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Image	from	Autodesk	3D	Maya

Creating 3D shapes is not easy
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Inferring 3D shapes from images

What shapes are puffins?

What shapes are pumpkinseed fish?



• Many	techniques	for	recognizing	3D	data,	but	relatively	
few	techniques	for	generating	them	

• Representations	for	generation?	
• Voxels	
• Multiview	
• Geometry	images	
• Shape	basis	
• Set-based	(points,	triangles,	etc.)		
• Procedural,	e.g.,	constructive	solid	geometry

Creating 3D shapes is not easy



Talk overview

• Generative	models	for	3D	shapes	and	applications	
• Multiview	[3DV’17]	
• Multiresolution	tree	networks	[ECCV’18]	
• Constructive	solid	geometry	[CVPR’18]	

• Learning	3D	shapes	with	weak	supervision	[3DV’17]
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Why line drawings? Simple & intuitive 

medium to convey shape!

Image	from	Suggestive	Contour	
Gallery,	DeCarlo	et	al.	2003



Goal: 2D line drawings in, 3D shapes out!

ShapeMVD
front	view

side	view 3D	shape



Deep net architecture: U-net structure

Feature	representations	in	the	decoder	depend	on	previous	
layer	&	encoder’s	corresponding	layer

U-net:	Ronneberger	et	al.	2015, 
	Isola	et	al.	2016

front	view

side	view

output	view	1

output	view	12



Penalize	per-pixel	depth	reconstruction	error:	
						&							per-pixel	normal	reconstruction	error:	
						&							“unreal”	outputs: 
																						

Training: full loss

front	view

side	view

Generator	
Network

output	view	1

output	view	12

…
front	view

side	view

output	view	1

output	view	12

log ( )P real−

Discriminator	
Network

Real?	
Fake?

Real?	
Fake?

Discriminator	
Network

cGAN:	Isola	et	al.	2016

| |pred gt
pixels

d d−∑
(1 )pred gt

pixels

n n− ⋅∑



Training data

Character	
10K	models

Chair	
10K	models

Airplane	
3K	models

Models	from	“The	Models	Resource”	&	
3D	Warehouse



…

Synthetic	line	drawings

Training	depth	and	normal	maps

12	views

Training data



Predict multi-view depth and normal maps!

output	view	1

output	view	12

front	view

side	view

Test time



• Depth derivatives should be 

consistent with normals 

• Corresponding depths and 

normals across different 

views should agree

Optimization problem

Multi-view	depth	
&	normal	maps

Consolidated	  
point	cloud

output	view	1

output	view	12

Multi-view depth & normal map fusion



Multi-view	depth	
&	normal	maps

Consolidated	  
point	cloud

Surface 
reconstruction
[Kazhdan	et	al.	2013]

output	view	1

output	view	12

Surface reconstruction



Multi-view	depth	
&	normal	maps

Consolidated	  
point	cloud

Surface 
“fine-tuning”

[Nealen	et	al.	2005]

output	view	1

output	view	12
Surface 

reconstruction
[Kazhdan	et	al.	2013]

Surface deformation



Multi-view	depth	
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Experiments



Qualitative Results
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Quantitative Results

Metric Our	method Volumetric NN

Hausdorff	distance 0.120 0.638 0.242
Chamfer	distance 0.023 0.052 0.045
normal	distance 34.27 56.97 47.94

volumetric	distance 0.309 0.497 0.550

Character	(human	drawing)

Hausdorff	distance 0.171 0.211 0.228
Chamfer	distance 0.028 0.032 0.038
normal	distance 34.19 48.81 43.75

volumetric	distance 0.439 0.530 0.560

Man-made	(human	drawing)



Single vs two input line drawings

Single	sketch

Two	sketches

Resulting	shape

Resulting	shape



More results
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Point-cloud decoders

• Global	shape	basis	or	fully-connected	decoders

Morphable models
[Figure from Booth et al., 16]

Requires perfect correspondence



How important is correspondence?

Gadelha et al., BMVC 17

Related work: Fan et al., CVPR 2017



How important is correspondence?



Multiresolution tree networks

• Addresses	the	lack	of		
• convolutional	structure,	and	
• coarse	to	fine	reasoning	

• Basic	idea:	linearize	3D	points	and	use	1D	convolutions

Points colored with kdtree sort index



Multiresolution tree networks

• Addresses	the	lack	of		
• convolutional	structure,	and	
• coarse	to	fine	reasoning	

• Basic	idea:	linearize	3D	points	and	use	1D	convolutions

Implicit mulitresolution structure



Multiresolution tree networks

Architecture for encoding and decoding

Multiresolution convolution block



Does multiresolution analysis help?

single-resolutionfully-connected multi-resolution

Color indicates the position in the list



Other shape tasks with MRTNet



Single image shape reconstruction



Quantitative evaluation: ShapeNet dataset

voxel-based fully-conn. multiview

Chamfer distance: pred g GT / GT g pred

Lin et al. AAAI 2018



Quantitative evaluation: ShapeNet dataset

voxel-based fully-conn. multiview

Chamfer distance: pred g GT / GT g pred



MRTNet summary

• A	generic	architecture	for		
• Point	cloud	classification	(91.7%	on	ModelNet40)	
• Semantic	segmentation	(see	results	in	the	paper)	
• Generation	

• Project	page:	http://mgadelha.me/mrt/index.html



CSGNet: Neural Shape Parser for 

Constructive Solid Geometry
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Constructive 2D geometry



Constructive solid geometry



Constructive solid geometry

Circle1
Triangle1
-
Circle2
-
Triangle2
-
Triangle3
-
[STOP]

Postfix notation

CNN RNN Program



Learning

• Supervised	setting:	learn	to	predict	programs	directly	

• Unsupervised	setting:	No	ground-truth	programs.		
• Learn	parameters	to	minimize	a	reconstruction	error	
through	policy	gradients	[REINFORCE,	Willams	1992]

CNN RNN Program

reconstruction loss



CSGNet: 2D/3D a programs



CSGNet: 2D/3D a programs

Train on synthetic data and adapt to new domains using policy gradients

Logos

Synthetic CAD shapes



CSGNet: 2D/3D a programs

How well does the nearest neighbor perform? 
Chamfer distance 1.88 (NN), 1.36 (CSGNet) with 675K training examples



CSGNet: 2D/3D a programs

How well does the nearest neighbor perform? 
Chamfer distance 1.88 (NN), 1.36 (CSGNet) with 675K training examples



CSGNet: 2D/3D a programs

CAD shapes dataset: Chamfer distance 1.94 (NN), 0.51 (CSGNet)



CSGNet: 2D/3D a programs

Input

• More	results	in	the	paper:	reward	shaping,	comparison	to	Faster	R-CNN	for	
primitive	detection,	results	on	3D,	etc.	

• Preprint	available:	https://arxiv.org/abs/1712.08290
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Related Work

• 3D	shape	from	collection	of	images	
• Visual	hull	—	same	instance,	known	viewpoints	

• Photometric	stereo	—	same	instance,	known	lighting,	simple	reflectance	

• Structure	from	motion	—	same	instance	(or	3D)	

• Non-rigid	structure	from	motion	—	known	shape	family	(e.g.,	faces)	

• Our	work	—	unknown	shape	family,	unknown	viewpoints	

• 3D	shape	from	single	image	
• Optimization-based	approaches;	

• Recognition-based	approaches;



A motivating example

Small cubes are reddish
Big cubes are bluish

Hypothesis: It is easier to generate these images by reasoning in 3D



Approach
• Our goal is to learn a 3D shape generator whose 

projections match the provided set of the views

Generator Projection
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Approach
• Our goal is to learn a 3D shape generator whose 

projections match the provided set of the views

Generator Projection

How do we match distributions?

min

G
DKL(G||D) = min

z⇠G
E

log

G(z)

D(z)
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min

G
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d

E
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[log d(x)] + E
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[log(1� d(z))]

Generative adversarial networks [Goodfellow et al.]

estimate using 
logistic regression



PrGAN

Projection using line integration along the view direction 

I(x) = 1� exp

✓
�
Z 1

0
V (x+ r)dr

◆

Generator maps z to a voxel occupancy grid and a viewpoint



Dataset generation



Airplanes

input generated



Airplanes

input generated



Vases

input generated



Vases

input generated



Mixed categories

input generated



MMD metric:  2D-GAN 90.1, PrGAN 88.3



MMD metric  
3D-GAN  347.5
PrGAN 442.9

Trained with 3D 
supervision



Projection GAN

• The	model	is	able	to	recover	the	coarse	3D	structure	

• But	should	use	side	information	when	available	
• Viewpoint	
• Landmarks	/	part	labels	
• Pose	estimates	

• Iterative:	bootstrap	3D	to	estimate	pose	&	viewpoint



Thank you!

• Collaborators:	Matheus	Gadelha,	Zhaoliang	Lun,	Gopal	
Sharma,	Rui	Wang,	Evangelos	Kalogerakis	

• Funding	from	NSF,	NVIDIA,	Facebook	
• https://people.cs.umass.edu/smaji/projects.html


