification is a four-tuple

$$\mathcal{B} = (f_A, f_B, \mathcal{P}, \mathcal{C})$$
feature extractor pooling classification
$$f : \mathcal{L} \times \mathcal{I} \to R^{c \times D}$$
image local features pooling descriptor \mathcal{C} class
$$f_A(l, \mathcal{I}) \xrightarrow{f_A(l, \mathcal{I})} f_A(l, \mathcal{I})^T f_B(l, \mathcal{I}) \to \sum_l \text{bilinear}(l, \mathcal{I}) \xleftarrow{f_B(l, \mathcal{I})} f_B(l, \mathcal{I}) \xrightarrow{f_B(l, \mathcal{I})} \Phi(\mathcal{I})$$

Fisher vector is a bilinear model

- Fisher vector (FV) models [Perronnin et al., 10]
 - Locally encode statistics of feature **x** weighted by $\eta(\mathbf{x})$

$$\alpha_i = \Sigma_i^{-\frac{1}{2}} (\mathbf{x} - \mu_i) \qquad \beta_i = \Sigma_i^{-1} (\mathbf{x} - \mu_i) \odot (\mathbf{x} - \mu_i) - 1$$

♦ FV is bilinear model with

$$f_A = [\alpha_1 \ \beta_1; \alpha_2 \ \beta_2; \dots; \alpha_k \ \beta_k]$$
$$f_B = \operatorname{diag}(\eta(\mathbf{x}))$$

Bilinear CNN model

 \blacklozenge Decouple f_A and f_B by using separate CNNs

Bilinear CNN model

Back-propagation though the bilinear layer is easy

Allows end-to-end training

Experiments: Methods

Local features:

- SIFT descriptor [Lowe ICCV99]
- VGG-M (5 conv + 2 fc layers) [Chatfield et al., BMVC14]
- VGG-VD (16 conv + 2 fc layers) [Simonyan and Zisserman, ICLR15]

Pooling architectures:

- Fully connected pooling (FC)
- Fisher vector pooling (FV)
- Bilinear pooling (B)

Notation examples:

- FC-CNN (M) Fully connected pooling with VGG-M
- FV-CNN (D) Fisher vector pooling with VGG-VD [Cimpoi et al., 15]
- B-CNN (D, M) Bilinear pooling with VGG-D and VGG-M

Experiments: Datasets

small, clutter

clutter

CUB 200-2011 200 species 11,788 images

FGVC Aircraft 100 variants 10,000 images

Stanford cars 196 models 16,185 images

- All models are trained with image labels only
 - No part or object annotations are used at training or test time

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft
FV-SIFT	18.8	

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft
FV-SIFT	18.8	
FC-CNN (M)	52.7	

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft
FV-SIFT	18.8	
FC-CNN (M)	52.7	
FV-CNN (M)	61.1	

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft
FV-SIFT	18.8	
FC-CNN (M)	52.7	
FV-CNN (M)	61.1	
B-CNN (M,M)	72.0	

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft	
FV-SIFT	18.8	-	
FC-CNN (M)	52.7	5 8.8	
			fine-tuning helps
FV-CNN (M)	61.1		
B-CNN (M,M)	72.0		
			_

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft	direct fine-tuning
FV-SIFT	18.8	_	is hard so use ft
FC-CNN (M)	52.7	58.8 ` _`	EC-CNN models
			indirect
FV-CNN (M)	61.1	● 64.1	fine-tuning helps
B-CNN (M,M)	72.0		outperforms
			Cimpoi et al. CVPR 15

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft	direct fine-tuning
FV-SIFT	18.8	_	is hard so use ft
FC-CNN (M)	52.7	58.8	EC-CNN models
			indirect
FV-CNN (M)	61.1	64.1 <u>`</u>	fine-tuning helps
B-CNN (M,M)	72.0	→ 78.1 🖌	outperforms
			Cimpoi et al. CVPR 15

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft
FV-SIFT	18.8	_
FC-CNN (M)	52.7	58.8
FC-CNN (D)	61.0	70.4
FV-CNN (M)	61.1	64.1
B-CNN (M,M)	72	78.1

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft
FV-SIFT	18.8	_
FC-CNN (M)	52.7	58.8
FC-CNN (D)	61.0	70.4
FV-CNN (M)	61.1	64.1
FV-CNN (D)	71.3	74.7
B-CNN (M,M)	72	78.1

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft
FV-SIFT	18.8	-
FC-CNN (M)	52.7	58.8
FC-CNN (D)	61.0	70.4
FV-CNN (M)	61.1	64.1
FV-CNN (D)	71.3	74.7
B-CNN (M,M)	72	78.1
B-CNN (D,M)	80.1	84.1
B-CNN (D,D)	80.1	84.0

- Accuracy on CUB 200-2011 dataset
- Setting: provided with only the image at test time

Method	w/o ft	w/ ft	
FV-SIFT	18.8	-	
FC-CNN (M)	52.7	58.8	
FC-CNN (D)	61.0	70.4	
FV-CNN (M)	61.1	64.1	
FV-CNN (D)	71.3	74.7	
B-CNN (M,M)	72	78.1	
B-CNN (D,M)	80.1	84.1	
B-CNN (D,D)	80.1	84.0	
SoTA	84.1 [1], 82.0) [2], 73.9 [3], 75.7 [4	1]

[1] Spatial Transformer Networks, Jaderberg et al., NIPS 15

- [2] Fine-Grained Rec. w/o Part Annotations, Krause et al., CVPR 15 (+ object bounding-boxes)
- [3] Part-based R-CNNs, Zhang et al., ECCV 14 (+ part bounding-boxes)
- [4] Pose normalized CNNs, Branson et al., BMVC 14 (+ landmarks)

Results: Comparison

Model visualization

Visualizing top activation on B-CNN(D,M)

D-Net

M-Net

Most confused categories

Aircrafts

747-100

747-200

Chevrolet Express Cargo Van 2007

Dodge Caliber Wagon 2012

Chevrolet Express Van 2007

Dodge Caliber Wagon 2007

Stanford cars

Conclusion

Bilinear models

- generalize both part-based and bag-of-visual-words models
- achieve high accuracy on fine-grained recognition tasks without additional annotations
- Fast at test time
 - B-CNN [D, D] runs at 10 images/second on TeslaK40 GPU
- Code and pre-trained models available
 - more details here: <u>http://vis-www.cs.umass.edu/bcnn</u>
- Come by our poster [#68] for more details