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Abstract Part and attribute based representations are
widely used to support high-level search and retrieval appli-
cations. However, learning computer vision models for auto-
matically extracting these from images requires significant
effort in the form of part and attribute labels and annota-
tions. We propose an annotation framework based on com-
parisons between pairs of instances within a set, which aims
to reduce the overhead in manually specifying the set of part
and attribute labels. Our comparisons are based on intuitive
properties such as correspondences and differences, which
are applicable to a wide range of categories. Moreover, they
require few category specific instructions and lead to simple
annotation interfaces compared to traditional approaches. On
a number of visual categories we show that our framework
can use noisy annotations collected via “crowdsourcing” to
discover semantic parts useful for detection and parsing, as
well as attributes suitable for fine-grained recognition.

Keywords Relative annotations · Crowdsourcing ·
Semantic parts · Fine-grained attributes

1 Introduction

In order for an automatic system to answer queries such
as ‘birds with short beaks and blue wings’ or ‘planes with
engines on their nose’, it would require an underlying rep-
resentation that is aligned to the parts and attributes of the
category in question. In recent years several such part and
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attribute based models have demonstrated excellent perfor-
mance on a number of visual recognition tasks such as detec-
tion (Bourdev and Malik 2009; Bourdev et al. 2010), pose
estimation (Agarwal and Triggs 2006; Felzenszwalb and
Huttenlocher 2005; Ferrari et al. 2008), detailed recognition
(Bourdev et al. 2011; Farhadi et al. 2010; Kumar et al. 2008),
interactive categorization (Branson et al. 2010; Kovashka et
al. 2012), etc. Most of these models rely on supervision in
the form of a pre-defined set of parts and attributes provided
by experts. In stark contrast, little attention has been paid
to automatically discovering the set of parts and attributes
useful for these high-level recognition tasks.

For some categories the set of part and attribute labels are
easy to obtain—parts may be based on the anatomical struc-
ture for animals, attributes of birds may be obtained from a
field guide. For these categories traditional methods for col-
lecting annotations involve showing a single instance at a
time with detailed instructions (Fig. 1 left). For part annota-
tion he/she may mark the bounding boxes of parts or locations
of landmarks. Similarly, they may indicate the presence or
absence of a given attribute in each image. However, for a vast
majority of categories such structure is absent or field guides
are nonexistent, rendering the task of determining the set of
labels to annotate to be a challenge. Furthermore, attributes
present in field guides may not be suitable for the non-expert
‘crowd’ available via crowdsourcing platforms. Annotators
may find it difficult to answer questions such as ‘where is
the elbow of a horse’ or ‘what color is the supercilium of a
bird’. Some parts may be hard to localize in images due to
self occlusion, e.g. ‘where is the tail of a cat’.

Our framework for part and attribute annotation addresses
some of these drawbacks. The key idea, as seen in Fig. 1
(right), is that we annotate properties of an object relative
to another. As seen in Fig. 2, we rely on intuitive proper-
ties based on correspondences and differences between pairs
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Fig. 1 Our relative annotation framework for label discovery. In con-
trast to commonly used annotation frameworks when labels are known,
our approach consists of collecting relative annotations followed by
grouping the instances to discover the labels implicitly defined by the
groups

of instances. By analyzing these annotations across many
such pairs, one can discover groups that correspond to parts
and attributes respectively. Furthermore, as we demonstrate
experimentally, these can be used to bootstrap a number of
visual recognition tasks such as object detection via parts, or
fine-grained attribute prediction.

In summary, we propose new annotations tools along
with their associated clustering methods to discover parts
and attributes of visual categories from annotations that can
be collected via crowdsourcing with overhead. Such weakly
structured annotations can be noisy, and much of our work
aims to reduce this with a careful design of the user inter-
face for collecting annotations and the method to analyze the
collected data. Experimentally we show that semantically
meaningful parts that are useful for recognition tasks such
as detection and fine-grained parsing, as well as attributes
useful for fine-grained discrimination, can be discovered for
a number of visual categories such as buildings, airplanes,
birds and texture patterns. This paper provides a unified view
of our earlier work (Maji 2012; Maji and Shakhanarovich
2013, 2012) as well as some additional experiments on dis-
covering and predicting fine-grained attributes of man-made
textures.

1.1 Related Work

Relative or comparative information has been widely used
for metric learning where user preferences of similarity are
obtained over triplets of images (Frome et al. 2007; Tamuz
et al. 2011). Our work is related to recent work in com-
puter vision and human-computer interaction for recogni-
tion tasks and image annotation using humans ‘in the loop’.
These include games for annotating images such as ESP (Von
Ahn and Dabbish 2004), PeekABoom (Von Ahn et al. 2006),
as well as interactive methods for fine-grained recognition
(Welinder et al. 2010). Below we describe some of the rele-
vant work on semantic part and attribute discovery.

1.1.1 Semantic Part Annotations and Discovery

A large number of approaches for part discovery in com-
puter vision are weakly supervised (Felzenszwalb et al. 2010;
Felzenszwalb and Huttenlocher 2005; Singh et al. 2012;
Weber et al. 2000), i.e., they rely on object level annota-
tions only. However, the semantic alignment of the discov-
ered parts are either nonexistent or unknown, which makes
them less suitable for answering detailed questions such as
‘is the person wearing a hat?’, etc. In this work we focus on
semantic parts learned or discovered using supervision in the
form of part annotations.

Popular methods for part annotations typically involve
drawing part bounding boxes or marking a predefined set
of landmarks on instances. For bounding box annotations,
annotators are typically asked to draw a tight bounding box
around the part of interest. This is the staple mode of anno-
tation for rigid parts and objects such as frontal faces and
pedestrians in many datasets (Dalal and Triggs 2005; Ever-
ingham et al. 2010). More recently datasets such as Farhadi
et al. (2010) also contain bounding boxes for parts of animals
such as heads and legs, and parts of vehicles such as wheels.

When the extent of the part is less obvious, marking key-
points or landmarks can be more suitable. Here the annotators

Fig. 2 Overview of the relative annotation framework for part and
attribute discovery. Given a collection of images we pick random
pairs and collect correspondences (via clicks) and differences (via text)

between them on Amazon’s mechanical turk. These annotations are then
clustered across various pairs to obtain parts and attributes respectively
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are asked to mark the location and/or presence of a prede-
fined set of keypoints or landmarks in each instance of the
object. These annotations can then be used to discover and
learn part detectors that are aligned to these annotations. A
notable example of this is the ‘poselet’ model (Bourdev et al.
2010; Bourdev and Malik 2009) that rely on a set of 10–20
keypoints per category, to learn a large library of discrimina-
tive patterns by finding repeatable and detectable configura-
tions of these keypoints. Other examples include supervised
deformable part-models (Yang and Ramanan 2011; Zhu and
Ramanan 2012) and ‘phraselets’ (Desai and Ramanan 2012).

The main drawback of these approaches is that they
require the set of parts or landmarks be known ahead of
time. Constructing such a set with the detailed instructions for
annotation can be time consuming. Furthermore, to account
for all variations in a structurally diverse category, such as
buildings, the set has to be very large making the annotation
task cumbersome. These pose significant challenges on both
constructing the user interfaces for and reliably collecting
annotations via crowdsourcing.

1.1.2 Semantic Attribute Annotation and Discovery

Much of recent work on attribute based learning and descrip-
tion has relied on a pre-defined set of attributes specified by
experts, e.g. field guides. Automatic methods for attribute
discovery can be broadly divided into two categories, those
that rely on (1) images with captions, and (2) a specialized
annotation task.

The work of Berg et al. (2010) lies in the former cate-
gory where they use descriptions of products such as shoes,
bags, jewelry, etc., collected from the web to mine phrases
that appear frequently, which are analyzed to characterize
and predict the visually discriminative attributes. The main
drawback of such work is that such text is available for only
few categories. Collecting descriptions via crowdsourcing
is another option, but without quality control or detailed
instructions, these captions may not be descriptive enough
to mine fine-grained attributes.

An example of the latter is Duan et al. (2012), Parikh and
Grauman (2011) where they discover task-specific attributes
with humans ‘in the loop’ by considering projections of the
data asking them to name the direction of variability. How-
ever, it assumes a feature space where describable directions
can be easily found. Another related work is Patterson and
Hays (2012) where they ask annotators to describe attributes
(single words) that distinguish a set of images from another
as a way of identifying discriminative attributes. This pro-
cedure was used to identify attributes for scene understand-
ing. Although quite suitable for scenes, single words fail to
describe localized attributes such as ‘pointy beak’ or ‘engine
on the nose’, which might be more relevant for object cate-
gories.

2 Overview

Relative information about similarities and differences can
be used to discover labels by grouping instances. Consider
the following analogy; Suppose we want to label a set of
points into k categories. If we know the categories we can
simply label each instance as one of k. However, if we don’t,
we can collect similarities between pairs of instances, and use
them to cluster the points into k groups. This enables simul-
taneous discovery of the categories and implicit labeling of
the instances.

In this work we extend this analogy for discovering parts
and attributes. Given a collection of images for we wish to
discover parts and attributes, we randomly sample pairs for
which we collect relative annotations. As seen in Fig. 2, our
framework has two main ingredients, (a) the user interface to
collect annotations and, (b) the grouping method to discover
the clusters of instances. Both the part and attribute discovery
framework follow the same overall idea, but the details vary,
and are described below.

In Sect. 3 we describe our framework for semantic part dis-
covery. We consider diverse visual categories such as build-
ings and chairs for which it is rather difficult to come up with
a list of parts ahead of time—some of these parts are hard to
name, others don’t necessary correspond to a part (e.g. the
middle point of the roof-line), and some others might have
missed our attention. We propose a semantic correspondence
task where annotators mark pairs of landmarks that belong to
the same semantic part. Landmarks are then clustered using
their appearance to discover semantic parts that can then be
used for a variety of computer vision applications such as
detection, semantic saliency prediction, and detailed parsing.

In Sect. 4 we describe our framework for fine-grained
attribute discovery. Here we propose a discriminative descrip-
tion task, where annotators are asked to describe the differ-
ences between pairs of instances within a basic level category.
The task forces the annotators to describe each instance in
more detail than they would when each instance is shown
in isolation. These descriptions are also highly structured
which enables us to group words into clusters based on
their co-occurrence statistics. We show how one can dis-
cover describable attributes for a number of categories such
as airplanes, birds and man-made textures. Furthermore, the
inferred attributes can be used to learn visual classifiers
to predict attributes of unseen instances. We conclude and
present directions of future work in Sect. 5.

A drawback of the approach is that the cost scales quadrat-
ically with the number of instances. However, one can sim-
ply compare each instance to a fixed number of others to
reduce the cost. Our experiments suggest that even with a
small number of such comparisons per instance (typically
<10) the obtained annotations can be useful in a number of
recognition tasks.
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3 Semantic Part Discovery

The goal of this work is to discover the inherent structure of
objects within a category via their parts. Such parts act as
diagnostic elements for instances within the category; their
presence and arrangement provides rich information regard-
ing the presence and location of the object, its pose, size and
fine-grained properties, e.g., architectural style of a building
or type of a car. We consider two challenging man-made cat-
egories, churches and chairs, for which traditional methods
for collecting part annotation fail for a number of reasons—
presence or absence of parts, or the number of their appear-
ances, varies across instances. The instances of these parts
could differ drastically in their appearance, e.g., shape of
windows for buildings, form of the armrests for chairs. Still,
despite this structural flexibility and appearance variability,
humans can reliably recognize corresponding points across
instances, even when the observer does not have a name for
the part and does not precisely know its function.

We leverage this ability through in our annotation para-
digm that relies on people marking such correspondences,
and propose a novel approach to construction of a library
of parts driven by such annotations. Such annotations can
enable discovery of parts that are aligned to human-semantics
for categories that are otherwise hard to annotate using tradi-
tional methods of named keypoints, and part bounding boxes.
We show the utility of the rich part library learned in this way

for three tasks: object detection, category-specific saliency
estimation, and fine-grained parsing.

3.1 User Interface

The annotator is presented with a pair of images of the cate-
gory of interest, and asked to mark points in the two images
that match. The interface (Fig. 3 top) allows the user to add
correspondences by first clicking on the left image and then
on the corresponding point in the right image. Each image
has only a single instance of the object. To guide the process
of annotation we show some examples of landmarks for the
category of interest such as those in Fig. 3 (bottom). The
interface lets the user adjust the landmark pairs or delete
them. Once the user is done, he/she clicks a submit button to
finish the annotation. Providing instructions for this task is
significantly easier than providing the names and semantics
of a pre-defined set of parts.

Dataset: We have collected annotations for 1,000 pairs
among 288 images of churches, and 300 images of chairs, col-
lected from Flickr. Annotations were collected on Amazon’s
mechanical turk (AMT). Landmark pairs, a few examples
of which are shown in Fig. 4, include a variety of semantic
matches: identical structural elements of buildings (windows,
spires, corners and gables), and vaguely defined yet consis-
tent matches, the likes of ‘the mid-point of roof slope’ and
‘the mid-point of back rest’ for chairs.

Fig. 3 User interface for
labeling correspondences. The
annotator is shown pairs of
images and he/she mark
correspondences by clicking on
a point in the first image and its
corresponding point in the
second image. Examples of
landmarks shown to the users to
guide the annotation process
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Fig. 4 Example correspondence annotations. Some annotations col-
lected using our interface for church (left) and chair (right) categories.
Given a source window in one of the images in a pair, these correspon-

dences allow us to automatically find the target window in the other
(shown as red boxes) (Color figure online)

Fig. 5 Consistency of annotations. Landmarks marked by various users shown with different color in each image. The locations of landmarks
provided by different annotators tend to agree at salient locations on the image

Are the annotations consistent? Our hypothesis is that anno-
tators can mark correspondences without knowing the names
of the parts. In Fig. 5 we visualize where different annota-
tors click on an image as it is displayed with other images.
As one can see there is a high level of consistency across
annotators—points near the tip of the towers, corners of win-
dows, etc., are consistently clicked by different annotators.
Moreover, the number of clicks at a given location provides a
rough estimate of the frequency of a part within the category.

Cost of annotation For the church category, users spend 48
seconds and marked 3 landmarks on average per image (i.e.,
48/6 = 8s per landmark). For chairs, users spend 34 s and
marked 2 landmarks on average, (i.e., 34/4 = 8.5s per land-
mark). Note that using our interface we get annotations for
two images at the same time, hence double the number of
landmarks. As a comparison collecting keypoint annotations
using the interface of Maji (2011) takes 44 seconds and users
mark 6 keypoints on average for the chair category, (i.e., 7.3s
per landmark). Thus, our interface is similar in terms of the
time spend by the annotators.

3.2 Part Discovery by Clustering Appearance

The partial correspondence information between pairs can
be propagated over the set of images using the underlying
semantic graph of correspondences G = (V, E). The vertex
set V corresponds to images, while the edges E correspond
to the collected pairwise correspondences. Correspondences
can be propagated in the semantic graph from one image
to another as long as there is a path connecting the two.
In this manner one can obtain a large number of potential
landmarks across images that are in correspondence with a
given landmark in an image as shown in Fig. 6.

We can then use an appearance model to group these land-
marks and obtain semantic parts. We use HOG features (Dalal
and Triggs 2005) to model part appearance. Given a sampled
‘seed’, we initialize the model by training the HOG filter w(0)

to separate the seed patch from a set of background patches;
this step resembles the exemplar-SVM of Malisiewicz et al.
(2011). Next, we propagate the correspondence from the seed
window using breadth-first search in the semantic graph as
shown in Fig. 6. This provides a set of hypothesized locations
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Fig. 6 Depth-first
correspondence propagation in
the semantic graph. Images on
the left column in each row are
not directly connected to the
right ones, but the
correspondences can be
propagated in a pairwise manner
to them

for the part in other images. We denote them x(Ii , L(0)
i , s(0)

i ),
for i = 1, . . . , k, where x(I, L , s) is the patch extracted from
image I at location L and with scale s. We would like to use
these additional likely examples of the part to retrain the
model.

Since the correspondence is sparse, the estimated location
and scale of these initial hypothesized matches is likely to be
noisy. Furthermore, some of these matches may belong to
a different visual sub-type of the part, e.g., a different kind
of window or door. Therefore we treat the unknown location
and scale of the matches as latent variables, and train the
model using the following iterative algorithm. In iteration t ,
we find for each hypothesized match the location and scale
near the initial estimate obtained using the semantic graph
that maximizes the response of w(t−1):
(

L(t)
i , s(t)

i

)
= argmax

L ,s∈N (L(0)
i ,s(0)

i )

〈w(t−1), x(Ii , L , s)〉 (1)

where, N (L , s) denotes all the locations and scales for which
the corresponding rectangles have an overlap (defined as the
intersection over union of areas) greater than τ = 0.5 with the
rectangle at (L , s). Then, we retrain w(t) using the updated
list of matches x(Ii , L(t)

i , s(t)
i ) as positive examples, and con-

tinue to next iteration until convergence. To make the process

robust under visual diversity, we only retain w(t) using the k
matches with the highest score under w(t−1). In practice the
process converges in a few iterations.

We use linear discriminant analysis (LDA) method of Har-
iharan et al. (2012) to learn w. The method replaces the entire
negative set by a Gaussian distribution estimated from a large
number of image which speeds up the learning procedure
as it avoids the hard-negative mining step commonly during
training. However, we still have to perform the latent updates
described in Eq. 1 during training. We dub this method ‘latent
LDA’.

This procedure is illustrated in Fig. 7. The left shows
the initial hypothesized matches found using semantic graph
(ordered by depth at which they were found). The middle
shows the refined matches after the training converges, with
location and scale at which the response to the filter w is
maximized. The ordering now reflects the response in (1).
In our experiments we restrict the maximum depth of our
breadth-first search to two.

For our experiments we divided the set of 288 annotated
images as described into a training set of 216 images, and a
test set of 72 images. We call this dataset church-corr. Dur-
ing training we only use the semantic graph edges entirely
contained in the training set (church-corr-train), resulting in
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Fig. 7 Illustration of the part discovery process. Left Top matches
found using BFS in the annotation graph. Center Top matches sorted by
similarity to the source window using a HOG model learned from the
source window and negative images. Right Visualization of the coeffi-

cients of the learned HOG model: top shows positive, bottom negative
weights. The learning procedure refines both the order and the location
(shown in blue), given the initial estimate (shown in red) (Color figure
online)

Fig. 8 Examples of discovered
parts for churches. On each part
the ‘latent’ location discovered
is show in blue, while the initial
graph-based location is shown
in red. In each row examples are
ordered according to their
similarity to the first one, i.e.,
the score defined by Eq. 1
(Color figure online)

617 pairs, each labelled with an average of five landmarks.
The test set (church-corr-test) is used to evaluate the utility of
parts for predicting the location of the human-clicked land-
marks. Since the church-corr dataset contains church build-
ings that occupy most of the image, we collected an additional
set of 127 images where the church building occupies a small
portion of the image to test the utility of parts for localizing
them. The chance performance of detection in these images
is small. For these images we also obtained bounding box
annotations and the set is further divided into a training set
of 64 images and a test set of 63 images. The training set
is used to learn bounds regression models for our various
methods. We call this dataset church-loc.

3.3 Utility of Learned Parts

Figure 8 shows some discovered parts that were highly dis-
criminative (measured as their detection performance) for
churches. These parts can then be used to perform a range
of recognition tasks such as detection, semantic saliency pre-
diction and detailed parsing using words assigned to the parts
(when possible).

Object detection We use a simple Hough voting based detec-
tor (Leibe et al. 2004) for combining detections from multiple
parts. Votes from multiple part detections are combined in a
greedy manner. For each image, part detections are sorted
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Fig. 9 Example detections of church buildings along with the locations of parts shown in different colors (Color figure online)

by their detection score (after normalizing to [0,1] using the
sigmoid function) and considered one by one to find clusters
of parts that belong together (based on the overlap of their
predicted bounding boxes being greater than τ = 0.5). We
stop after n = 500 part detections are considered. Each clus-
ter represents a detection, from which we predict the overall
bounding box as the weighted average of the predictions of
each member and score as the sum of their detection scores.
This is similar to the detection strategy using poselets (Bour-
dev et al. 2010).

Figure 9 shows example detections of the church buildings
using the discovered parts. Combining the predictions of the
top 30 parts our detector achieves an average precision (AP)
of 39.90 % compared to a DPM model (Felzenszwalb et al.
2010; Girshick et al. 2012) that achieves an AP = 34.74 %.
Our method also outperforms parts obtained using unsu-
pervised ‘discriminative patches’ (Singh et al. 2012) that
obtains AP = 38.34 %, but is orders of magnitude faster during
training. Ignoring the correspondence information (‘exem-
plar LDA’), i.e., training parts by restricting the depth of our
graph search to zero leads to an AP = 19.95 %, while ignor-
ing the locations of clicks, i.e., random patches leads to an
AP = 16.67 %. This shows that the correspondence annota-
tions lead to significantly better parts for detection.

Semantic saliency prediction A landmark saliency map is
a function s(x, y) → [0, 1],∑x,y s(x, y) = 1, which is a
likelihood that a location of the image is a landmark. We can
evaluate the likelihood of a given set of ground truth landmark
locations under the saliency map as a measure of its predictive
quality. Assume a set of n images are all scaled to contain
the same number of pixels m. Let Sk, k = 1, . . . , n, denote
the set of landmarks in the kth image. The Mean Average
Likelihood (MAL) is defined as:

MAL = 1

n

n∑
k=1

⎛
⎝ ∑

(x,y)∈Sk

ms(x, y)

|Sk |

⎞
⎠ (2)

According to this definition, the uniform saliency map has
MAL = 1 since s(x, y) = 1/m,∀x, y.

Our saliency detector uses the top 30 parts sorted accord-
ing to their part detection accuracy on the training set. Given

an image, the highest scoring detections above the thresh-
old, up to a maximum of 5 detections, are found for each
part. Each detection contributes a saliency proportional to
the detection score to the center of the detection window.
The contributions are accumulated across all detections to
obtain the initial saliency map. This is then smoothed with a
Gaussian with σ = 0.01d, where d is the length of the image
diagonal, and normalized to sum to one, to obtain the final
saliency map. We set the number of pixels m = 106.

Our approach can be seen as ‘category-specific interest
points’, and we compare this approach to a baseline that uses
standard unsupervised scale-space interest point detectors
based on Differences of Gaussians (DoG) and the Itti and
Koch saliency model (Itti and Koch 2001). Table 1 shows the
MAL scores for various approaches on the church-corr-test
subset of our dataset. According to our saliency maps, the
landmarks are 6.4× more likely than the DoG saliency, and
4.2× more likely than the Itti and Koch saliency. The ‘latent
LDA’ parts outperform both the ‘exemplar LDA’ parts and
‘discriminative patches’ (Singh et al. 2012) based saliency.
Figure 10 shows example saliency maps for a few images for
a variety of methods. As one might expect, our part-based
saliency tends to be sharply localized near doors, windows,
and towers.

Fine-grained parsing Beyond the standard classification and
detection tasks, the rich library of correspondence-driven
parts allows us to reason about fine-grained structure of visual
categories. For instance, we can attach semantic meaning to
a set of parts at almost no cost by simply showing a human a
few high-scoring detections. If the parts appear to correspond

Table 1 Performance on ‘semantic saliency’ prediction task

Method MAL

Difference of Gaussian 1.23

Itti and Koch Itti and Koch (2001) 1.86

Discriminative patches Singh et al. (2012) 6.14

Exemplar LDA (Landmark seeds) 5.79

Latent LDA on the graph 7.84

Bold value indicates best performs
Mean Average Likelihood (MAL) of landmarks according to various
saliency maps
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Fig. 10 Predicted saliency maps. From left to right—images shown
with the landmarks; saliency maps from our parts, Difference of
Gaussian (DoG) interest point operator, and the Itti and Koch model

to a coherent visual concept with a name, say, ‘window’ or
‘tower’, the name for the concept is recorded. Figure 11 (top
row) shows such labels assigned to various such parts. These
semantic labels can be visualized on new images by pooling
the part detections across models that correspond to the same
label. Figure 11 (bottom row) shows example images from
the SUN dataset (Xiao et al. 2010), where we have visual-
ized each image with labels positioned at the center of the
detection window. Such parsing may be used for search and
retrieval of images based on attributes such as ‘churches with
windows on towers’, ‘churches with two towers’, etc.

4 Fine-Grained Attribute Discovery

Beyond parts, attributes provide an effective language-based
interface for humans to query particular instances of a cate-
gory. Some successful applications include searching faces

Fig. 12 Discriminative description. Fine-grained attributes are better
revealed in the discriminative description task (right), than in the tradi-
tional description task (left)

with desired attributes (Kumar et al. 2008), shopping web-
sites that support structured search, etc. From the computer
vision perspective, such attributes can provide insights into
which representations are useful for recognition. Indeed, in
recent years, vision systems have benefited both in terms of
recognition rates and their ability to generalize to new cate-
gories by using attributes as an intermediate representation
(Bourdev et al. 2011; Farhadi et al. 2010).

This work addresses the issue of identifying the set
describable attributes in order to enable fine-grained discrim-
ination within a basic level category. For an attribute to be
useful it should achieve the twin goals of communication and
discrimination, i.e., it should be easy to describe the attribute,
and it should be useful for discriminating one instance from
another. We use this intuition to design our annotation task—
we show annotators pairs of images and ask them to describe
the differences between them. Thus, the descriptions that we
elicit from this process is likely to be more specialized than
what we may get by collecting descriptions of instances one
at a time. An example shown in Fig. 12 explains the intuition.

The framework also allows us to discover attributes that
are relevant to the set of images in hand. For e.g., if all the
planes in our dataset were propeller planes, we would dis-
cover attributes that distinguish propeller planes from one
another.
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Fig. 11 Fine-grained parsing of images. On the top row are labels assigned to parts by humans and on the bottom row are localized labels obtained
by pooling the corresponding part detections on images (Color figure online)
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Fig. 13 User interface for collect descriptions on Amazon’s mechanical turk (left). We also provide some example annotations (right) to guide
the annotators

gniw eht ot relleporp  ydob eht ot relleporp
sreddur owt  reddur eno

ydob taf  ydob niht
sgniw hgih  sgniw wol

facing towards left side  facing slightly towards"                                 

ydob nworb egnaro  ydob kcalb wolley
kaeb epahs  kaeb ytniop

liat gnol  liat trohs
daeh revo epirts nworb  daeh revo tops kcalb

                                                       "gel gnol  gel trohs

Fig. 14 Example annotations collected using our interface for airplanes (left) and birds (right)

4.1 User Interface

Our annotation task consists of showing annotators pairs of
images and asking them to list 5 visual properties that are
different between them in free-form English. Each sentence
is required to have the word ‘vs.’, which separates the left
and the right property as seen in Fig. 13. In addition we show
some example annotations to guide the annotation process. It
is important to not constrain the descriptions to avoid annota-
tion biases. Once again, as in the correspondence task, there
is significantly less effort required to a collect annotation
using our interface compared to providing instructions for
traditional attribute labeling. Figure 14 shows some annota-
tions collected on Amazon’s mechanical turk (AMT) using
our interface overlaid on the images.

For a given set of images one can sample pairs at ran-
dom. The random sampling strategy is good because it biases
the discovery process towards those that split the dataset
evenly. If a binary attribute is present in a fraction p of
the dataset, then the likelihood that it will be revealed in
a pairwise comparison is upper bounded by 2p(1 − p). We
need on average 50 pairs of images to find an attribute that
appears on 1 % of the dataset. Thus, the pairwise compari-

son technique is extremely effective in mining discriminative
attributes.

4.2 Attribute Discovery by Clustering word Utterances

The discriminative description task provides us with pairs
of sentences that can be analyzed to discover a lexicon of
parts and attributes. The key observation is that in form of
text we collect, each sentence pair typically describes only
one part and its modifier. As an example, one may describe
a difference between a pair of airplane images as containing
‘red rudder vs. blue rudder’. From this sentence pair, one may
infer that the noun that is being described is ‘rudder’, and that
it is being modified by ‘red’ and ‘blue’. Moreover, the words
‘red’ and ‘blue’ must belong to the same semantic category,
which in this case is ‘color’. The last one is an additional and
a powerful constraint we obtain because we consider pairs
of images.

These relationships can be captured by the generative
model as shown in Fig. 15. At the top level, topics encode
parts and modifiers that are shared across the corpus. Noun
topics capture parts, whereas modifier topics capture seman-
tic properties such as ‘color’ or ‘cardinality’. A single noun
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Fig. 15 Top The generative model of the of sentence pairs {es , fs}.
Each sentence pair in our annotation comes from one noun and one
modifier topic. These topics are shared across all sentences and are
estimated from the data using variational EM algorithm. Bottom We
show the generative process for the sentence pair ‘yellow beak versus
black and white beak’

topic may be modified by several modifier topics (e.g. ‘red
beak’ and ‘pointy beak’), and a single modifier topic may
modify several noun topics (e.g. ‘red beak’ and ‘red wing’).
The set of attributes, i.e., relations between parts and modi-
fiers can thus be expressed as a bipartite graph between the
nouns and modifiers topics.

We refer the readers to Maji (2012) for details on parame-
ter estimation and initialization. We note that the generative
model proposed here is similar to the IBM word alignment
model (Brown et al. 1990), popular in machine translation to
initialize translation tables across a pair of languages. Com-
pared to the IBM models, we have also introduced topics
to capture semantically coherent noun and modifier topics.
This is similar to the Latent Dirichlet Allocation(LDA) model
(Blei et al. 2003) and its variants such as Correspondence-
LDA (Blei and Jordan 2003) which are used to identify topics
in an unsupervised manner from documents. The main dif-
ference is that we constrain the topic proportions in each
sentence to be bipartite corresponding to part-modifier rela-
tions.

4.3 Attribute Saliency

As an instance is compared to different ones, different
attributes become relevant for discrimination. By comput-
ing the frequency with which each attribute was used we can
get an estimate of its salient attributes. Figure 16 shows an
example where we list the sentences used to describe the
shown bird (a ‘florida scrub jay’) in the order of their fre-
quency. The most frequent sentences used are ‘blue wings’,
‘black wings’, ‘long tail’, etc., which are highly discrimina-

Fig. 16 Attribute saliency. Annotations for the image accumulated
over different pairings. The annotations are shown as the raw text input
by the annotators along with the frequency with which each phrase
was used to describe a difference. The frequency of the property is an
indicator of how discriminative it is

tive attributes of this species as can be seen in the wikipedia 1

description shown in the right.

4.4 Crowdsourced Discovery of Attributes

Here we analyze images for a number of basic level cat-
egories and use our framework for discovering fine-grained
attributes. Figure 17 shows the attributes discovered for birds,
airplanes, people and man-made textures. In each figure, the
nouns (or parts) are are shown on the top row, modifiers on
the bottom row, and the bipartite relation between parts and
modifiers which indicate attributes are shown using edges
connecting them. The thickness of the edge indicates the
frequency of the attribute. The discovered attribute labels
can then be used for exhaustive labeling for using tradi-
tional annotation methods, or can be used for recognition
(Sect. 4.5). Below we describe the datasets and the discov-
ered attributes in more detail.

4.4.1 Caltech-UCSD Birds

The dataset (Welinder et al. 2010) consists of 200 species
of birds and was introduced for fine-grained visual category
recognition. We gathered 200 images, one random image
from each category, and collected annotations for 1,600 pairs
sampled uniformly at random.

Figure 17a, shows the learned topics and attributes for
birds category. The discovered parts and modifiers refer to
parts of the bird such as the body, beak, wings, tail, head,
etc., and semantic categories such as size, color, shape, etc.,
respectively. The most frequent attribute that discriminates
birds from one another is the {beak si ze} ↔ {small, large},
followed by {tail si ze} ↔ {long, short, small, ..}. Other
distinguishing features are colors of various parts such as

1 http://en.wikipedia.org/wiki/Florida_Scrub_Jay.
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Fig. 17 Discovered parts (top row), modifiers (bottom row), and
attributes (edges) for birds, airplanes, person, polka-dotted texture and
chequered texture categories (Fig. a–e). Each modifier topic is shown
with the most frequent words that appear in the clusters. The figures sug-
gests that these modifiers correspond to semantically meaningful adjec-

tives such as ‘color’, ‘shape’, ‘size’, ‘cardinality’, etc. In each image the
thickness of the edge connecting the part and modifier is proportional to
the frequency of with which the attribute was used to discriminate pairs
of instances in the dataset shown to the annotator. This provides a sorted
list of attributes which can be used for fine-grained discrimination

the body, tail and head, and beak shape which can be pointy
or round, etc. An interesting attribute that is discovered is
{like} ↔ {sparrow, duck, crow, eagle, . . .}. The annota-
tors choose to describe birds based on their similarity to a
commonly seen ones as the actual species of birds were
unknown to the user. Similarity to prototypical birds is a
discriminative visual attribute and is often present in field
guides.

We compared the attributes discovered by our algorithm
to the ones the creators of the Caltech-UCSD birds dataset
choose (Welinder et al. 2010). Out of the 12 parts of birds,
which are forehead, crown, bill, eye, throat, nape, breast,
back, wing, belly, leg and tail, 6 of them were discovered.
Parts such as crown and nape which are sub-parts of the head

region were missed likely because they were unfamiliar to
non-experts.

4.4.2 Airplanes

We collected 200 images of airplanes from airliners.net,
a website of airplane photographs maintained by airplane
enthusiasts. We sampled 1,000 pairs uniformly at random to
collect annotations.

Figure 17b, shows the discovered attributes. Here, the
most frequent attribute is the color of the rudder. Our
dataset has many airliners and they often have differ-
ent rudder colors reflecting the airliner company (e.g.
Lufthansa vs. Emirates). The number of wheels is the
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Fig. 18 Example annotation collected on AMT asking users to
describe differences between texture pairs

second most distinguishing feature followed by the fac-
ing direction. Other discovered attributes are the shape
of the nose ∈ {pointy, round, f lat, . . .}, kind of the
plane ∈ {propeller, passenger, jet, . . .}, overall size ∈
{small, big, large, medium}, and the location of the wing
relative to the body. Cardinality affects parts such as wheels,
engines and rudders, while color modifies the rudder and
body. All these are salient properties that distinguish one air-
plane from another in our dataset.

4.4.3 PASCAL VOC Person

A dataset consisting of attributes of people from the PAS-
CAL visual object challenge (VOC) dataset was introduced
by Bourdev et al. (2011). We collected 400 random images
from the trainval subset of the dataset and we sampled
1,600 pairs uniformly at random and obtained annotations.

Figure 17c shows the discovered attributes for this dataset.
We find attributes such as gender, hair style, hair length,
dress type, wearing glasses, hats, etc which are also identified
in Bourdev et al. (2011). In addition, we discover attributes
such as the action being performed—sitting, standing, danc-
ing, etc.

4.4.4 Man-Made Textures

We collected annotations for 100 ‘polka-dotted’ and ‘che-
quered’ texture images collected from the web [these images
are also a part of Cimpoi et al. (2014)]. Our automatic analy-
sis yields attributes that describe properties such as the color
and size of the dots, their density, color of the background,
etc., as shown in Fig. 17d. The same for ‘chequered’ textures
shows that these textures vary according to the size and color
of the squares, the color of the background and the tilt as
seen in Fig. 17e. Figure 20 shows some examples of these
textures.

4.5 Predicting Fine-Grained Texture Attributes

In the earlier section we used the text annotations to discover
attributes suitable for fine-grained discrimination. However,
these attributes may also be used to train classifiers to predict
these attributes from low-level image features. As an exam-
ple, we show how to predict the dot-size for polka-dotted
texture, or the size of the chequered textures.

Figure 18 shows an example of the ‘raw’ text annota-
tion collected for a pair of polka-dotted texture images. To
obtain ‘sanitized’ annotations suitable for supervised learn-
ing we require a bit of additional supervision. In particular we
need to group synonyms within a topic into a single group.
This can be done by providing simple text processing rules,
or may be automated using a dictionary. For example for
the size attribute we can group words such as ‘small’ and
‘smaller’ into one group, and words such as ‘large’, ‘larger’
and ‘big’ into another. Similarly, for color we can simply
use the list of all color words as separate categories. Using
this we can automatically assign annotations to images. Fig-
ure 19 shows some ‘sanitized’ annotations. Note that the size
attribute is relative and for each pair of images we can only
infer the relative size from the text descriptions and the fig-
ures show the counts of how many times the dot-size was
smaller or larger than in the other image in the pairwise com-

Fig. 19 Discovered and
inferred attributes of
polka-dotted and chequered
texture instances from
descriptions of these textures

dotSize:  2:small  3:large
backgroundColor: black
sparsity:  2:dense  3:sparse
dotColor: white

dotSize:  3:small  3:large
backgroundColor: pink
sparsity:  0:dense  4:sparse
dotColor: black
dotColorPattern: singleColor

color: white

chequeredSize:  2:small  0:large

isTilted: yes
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0.43 0.76 0.93 1.13 1.47 1.62 1.72 1.91 2.11 2.18

1.02 1.66 1.93 2.02 2.12 2.48 2.58 2.78 2.97 3.34

Fig. 20 Fine-grained texture attribute prediction. Automatic predic-
tion of ‘dot-size’ (top row) and ‘chequred-size’ (bottom row) by classi-
fiers trained using labels mined from the text descriptions and low-level

coarseness features (Tamura et al. 1978). The images are sorted by the
prediction score (shown on top of each image)

parisons. The names of the attributes are assigned manually
which correspond to the edges in the bipartite-topic graph
(Fig. 17).

We learn to the predict ‘dot-size’ attribute from low-level
features and inferred annotations. For features we use his-
tograms of coarseness values (Tamura et al. 1978) accumu-
lated across all pixels in the image and learn a ranker that
respects the ordering of ‘dot-size’ attribute in the annota-
tions using a learning to rank framework (Joachims 2002).
Figure 20 shows every 10th image of our ‘polka-dotted’ set
sorted according to the predicted dot-size. To quantitatively
evaluate this approach, we manually annotated the size of the
dot in each of the 100 images, and found that our classifier
correctly ordered 3,943 of 4,950 (79.66 %) pairs. As a com-
parison, using the true annotations with the same features cor-
rectly ordered 3,971 of 4,950 correct (80.22 %) pairs. Figure
20 shows the images in ‘chequred’ set sorted by the predicted
size of the squares.

5 Conclusion

Studying the correspondences and differences between
instances is a powerful means to uncover the structure of
visual categories. We leverage such reasoning to design anno-
tation tasks that are particularly effective in discovering parts
and attributes. It is quite remarkable that one can obtain such
detailed parts (Fig. 8) and attributes (Fig. 17) from crowd-
sourced data without the need of specialized instructions,
careful curation or quality control. The key we believe was a
combination of carefully designed interfaces to collect redun-
dant annotations and robust learning methods that enabled us
to discover the underlying structure within the data.

Our attribute discovery framework still depends on lan-
guage in the sense that only namable parts emerge from the
annotation process. To avoid this we can unify the part and
attribute discovery framework in a single interface were we

mark correspondences and list the differences between the
clicked pair. This is implicitly being done by the annotators
when they describe a localized attribute, e.g., ‘red beak vs.
black beak’. Furthermore, we can require these differences
be in terms of basic properties such as ‘color’, ‘shape’, ‘car-
dinality’, and ‘texture’ which might lead to a framework for
representing parts and attributes of categories in a language
independent manner.

One can use the discovered attributes to group instances
into clusters and obtain even fine-grained attributes by col-
lecting differences between pairs of instances within a cluster
to obtain a taxonomy of attributes. Somewhat paradoxically
as things become more related one can describe more dif-
ferences between them since more parts can be put in corre-
spondence.

Although in this work we focussed on part and attribute
discovery, one can leverage such similarity and difference
comparisons more directly in a model of recognition such as
‘memex’ (Bush 1945), which has been recently popularized
in computer vision by Malisiewicz and Efros (2009).

Acknowledgments Part of the work was done by SM during a
workshop (http://www.clsp.jhu.edu/workshops/archive/ws-12/groups/
tduosn/) at the CLSP, Johns Hopkins University.

References

Agarwal, A., & Triggs, B. (2006). Recovering 3d human pose from
monocular images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(1), 44–58.

Berg, T., Berg, A., & Shih, J. (2010). Automatic attribute discovery and
characterization from noisy web data. In European Conference on
Computer Vision.

Blei, D. M., & Jordan, M. I. (2003). Modeling annotated data. In SIGIR
(pp. 127–134).

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.
Journal of Machine Learning Research, 3, 993–1022.

Bourdev, L., Maji, S., Brox, T., & Malik, J. (2010). Detecting people
using mutually consistent poselet activations. In European Confer-
ence on Computer Vision.

123

http://www.clsp.jhu.edu/workshops/archive/ws-12/groups/tduosn/
http://www.clsp.jhu.edu/workshops/archive/ws-12/groups/tduosn/


96 Int J Comput Vis (2014) 108:82–96

Bourdev, L., Maji, S., & Malik, J. (2011). Describing people: A poselet-
based approach to attribute classication. In International Conference
on Computer Vision.

Bourdev, L., & Malik, J. (2009). Poselets: Body part detectors trained
using 3d human pose annotations. In International Conference on
Computer Vision.

Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona,
P., & Belongie, S. (2010). Visual recognition with humans in the
loop. In K. Daniilidis, P. Maragos & N. Paragios (Eds.), Computer
vision-ECCV 2010 (pp. 438–451). Berlin: Springer.

Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F.,
Lafferty, J. D., et al. (1990). A statistical approach to machine trans-
lation. Computational Linguistics, 16, 79–85.

Bush, V. (1945). The atlantic monthly. As we may think.
Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., & Vedaldi, A. (2014).

Describing textures in the wild. In Computer Vision and Pattern
Recognition (CVPR).

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In N. Dalal & B. Triggs (Eds.), Computer Vision
and Pattern Recognition (pp. 886–893).

Desai, C., & Ramanan, D. (2012). Detecting actions, poses, and objects
with relational phraselets. In Computer vision-ECCV 2012 (pp. 158–
172). Berlin: Springer.

Duan, K., Parikh, D., Crandall, D., & Grauman, K. (2012). Discovering
localized attributes for fine-grained recognition. In 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (pp.
3474–3481).

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisser-
man, A. (2010). The pascal visual object classes (voc) challenge.
International Journal of Computer Vision, 88(2), 303–338.

Farhadi, A., Endres, I., & Hoiem, D. (2010). Attribute-centric recogni-
tion for cross-category generalization. In Computer Vision and Pat-
tern Recognition.

Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2010).
Object detection with discriminatively trained part-based models.
IEEE Transaction of Pattern Analysis and Machine Intelligence,
32(9), 1627–1645.

Felzenszwalb, P. F., & Huttenlocher, D. P. (2005). Pictorial structures
for object recognition. International Journal of Computer Vision, 61,
55–79.

Ferrari, V., Marin-Jimenez, M., & Zisserman, A. (2008). Progressive
search space reduction for human pose estimation. In Computer
Vision and Pattern Recognition.

Frome, A., Singer, Y., & Malik, J. (2007). Image retrieval and classi-
fication using local distance functions. In Advances in neural infor-
mation processing systems 19: Proceedings of the 2006 conference
(Vol. 19, p. 417). MIT Press.

Girshick, R. B., Felzenszwalb, P. F., & McAllester, D. (2012) Discrim-
inatively trained deformable part models, release 5. http://people.cs.
uchicago.edu/rbg/latent-release5/.

Hariharan, B., Malik, J., & Ramanan, D. (2012). Discriminative decor-
relation for clustering and classification. In A. Fitzgibbon, S. Lazeb-
nik, P. Perona, Y. Sato & C. Schmid (Eds.), Computer vision-ECCV
2012 (pp. 459–472). Berlin: Springer.

Itti, L., & Koch, C. (2001). Computational modelling of visual attention.
Nature Reviews Neuroscience, 2(3), 194–203.

Joachims, T. (2002). Optimizing search engines using clickthrough data.
In Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 133–142). ACM.

Kovashka, A., Parikh, D., & Grauman, K. (2012). Whittlesearch: Image
search with relative attribute feedback. In 2012 IEEE conference on
computer vision and pattern recognition (CVPR) (pp. 2973–2980).
IEEE.

Kumar, N., Belhumeur, P., & Nayar, S. (2008). Facetracer: A search
engine for large collections of images with faces. In European con-
ference on computer vision.

Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object cate-
gorization and segmentation with an implicit shape model. In ECCV
workshop on statistical learning in computer vision (pp. 17–32).

Maji, S. (2011). Large scale image annotations on amazon mechanical
turk. Tech. Rep. UCB/EECS-2011-79, EECS Department, Univer-
sity of California, Berkeley (2011). http://www.eecs.berkeley.edu/
Pubs/TechRpts/2011/EECS-2011-79.html

Maji, S. (2012). Discovering a lexicon of parts and attributes. In Second
International Workshop on Parts and Attributes, ECCV.

Maji, S., & Shakhanarovich, G. (2013). Part discovery from partial
correspondence. In Computer vision and pattern recognition.

Maji, S., & Shakhnarovich, G. (2012). Part annotations via pairwise
correspondence. In Human computation workshops at the AAAI.

Malisiewicz, T., & Efros, A. (2009). Beyond categories: The visual
memex model for reasoning about object relationships. In Advances
in neural information processing systems (pp. 1222–1230).

Malisiewicz, T., Gupta, A., & Efros, A. A. (2011). Ensemble of
exemplar-svms for object detection and beyond. In International
conference on computer vision.

Parikh, D., & Grauman, K. (2011). Interactive discovery of task-specic
nameable attributes. In Workshop on fine-grained visual categoriza-
tion, CVPR.

Patterson, G., & Hays, J. (2012). Sun attribute database: Discovering,
annotating, and recognizing scene attributes. In 2012 IEEE confer-
ence on computer vision and pattern recognition (CVPR) (pp. 2751–
2758). IEEE.

Singh, S., Gupta, A., & Efros, A. A. (2012). Unsupervised discovery of
mid-level discriminative patches. In A. Fitzgibbon, S. Lazebnik, P.
Perona, Y. Sato & C. Schmid (Eds.), Computer vision-ECCV 2012
(pp. 73–86). Berlin: Springer.

Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural features corre-
sponding to visual perception. IEEE Transactions on Systems, Man
and Cybernetics, 8(6), 460–473.

Tamuz, O., Liu, C., Belongie, S., Shamir, O., & Kalai, A. (2011).
Adaptively learning the crowd kernel. In International conference
on machine learning (ICML). Bellevue, WA.

Von Ahn, L., & Dabbish, L. (2004). Labeling images with a computer
game. In Proceedings of the SIGCHI conference on human factors
in computing systems (pp. 319–326). ACM.

Von Ahn, L., Liu, R., & Blum, M. (2006). Peekaboom: A game for
locating objects in images. In Proceedings of the SIGCHI conference
on Human Factors in computing systems (pp. 55–64). ACM.

Weber, M., Welling, M., & Perona, P. (2000). Towards automatic discov-
ery of object categories. In Computer vision and pattern recognition.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S.,
& Perona, P. (2010). Caltech-UCSD birds 200. Tech. Rep. CNS-TR-
2010-001, California Institute of Technology.

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010).
Sun database: Large-scale scene recognition from abbey to zoo. In
2010 IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 3485–3492). IEEE.

Yang, Y., & Ramanan, D. (2011). Articulated pose estimation with flex-
ible mixtures-of-parts. In 2011 IEEE conference on computer vision
and pattern recognition (CVPR) (pp. 1385–1392). IEEE.

Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and
landmark localization in the wild. In: 2012 IEEE conference on com-
puter vision and pattern recognition (CVPR) (pp. 2879–2886). IEEE.

123

http://people.cs.uchicago.edu/rbg/latent-release5/
http://people.cs.uchicago.edu/rbg/latent-release5/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-79.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-79.html

	Part and Attribute Discovery from Relative Annotations
	Abstract 
	1 Introduction
	1.1 Related Work
	1.1.1 Semantic Part Annotations and Discovery
	1.1.2 Semantic Attribute Annotation and Discovery


	2 Overview
	3 Semantic Part Discovery
	3.1 User Interface
	3.2 Part Discovery by Clustering Appearance
	3.3 Utility of Learned Parts

	4 Fine-Grained Attribute Discovery
	4.1 User Interface
	4.2 Attribute Discovery by Clustering word Utterances
	4.3 Attribute Saliency
	4.4 Crowdsourced Discovery of Attributes
	4.4.1 Caltech-UCSD Birds
	4.4.2 Airplanes
	4.4.3 PASCAL VOC Person
	4.4.4 Man-Made Textures

	4.5 Predicting Fine-Grained Texture Attributes

	5 Conclusion
	Acknowledgments
	References


