Learning to generate 3D shapes

Subhransu Maji

College of Information and Computer Sciences

University of Massachusetts, Amherst

http://people.cs.umass.edu/smaji

August 10, 2018 @ Caltech

Creating 3D shapes is not easy

Image from Autodesk 3D Maya

Inferring 3D shapes from images

What shapes are puffins?

What shapes are pumpkinseed fish?

Creating 3D shapes is not easy

- Many techniques for recognizing 3D data, but relatively few techniques for generating them
- Representations for generation?
 - Voxels
 - Multiview
 - Geometry images
 - Shape basis
 - Set-based (points, triangles, etc.)
 - Procedural, e.g., constructive solid geometry

Talk overview

- Generative models for 3D shapes and applications
 - Multiview [3DV'17]
 - Multiresolution tree networks [ECCV'18]
 - Constructive solid geometry [CVPR'18]
- Learning 3D shapes with weak supervision [3DV'17]

3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

Zhaoliang Lun Matheus Gadelha Evangelos Kalogerakis Subhransu Maji Rui Wang

3DV 2017

3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

Zhaoliang Lun Matheus Gadelha Evangelos Kalogerakis Subhransu Maji Rui Wang

3DV 2017

What Does the Occluding Contour Tell Us about Solid Shape?

Jan J Koenderink

First Published June 1, 1984 Research Article

Why line drawings? Simple & intuitive medium to convey shape!

Image from Suggestive Contour Gallery, DeCarlo et al. 2003

Goal: 2D line drawings in, 3D shapes out!

Deep net architecture: U-net structure

Feature representations in the decoder depend on **previous** layer & encoder's corresponding layer

Isola et al. 2016

Training: full loss

Penalize per-pixel depth reconstruction error:

- & per-pixel normal reconstruction error:
- $\sum_{pixels} (1 n_{pred} \cdot n_{gt})$ "unreal" outputs: $-\log P(real)$ & ō ō **Real?** Discriminator Fake? **Network** front view output view 1 Generator **Network** 1 **Real?** Discriminator Fake? Network side view

output view 12

cGAN: Isola et al. 2016

 $\sum_{pixels} |d_{pred} - d_{gt}|$

Training data

CharacterChairAirplane10K models10K models3K models

Models from "The Models Resource" & 3D Warehouse

Training data

Training depth and normal maps

Test time Predict multi-view depth and normal maps!

Multi-view depth & normal map fusion

Optimization problem

- Depth derivatives should be consistent with normals
- Corresponding depths and normals across different views should agree

Multi-view depth & normal maps

Consolidated point cloud

Surface reconstruction

Multi-view depth & normal maps

Consolidated point cloud

Surface reconstruction [Kazhdan et al. 2013]

Multi-view depth & normal maps

Consolidated point cloud

Surface reconstruction [Kazhdan et al. 2013]

Multi-view depth & normal maps

Consolidated point cloud

Surface reconstruction [Kazhdan et al. 2013] Surface "fine-tuning" [Nealen et al. 2005]

Experiments

Qualitative Results

Qualitative Results

Quantitative Results

Character (human drawing)

Metric	Our method	Volumetric	NN
Hausdorff distance	0.120	0.638	0.242
Chamfer distance	0.023	0.052	0.045
normal distance	34.27	56.97	47.94
volumetric distance	0.309	0.497	0.550

Man-made (human drawing)

Hausdorff distance	0.171	0.211	0.228
Chamfer distance	0.028	0.032	0.038
normal distance	34.19	48.81	43.75
volumetric distance	0.439	0.530	0.560

Single vs two input line drawings

More results

Multiresolution Tree Networks for 3D Point Cloud Processing

Matheus Gadelha Subhransu Maji Rui Wang

ECCV 18

Multiresolution Tree Networks for 3D Point Cloud Processing

Matheus Gadelha Subhransu Maji Rui Wang

ECCV 18

Point-cloud decoders

Global shape basis or fully-connected decoders

$$\mathbf{X}^* = \mathbf{M} + \sum_{i=1}^d lpha_i \mathbf{U}_i = \mathbf{M} + \mathbf{U} \boldsymbol{lpha}$$

Requires perfect correspondence

Morphable models [Figure from Booth et al., 16]

How important is correspondence?

Related work: Fan et al., CVPR 2017

How important is correspondence?

Multiresolution tree networks

- Addresses the lack of
 - convolutional structure, and
 - coarse to fine reasoning
- Basic idea: linearize 3D points and use 1D convolutions

Points colored with kdtree sort index

Multiresolution tree networks

- Addresses the lack of
 - convolutional structure, and
 - coarse to fine reasoning
- Basic idea: linearize 3D points and use 1D convolutions

Implicit mulitresolution structure

Multiresolution tree networks

Architecture for encoding and decoding

Does multiresolution analysis help?

Color indicates the position in the list

Other shape tasks with MRTNet

Single image shape reconstruction

Quantitative evaluation: ShapeNet dataset

Chamfer distance: pred \rightarrow GT / GT \rightarrow pred

		voxel-based		fully-conn.	multiview	
Category		3D-R2N2 [9]		Fan et al. [12]	Lin et al. [26]	MRTNet
	1 view	3 views	5 views	(1 view)	(1 view)	(1 view)
mean	3.345 / 4.102	2.702 / 3.465	2.588/3.342	1.982 / 2.146	1.846 / 1.701	1.559 / 1.529

$$Ch(\mathbf{x}, \mathbf{y}) = \frac{1}{|\mathbf{x}|} \sum_{x \in \mathbf{x}} \min_{y \in \mathbf{y}} ||x - y||_2 + \frac{1}{|\mathbf{y}|} \sum_{y \in \mathbf{y}} \min_{x \in \mathbf{x}} ||x - y||_2$$

Quantitative evaluation: ShapeNet dataset

Chamfer distance: pred \rightarrow GT / GT \rightarrow pred

	_					
		voxel-based		fully-conn.	multiview	
Category		3D-R2N2 [9]		Fan et al. [12]	Lin et al. [26]	MRTNet
	1 view	3 views	5 views	(1 view)	(1 view)	(1 view)
airplane	3.207 / 2.879	2.521 / 2.468	2.399/2.391	1.301 / 1.488	1.294 / 1.541	0.976 / 0.920
bench	3.350/3.697	2.465 / 2.746	2.323 / 2.603	1.814 / 1.983	1.757 / 1.487	1.438 / 1.326
cabinet	1.636 / 2.817	1.445 / 2.626	1.420 / 2.619	2.463 / 2.444	1.814 / 1.072	1.774 / 1.602
car	1.808 / 3.238	1.685 / 3.151	1.664 / 3.146	1.800 / 2.053	1.446 / 1.061	1.395 / 1.303
chair	2.759 / 4.207	1.960 / 3.238	1.854 / 3.080	1.887 / 2.355	1.886 / 2.041	1.650 / 1.603
display	3.235 / 4.283	2.262 / 3.151	2.088 / 2.953	1.919 / 2.334	2.142 / 1.440	1.815 / 1.901
lamp	8.400 / 9.722	6.001 / 7.755	5.698 / 7.331	2.347 / 2.212	2.635 / 4.459	1.944 / 2.089
speaker	2.652/4.335	2.577 / 4.302	2.487 / 4.203	3.215 / 2.788	2.371 / 1.706	2.165 / 2.121
rifle	4.798 / 2.996	4.307 / 2.546	4.193 / 2.447	1.316 / 1.358	1.289 / 1.510	1.029 / 1.028
sofa	2.725 / 3.628	2.371/3.252	2.306 / 3.196	2.592 / 2.784	1.917 / 1.423	1.768 / 1.756
table	3.118 / 4.208	2.268 / 3.277	2.128 / 3.134	1.874 / 2.229	1.689 / 1.620	1.570 / 1.405
telephone	2.202 / 3.314	1.969 / 2.834	1.874 / 2.734	1.516 / 1.989	1.939 / 1.198	1.346 / 1.332
watercraft	3.592 / 4.007	3.299 / 3.698	3.210/3.614	1.715 / 1.877	1.813 / 1.550	1.394 / 1.490
mean	3.345 / 4.102	2.702/3.465	2.588/3.342	1.982 / 2.146	1.846 / 1.701	1.559 / 1.529

MRTNet summary

- A generic architecture for
 - Point cloud classification (91.7% on ModelNet40)
 - Semantic segmentation (see results in the paper)
 - Generation
- Project page: <u>http://mgadelha.me/mrt/index.html</u>

CSGNet: Neural Shape Parser for Constructive Solid Geometry

Gopal Sharma Rishabh Goyal Difan Liu Evangelos Kalogerakis Subhransu Maji

CVPR 18

interpretable and editable

Constructive 2D geometry

Constructive solid geometry

Constructive solid geometry

Learning

- Supervised setting: learn to predict programs directly
- Unsupervised setting: No ground-truth programs.
 - Learn parameters to minimize a reconstruction error through policy gradients [REINFORCE, Willams 1992]

Train on synthetic data and adapt to new domains using policy gradients

How well does the <u>nearest neighbor</u> perform? Chamfer distance **1.88** (NN), **1.36** (CSGNet) with 675K training examples

How well does the <u>nearest neighbor</u> perform? Chamfer distance **1.88** (NN), **1.36** (CSGNet) with 675K training examples

CAD shapes dataset: Chamfer distance **1.94** (NN), **0.51** (CSGNet)

Input

- More results in the paper: reward shaping, comparison to Faster R-CNN for primitive detection, results on 3D, etc.
- Preprint available: <u>https://arxiv.org/abs/1712.08290</u>

Learning 3D Shape Representations with Weak Supervision

Matheus Gadelha Subhransu Maji Rui Wang

3DV 2017

Related Work

• 3D shape from collection of images

- Visual hull same instance, known viewpoints
- Photometric stereo same instance, known lighting, simple reflectance
- Structure from motion same instance (or 3D)
- Non-rigid structure from motion known shape family (e.g., faces)
- **Our work** unknown shape family, unknown viewpoints
- 3D shape from single image
 - Optimization-based approaches;
 - Recognition-based approaches;

A motivating example

Small cubes are reddish Big cubes are bluish

Hypothesis: It is easier to generate these images by reasoning in 3D

• Our goal is to learn a 3D shape generator whose projections match the provided set of the views

• Our goal is to learn a 3D shape generator whose projections match the provided set of the views

How do we match distributions?

• Our goal is to learn a 3D shape generator whose projections match the provided set of the views

How do we match distributions?

• Our goal is to learn a 3D shape generator whose projections match the provided set of the views

How do we match distributions?

• Our goal is to learn a 3D shape generator whose projections match the provided set of the views

How do we match distributions?

generated true

$$\min_{G} D_{\mathrm{KL}}(G||D) = \min_{z \sim G} \mathbb{E} \left[\log \frac{G(z)}{D(z)} \right]$$
 estimate using logistic regression

 $\min_{G} \max_{d} \mathbb{E}_{x \sim D}[\log d(x)] + \mathbb{E}_{z \sim G}[\log(1 - d(z))]$ Generative adversarial networks [Goodfellow et al.]

PrGAN

Generator maps z to a voxel occupancy grid and a viewpoint

Projection using line integration along the view direction

$$I(\mathbf{x}) = 1 - \exp\left(-\int_0^\infty V(\mathbf{x} + \mathbf{r})dr\right)$$

Dataset generation

Airplanes

input

Airplanes

Mixed categories

(a) Results from 2D-GAN.

(a) Results from PrGAN.

MMD metric: 2D-GAN 90.1, PrGAN 88.3

(a) Results from 3D-GAN.

MMD metric 3D-GAN 347.5 PrGAN 442.9

(a) Results from PrGAN.

Projection GAN

- The model is able to recover the coarse 3D structure
- But should use side information when available
 - Viewpoint
 - Landmarks / part labels
 - Pose estimates
- Iterative: bootstrap 3D to estimate pose & viewpoint

Thank you!

• Collaborators: Matheus Gadelha, Zhaoliang Lun, Gopal Sharma, Rui Wang, Evangelos Kalogerakis

- Funding from NSF, NVIDIA, Facebook
- <u>https://people.cs.umass.edu/smaji/projects.html</u>