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Abstract This chapter surveys recent techniques for discovering a set of Parts and
Attributes (PnAs) in order to enable fine-grained visual discrimination between its
instances. Part and Attribute (PnA) based representations are popular in computer
vision as they allow modeling of appearance in a compositional manner, and provide
a basis for communication between a human and a machine for various interactive
applications. Based on two main properties of these techniques a unified taxonomy
of PnA discovery methods is presented. The first distinction between the techniques
is whether the PnAs are semantically aligned, i.e. if they are human interpretable
or not. In order to achieve the semantic alignment these techniques rely on addi-
tional supervision in the form of annotations. Techniques within this category can be
further categorized based on if the annotations are language-based, such as name-
able labels, or if they are language-free, such as relative similarity comparisons.
After a brief introduction motivating the need for PnA based representations, the
bulk of the chapter will be dedicated to techniques for PnA discovery categorized
into non-semantic, semantic language-based, and semantic language-free methods.
Throughout the chapter we will illustrate the trade-offs among various approaches
though examples from the existing literature.

1 Introduction

This chapter surveys a number of part-based and attribute-based models proposed
in the last decade in the context of visual recognition, learning, and description for
human-computer interaction. Part-based representations have been very successful
for various recognition tasks ranging from detecting objects in cluttered scenes [9,
34], segmenting objects [16, 107], recognizing scene categories [45, 72, 77, 92],
to recognizing fine-grained attributes of objects [10, 111, 98]. Parts provide robust-
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ness to occlusion – the head of a person can be detected even when the legs are
occluded. Parts can also be composed in different ways enabling generalization to
novel viewpoints, poses, and articulations of objects. Two popular methods, namely
the Deformable Part-based Model (DPM) of Felzenszwalb et al. [34] and the pose-
lets of Bourdev et al. [9, 11], exploit this property to build robust object detectors.

The compositional nature of part-based models is also the basis for Convolu-
tional Neural Networks (CNNs). While traditional part-based models can be seen as
shallow networks where the representations are hand-designed, CNNs learn all the
model parameters from raw-pixels to image labels in an end-to-end manner using a
deeper architecture. When trained on large labeled datasets, deep CNNs have led to
breakthrough results on a number of recognition tasks [44, 48, 87], and are currently
the dominant approach for nearly all visual recognition problems.

Beyond recognition, a set of parts provides a means for a human to indicate the
pose and articulation of an object. This is useful for recognition with humans “in
the loop” where a person can annotate a part of the object to guide recognition. For
instance, Branson et al. [13] interactively categorize birds by asking users to click
on discriminative parts leading to significant improvement over the computer vision
only baseline. In such cases it is desirable that the parts represent semantically-
aligned concepts since it involves communication with a human.

Along with parts, visual attributes provide a means to model the appearance of
objects. The word “attribute” is extremely generic as it can refer to any property
that might be associated with an object. Attributes can describe an entire object or
a part, e.g., a tall person or a long nose. Attributes can refer to low-level proper-
ties such as color and texture, or high-level properties such as age and gender of a
person. Attributes can be shared across categories, e.g., both a dog and a cat can
be “furry”, allowing the description of previously unseen categories. Semantically
aligned attributes provide a basis for learning interpretable visual classifiers [33],
create classifiers for unseen categories [52], debugging recognition systems through
attribute-based explanations [3, 76], and providing human feedback during learning
and inference [14, 46, 51, 78].

Thus, PnAs provide a rich compositional way of describing and recognizing cat-
egories. Techniques for PnA discovery are necessary as the desired set of parts and
attributes often depend on the underlying task. While it may not be necessary to
model the gender, hair-style, or the eye-color of a person for detecting them, it may
be useful for identifying a particular individual. One motivating reason for the uni-
fied treatment of PnAs in this chapter is that their roles are interchangeable for
recognition and description. For instance, in order to distinguish between a red-
beaked and a yellow-beaked bird, one could have two parts, “red beak” and “yellow
beak” and no attributes, or a single part “beak” with two attributes, red and yel-
low. Therefore, from a representation point of view it is more fruitful to think of
the joint space induced by various part-attribute interactions instead of each one of
them independently. In other words we can think of attributes being localized, i.e.
associated with a part, or not.

The next section provides an overview of the rest of the chapter, and describes a
unified taxonomy of recent PnA discovery methods.
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1.1 Overview

Although there are many ways to categorize the vast number of methods for PnA
discovery in the literature, the particular one described in this chapter was chosen
because it is especially useful for fine-grained domains which is our main focus.
Often these domains have a rich structure described through language, visual illus-
trations, and other modalities, which can be used to guide representation learning.
Translating all this information to useful visual properties is one of the main chal-
lenges of these methods. The proposed taxonomy categorizes various PnA methods
based on:

• the degree to which the models explicitly try to achieve semantic alignment or
interpretability of the underlying PnAs,

• the nature of the source of semantics, i.e. if they are language-based or not.

When semantic alignment is not the primary goal, the PnAs can be thought of as a
intermediate representation of the appearance of objects. Example methods for part
discovery in this setting include DPMs [34], and CNNs [48, 56]. Here the learned
parts factorize the appearance variation within the category and are learned without
additional supervision apart from the category labels at the object or image level.
Hence, semantic alignment is not guaranteed and parts that arise tend to represent
visually salient patterns. Similarly non-semantic attributes can be thought of as the
coordinates in a transformed space of images optimized for the recognition task.
Such methods are described in Section 2.1 and Section 2.2.

Language is a natural source of semantics. Although the vocabulary of parts
and attributes that arise in language are a result of multiple phenomena, they pro-
vide a rich source of interpretable visual PnAs. For instance, parts of animals can
be based on the names of anatomical parts. Various existing datasets that contain
part annotations follow this strategy. This include the Caltech-UCSD Birds (CUB)
dataset [100], OID:Airplanes dataset [98], and part annotations of animals in PAS-
CAL VOC dataset [9, 20]. Similarly, attributes can be based on common color, tex-
ture, and shape terms used in language, or can be highly specialized language-based
properties of the category. For example, the CUB dataset annotates parts of birds
with color attributes, while the Berkeley “attributes of people” dataset [10] contains
attributes describing gender, clothing, age, etc. We review techniques for collect-
ing language-based attribute and part annotations in Sections 3.1 and Section 3.4
respectively.

Task-specific language-based PnAs can also be discovered by analyzing descrip-
tions of objects (Section 3.2). For example, Berg et al. [6] analyze captioned images
on the web to discover attributes. Nameable attributes may also be discovered inter-
actively by asking annotators to name the principal directions of variations within
the data [79], by selecting a subset of attributes that frequently discriminate in-
stances [80], or by analyzing descriptions of differences between instances [63]. We
review such techniques in Section 3.3.

Beyond language, semantic alignment of PnAs may also be achieved by collect-
ing language-free annotations (Section 4). An example of this is through similarity
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comparisons of the form “is A more similar to B than C”. The coordinates of the
embedded space that reflects these similarity comparisons can be viewed as an se-
mantic attribute [101] (Section 4.1). Another example is when an annotator clicks
on landmarks between pairs of instances. Such data can be collected without having
to name the parts providing a way to annotate parts for categories that do not have a
well defined set of nameable parts [65]. The resulting pairwise correspondence data
can be used for learning semantic part appearance models (Section 4.2).

Figure 1 shows the taxonomy pictorially. Existing approaches are divided into
three main categories: non-semantic PnAs (Section 2), semantic language-based
PnAs (Section 3), and semantic language-free PnAs (Section 4). Within each cate-
gory we further organize approaches into various sections to illustrate the scenarios
when they are applicable and the computational v.s. annotation-cost trade-offs they
offer. We describe some open questions and conclude in Section 5.

language-based
yes

yes

no

sem
antic alignm

ent
● Attributes as embeddings [2.1]
● Parts from appearance and geometry [2.2] 

no

● Expert defined attributes [3.1]
● Attributes from mining text [3.2]
● Interactive discovery of nameable attributes [3.3]
● Expert defined parts [3.4]

● Attributes from similarity comparisons [4.1]
● Parts from correspondence annotations [4.2] 

Section 2

Section 4 Section 3

Fig. 1 A taxonomy of PnA discovery techniques discussed in this chapter based on the degree of
semantic alignment (y-axis) and if they are language-based (x-axis). Various sections and subsec-
tions in this chapter are listed within each quadrant.

2 Non-semantic PnAs

A common theme underlying techniques for non-semantic PnA discovery is that the
parts and attributes arise out of a framework where the goal is a factorized represen-
tation of the appearance space. Pictorially, one can think of PnAs as an intermediate
representation between the images and high-level semantics. The factorization re-
sults in better computational efficiency, statistical efficiency, and robustness of the
overall model.
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2.1 Attributes as embeddings

A typical strategy of learning attributes in this setting is to constrain the intermedi-
ate representation to be low-dimensional or sparse. Techniques for dimensionality
reduction, such as k-means [59], Principal Component Analysis (PCA) [42], Local-
ity Sensitive Hashing [37], auto-encoders [4], and spectral clustering [68], can be
applied to obtain compact embeddings.

An early application of such approach for recognition is the eigenfaces of Turk
and Pentland [97]. PCA is applied to a large number of aligned frontal faces to learn
a low-dimensional space corresponding to the first few PCA basis. These capture the
major axes of variations, some of which are aligned to factors such as lighting, or
facial expression. The low dimensional embedding was used for face recognition in
their setting. One can use an image representation such as Fisher Vector [81, 82]
instead of pixel values before dimensionality reduction for additional invariance.
These techniques have no explicit control over the semantic alignment of the repre-
sentation, and are not guaranteed to lead to interpretable attributes.

In a task-specific setting the intermediate representation can be optimized for
the final performance. An example of this is a two-layer neural network for image
classification that takes raw pixels as input and produces class probabilities via an
intermediate layer which can be seen as attributes.

There are many realizations of this strategy in the literature that vary in the
specifics of the architecture and the nature of the task. For example, the “picodes”
approach of Bergamo et al. [7] learns a compact binary descriptor (e.g., 16 bytes)
that has a good object recognition performance. Attributes are parametrized as
a(x) = 1[wT x > 0], for some weight vector w for an input representation x. Raste-
gari et al. [86] use a similar parameterization but use a notion of “predictability”
measured as attributes that achieve high separation between classes as the objective.
Yu et al. [109] learn attributes by formulating it as a matrix factorization problem.

Experiments reported in the above work show that the task-driven attributes
achieve better performance compared to unsupervised methods for attribute discov-
ery on datasets such as Caltech-256 [40] and ImageNet [28]. Moreover, they provide
a compact representation of images for efficient retrieval and other applications.

2.2 Part discovery based on appearance and geometry

In addition to appearance, part-based models can take into account the geometric
relationships between the parts during learning. In the unsupervised, or task-free
setting, parts may be obtained by clustering local patches using any unsupervised
method such as k-means, spectral clustering, etc. This is the one of the key steps in
the bag-of-visual-words representation of images [24] and their variants such as the
Fisher Vector [81, 82] and Vector of Locally Aggregated Descriptors (VLAD) [43],
which are some of the early successful image representations.
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(a) Figure source: Felzenszwalb et al. [34] (b) Figure source: Gupta et al. [92]

Fig. 2 (a) Two components of the deformable part-based model learned for the person category.
The “root” and “part” templates are show using the HOG feature visualization (left and middle)
and the spatial model is shown on the right. (b) Examples of discriminative patches discovered for
various classes in the PASCAL VOC dataset.

Geometric information can be added during the clustering process to account
for spatial consistency, e.g., by coarsely quantizing the space using a spatial pyra-
mid [55], or by appending the coordinates of the local patches (called “spatial aug-
mentation”) to the appearance before clustering [90, 91]. Parts may also be discov-
ered via correspondences between pairs of instances obtained by some low-level
matching procedure. For instance, Berg et al. [5] discover important regions in im-
ages by considering geometrically consistent feature matches across instances.

Another example of a model that combines appearance and geometry for part
learning is the DPM of Felzenszwalb et al. [34]. The model has been widely used
for object detection in cluttered scenes. A category is modeled as a mixture of com-
ponents, each of which is represented as a “root” template and a collection of “parts”
that can move independently relative to the root template. The tree-like structure of
the model allows efficient inference through distance transforms. The parameters of
the model are learned through an iterative procedure where the component mem-
bership, part positions, and appearances models are updated in order to obtain good
separation between positive examples and the background. Figure 2a shows two
components learned for person detection on the PASCAL VOC dataset [32]. The
compositional architecture of the DPM led to significant improvements over the
monolithic template-based detector of Dalal and Triggs [25].

Another example for task-driven part discovery is the “discriminative patches”
approach of Singh et al. [92]. Here parts are initialized by clustering appearance,
and through a process of positive and hard-negative mining the part appearances
are iteratively refined. Finally parts that are frequent and help discriminate among
classes are selected. Figure 2b shows example discriminative patches discovered for
the PASCAL VOC dataset. The authors demonstrate good performance on image
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Fig. 3 Visualizations of
the top activations of six
conv5 units of the AlexNet
CNN [48] trained on Ima-
geNet dataset [28]. For each
image patch on the left the
locations of where that are
responsible for the activations
are also shown on the left.
The units strongly respond to
parts such as dog and human
faces, as well as attributes
such as “grid-like” and “text”.
Figure source: Zeiler and
Fergus [110]

classification datasets, such as PASCAL VOC, MIT Indoor scenes [83], using a rep-
resentation that records the activation of discriminative patches at different locations
and scales (similar to a bag-of-visual-words model [24]).

Since these methods primarily rely on appearance and geometric consistency,
the discovered parts may not be aligned to semantics. For instance, the DPM re-
quires that each object have the same set of parts even if the object is partially
occluded. Hence the model uses a part to both recognize a part of the object or its
occluder. Similarly, discriminative patches are visually consistent parts according
to the underlying Histograms of Oriented Gradient (HOG) features [25] and hence
two patches that are visually dissimilar but belong to the same semantic category
are unlikely to be grouped as the same part. For example, two kinds of car wheels,
or two styles of windows, will be represented using two or more parts.

Convolutional Neural Networks (CNNs) can be seen as part-based model trained
in an end-to-end manner, i.e. starting from a pixel representation to class labels.
The hierarchy of convolution and max-pooling layers resemble the computation of
a deformable part-based model. Indeed, the DPM can be seen as a particular instan-
tiation of a CNN since both HOG (see Mahendran and Vedaldi [62]) and the DPM
computations (see Girshick et al. [38]) can be written as shallow CNNs. However,
after the recent breakthrough result of Krishevsky et al. [48] on the ImageNet clas-
sification dataset [28], CNNs have become the architecture of choice for nearly all
visual recognition tasks [12, 23, 39, 44, 60, 87, 94, 111, 112].

CNNs trained in a supervised manner can be seen to simultaneously learn parts
and attributes. For instance, visualizations of the “AlexNet CNN” [48] by Zeiler and
Fergus [110], as seen in Figure 3, reveal units that activate strongly on parts such
as human and dog faces, as well as attributes such as “text” and “grid-like”. Recent
works, such as the bilinear CNNs [57] show that discriminative localized attributes
emerge when these models are fine-tuned for fine-grained recognition tasks. Fig-
ure 4 shows example filters learned when these mdoels are trained on birds [100],
cars [47], and airplane [64] datasets. The remarkable performance of CNNs shows
that considering part and attribute discovery jointly can have significant benefits.
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Fig. 4 Visualizions of the top activations of several units of the “bilinear CNN” (B-CNN [D,M]
model) [57] fine-tuned on birds [100] (left), cars [47] (middle), and airplane [64] (right) datasets.
Each row shows the patches in the training data with the highest activations for a particular unit of
the “D network” (See [57] for details). The units correspond to various localized attributes ranging
from yellow-red stripes (row 4) and particular beak shapes (row 8) for birds, wheel detectors (rows
6, 8, 9) for cars, to propeller (rows 1, 4) and vertical-stabilizer types (row 8) for airplanes.

3 Semantic language-based PnAs

Language is the source of categories for virtually all modern datasets in computer
vision. The widely used ImageNet dataset reflects the hypernymy-hierarchy (“is a”
relationships) of nouns in WordNet – a lexical database of words in English or-
ganized in a variety of ways [67]. Naturally, language is also a source of PnAs
useful for a high-level description of objects, scenes, materials, and other visual
phenomenon. For example, a cat can be described as a four-legged furry animal.
This human-interpretable description of learned models provides a means for com-
munication between a human and machine during learning and inference. Below we
overview several applications of language-based PnAs from the literature.

3.1 Expert defined attributes

An early example of language-based attributes in the computer vision community
was for describing texture. Bajscy proposed attributes such as orientation, contrast,
size, and spacing of structural elements in periodic textures [2]. Tamura et al. [95]
identified six visual attributes of textures namely coarseness, contrast, directional-
ity, linelikeness, regularity, and roughness. Amadasun and King derived computa-
tional models for five properties of texture, namely, coarseness, contrast, business,
complexity, and texture strength [1].
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Recently, Cimpoi et al. [22] extended the set of describable attributes to include
47 different words based on the work of Rao and Lohse [85]. Other texture attributes
such as material properties have been used to construct datasets such as CUReT [26],
UIUC [54], UMD [105], Outex [69], Drexel Texture Database [71], KTH-TIPS [17,
41] and Flickr Material Dataset (FMD) [89]. In all the above cases experts identified
the set of language terms as attributes based on domain knowledge, or in some cases
through human studies [85].

Beyond textures, language-based attributes have since been proposed for a vari-
ety of other datasets and applications. Farhadi et al. [33] describe object categories
with shape, part-names and material attributes. Lampert et al. [52] proposed the
Animals with Attributes (AwA) dataset consisting of variety of animals with shared
attributes such as color, food habits, size, etc. The Caltech-UCSD Birds (CUB)
dataset [100] consists of hundreds of species of birds labeled with attributes such as
the shape the beak, color of the wings, etc. The OID:Airplanes [98] dataset consists
of airplanes labeled with attributes such as number of wings, type of wheels, shapes
of parts, etc. Attributes such as gender, eye color, hair syle, etc., have been used by
Kumar et al. [49] to recognize, describe, and retrieve faces. Other examples include
attributes of people [10], human actions [58], clothing style and fashion [19, 106],
urban tribes [50], and asthetics [30].

A challenge is using language-based attributes to the degree of specialization to
be considered. For instance, while an attribute of airplane such as the shape of the
nose can be understood by most people, an attribute such as the type of the aluminum
alloy used in manufacturing can only be understood by a domain expert. Similarly,
the scientific names of parts of animals are typically known only to a domain ex-
pert. While common attributes have the advantage that they can be annotated by
“crowdsourcing”, they may lack the precision needed for fine-grained discrimina-
tion between closely related categories. Bridging the gap between expert-defined
and commonly-used attributes remains an open question. In the context of object
categories this aspect has been studied by Ordonez et al. [70] where they learn com-
mon names (“entry-level categories”) by analyzing the frequency of usage in text
on the Internet, e.g. grampus griseus is translated to a dolphin.

3.2 Attribute discovery by automatically mining text

Language-based attributes may also be mined from large sets of images with cap-
tions. Ferrari and Zisserman [36] mine attributes of texture and color from descrip-
tions on the web. Berg et al. [6] obtain attributes by mining frequently occurring
phrases from captioned images and estimating if they are visually salient by train-
ing a classifier to predict the attribute from images (Figure 5a). In the process they
also characterize if the attributes are localized or not. Text on the Internet from
online books, Wikipedia articles, etc., have been mined to discover attributes for
objects [31] (Figure 5b), semantic affordances of objects and actions [18], and other
common-sense properties of the visual world [21].
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(a) Figure source: Berg et al. [6] (b) Figure source: Divvala et al. [31]

Fig. 5 (a) Automatically discovered handbag attributes from [6], sorted by “visualness” measured
as the predictability of the attribute based on visual features. (b) Automatically mined visual at-
tributes for various categories from books [31].

3.3 Interactive discovery of nameable attributes

While captioned images are a great source of attributes, the vast majority of cate-
gories are not well represented in captioned images on the web. In such situations
one can aim to discover nameable attributes interactively. Parikh and Grauman [73]
show annotators images that vary along a projection of the underlying features and
ask them to describe it if possible (Figure 6a). To be effective the method requires a
feature space whose projections are likely to be semantically correlated.

Patterson and Hays [80] start from a set of attributes mined from natural languge
descriptions and ask annotators to select five attributes that distinguish images from
various scene classes in the SUN database. Thus attributes suited for discrimination
within the set of images can be discovered (Figure 6b).

A similar strategy was used in my earlier work [63] where annotators were asked
to describe the visual differences between pairs of images (Figure 6c) revealing fine-
grained properties useful for discrimination. The collected data was mined to dis-
cover a lexicon of parts and attributes by analyzing the frequency and co-occurrence
of words in the descriptions (Figure 7).

3.4 Expert defined parts

Like attributes, language-based parts have been widely used in computer vision for
modeling articulated objects. An early example of this is pictorial structure model
for detecting people in images where parts were based on the human anatomy [35].
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(a) Figure source: Parikh and Grauman [73]

(b) Figure source: Patterson and Hays [80] (c) Figure source: Maji [63]

Fig. 6 Interactive attribute discovery. Annotators are asked to (a) name what varies in the
images from left to right [73], (b) select attributes that distinguish images on the left from the
right [80], and (c) describe the differences between pairs of instances [63]. The collected data is
analyzed to discover a set of nameable attributes.

Fig. 7 The vocabulary of
parts (top row) and their
attributes (bottom row) dis-
covered by from sentence
pairs describing the differ-
ences between images in
OID:Airplanes dataset [98].
The three most discrimina-
tive attributes are also shown.
Figure source: Maji [63].

A modeling decision that is unique compared to attributes is the choice of the spatial
extent, scale, pose, and other visual phenomenon, for a given semantic part.

Broadly, there are commonly used methods for collecting part annotations (Fig-
ure 8). The first is landmark-based where positions of landmarks, such as joint posi-
tions of humans, or fiducial points for faces are annotated. The second is bounding-
box-based where part bounding-boxes are explicitly labeled to define the extent of
each part. The bounding-boxes may be further refined to reflect the pixelwise sup-
port or segmentation of the parts.

When landmarks are provided one could simply assume that parts correspond
to these landmarks. This strategy has been applied for modeling faces with fidu-
cial points [113], articulated people with deformable part-based models [35, 108],
etc. Another strategy is to discover parts that correspond to frequently occurring
configuration of landmarks. The poselets approach combines this strategy with a
procedure to select a set of diverse and discriminative parts for the task of per-
son detection [9]. The discovered poselets are different from both landmarks and
anatomical parts (Figure 9a). For instance, a part consisting of half the profile face
and the right shoulder is a valid poselet. These patterns can capture distinctive ap-
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pearances that arise due to self-occlusion, foreshortening, and other phenomenon
which are hard to model in a traditional part-based model.

Fig. 8 Two methods for
collecting part annotations.
On the left, the positions of set
of landmarks are annotated.
On the right, bounding-boxes
for parts are annotated.

When bounding-boxes are provided there is relatively little flexibility in part dis-
covery. Much work in this setting has focused on effectively modeling appearance
through a mixture of templates. Additional annotations, such as viewpoint, pose, or
shape, can be used to guide mixture model learning. For instance, Vedaldi et al. [98]
show that using shape and viewpoint annotations to initialize HOG-based parts im-
proves detection accuracy compared to the aspect-ratio based clustering (Figure 9b).

4 Semantic language-free PnAs

Language-based PnAs, when applicable, provide a rich semantic representation of
objects. However language alone may not be sufficient to capture the full range
of visual phenomena. Consider the space of colors defined by the [R,G,B] values.
Berlin and Kay in their seminal work [8] analyzed the words used to describe color
across widely across languages. While languages like English have many words to
describe color, there are languages that have very few words, including an extreme
case of language with only only have two words (“bright” and “dull”) to describe
color leading to a gross simplification of the color space. Similarly, restricting one
to nameable parts poses challenges in annotating categories that are structurally
diverse. It would require significant effort to define a set of parts that apply to all
chairs, or all buildings, since the resulting set of parts would have to very large to
account for the diversity within the category. Moreover, the parts are unlikely to
have intuitive names, e.g. “top-right corner of the left handle”.

In this section we overview methods to discover semantically aligned PnA with-
out restricting oneself to language-based interfaces. The underlying approach is to
collect annotations relative to another. Such annotations provides constraints which
can be utilized to guide the alignment of the representation to semantics. We de-
scribe several examples of such approaches.
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(a) Discovered poselets for person detection (b) Detection using part mixtures

Fig. 9 Visual part discovery from annotations. (a) Poselets discovered for detecting people us-
ing landmark annotations on the PASCAL VOC dataset. Figure source: Bourdev et al. [9]. (b)
Detection AP using k = 40 mixture components based on aspect-ratio clustering, left-right cluster-
ing, and supervised shape clustering. Nose shape clusters learned by EM are shown in the bottom.
Figure source: Vedaldi et al. [98].

4.1 Attribute discovery from similarity comparisons

Similarity comparisons of the form “A is more similar to B than C”, can be used to
obtain annotations without relying on language. These can be used to transform the
data into an Euclidean space that respects the similarity constrains using methods for
distance metric learning [104, 27], large-margin nearest neighbor learning [103],
t-STE [61], Crowd Kernel Learning [96], etc.

Figure 10 shows a visualization of the categories in the CUB dataset using
a two-dimensional embedding learned from crowdsourced similarity comparisons
between images [101]. Each image-level similarity constraint is converted to a
category-level similarity constraint by using the category labels of the images from
which an embedding is learned using t-STE. A group of points on the bottom-right
corresponds to perching birds, while another group on the bottom-left corresponds
to gull-like birds.

Since a representation learned in such manner respects the underlying perceptual
similarity, it can be used as a means of interacting with a user for fine-grained recog-
nition. Wah et al. [101] build an interface where users interactively recognize bird
species by selecting the most similar image in a display. The underlying perceptual
embedding is used to select the images to be displayed in each iteration. The au-
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thors show that the method requires fewer questions to get to the right answer than
an attribute-based interface of Branson et al. [14].

A drawback of similarity comparisons is that there can be considerable ambi-
guity in the task since there are many ways to compare images. Most methods for
learning embeddings do not take this into account and hence are less robust to an-
notations collected via “crowdsouring” which can have significant noise. A number
of approaches aim to reduce this ambiguity by providing additional instructions to
the annotators.

The relative attributes approach of Parikh and Grauman [74] guides similarity
comparisons by focusing on a particular describable attribute. An example anno-
tation task is: is A smiling more than B, as seen in Figure 11a. Such annotations
are used to learn a ranking function, or a one dimensional embedding, of images
corresponding to the attribute. Relative attributes bridge the gap between categor-
ical attributes and low-dimensional semantic embeddings, and have been used for
interactive search and learning of visual attributes [75, 46].

Wah et al. [101] guide similarity comparisons by restricting the image to a part
of the object, as seen in Figure 11b, to obtain a semantic embedding of parts. The
authors use parts discovered using the discriminative patches approach [92], but part
annotations can be used instead when available. The authors show that localized
perceptual similarities provides a richer way of indicating closeness to a test image
and leads to better efficiency during interactive recognition tasks.

Fig. 10 A visualization of the first two dimensions of the 200-node category-level similarity em-
bedding. Visually similar classes tend to belong to coherent clusters (circled and shown with se-
lected representative images). Figure source: Wah et al. [101] (Best viewed digitally with zoom).

4.2 Part discovery from correspondence annotations

Traditional methods for annotating parts require a set of nameable parts. When such
parts are not readily available one can instead label correspondences between pairs
of instances. Maji and Shakhanrovich [65, 66] show that when annotators are asked
to mark correspondences between image pairs within a category, the result is fairly
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(a) Relative attributes (b) Non-localized and localized similarity

Fig. 11 (a) In the relative attributes framework an attribute is measured relative to other images,
e.g. is the person in the image smiling more, or less, than the other images. Figure source: Parikh
and Grauman [74]. (b) Global or localized similarity comparisons are used to learn a perceptual
embedding of the entire object or parts respectively. Figure source: Wah et al. [102].

consistent across annotators, even when the names of parts are not known (Fig-
ure 12a). Annotators rely on semantics beyond visual similarity to mark correspon-
dences – two windows are matched even though they are visually different.

Methods for part discovery that rely on appearance and geometry can be extended
to take into account the pairwise constraints obtained from such correspondence an-
notations. The authors propose an approach were the patches corresponding to a
semantic part are iteratively updated while respecting the underlying matches be-
tween image pairs. The resulting discovered patches are both visually and semanti-
cally aligned and can be used for rich part-based analysis of objects, including for
detection and segmentation [66].

Another method that implicitly obtains correspondences is the BubbleBank ap-
proach of Deng et al. [29]. Annotators are shown two images A and B, and asked
which of the two is the category of the third image (Figure 12b). The caveat is that
the third image is blurry, but the user can click on parts of the image to reveal what is
underneath. Since, in order to accurately recognize the category corresponding parts
have to be compared such annotations reveal the salient regions or parts for a given
category. These clicks are used to create the BubbleBank representation, a set of
parts centered around the frequently clicked locations, and applied for fine-grained
recognition.

5 Conclusion

The chapter summarizes the current techniques for PnA discovery by categorizing
them into three broad categories. The methods described are most relevant for de-
scribing and recognizing fine-grained categories, but this is by no means a complete
account of existing methods. Unsupervised part-based methods alone have a rich
history and even within the DPM family methods vary on how they model part
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(a) Pairwise correspondence annotations (b) The “Bubbles” game

Fig. 12 (a) Annotators click on corresponding regions between to indicate parts [65, 66]. (b)
The Bubbles game shows annotators a blurry image in the middle and asks which one of the two
categories, left or right, does it belong to. The user can click on a region of the blurry image to
reveal what is underneath. These clicks reveal the discriminative regions within an image which is
used to learn a part-based representation called the BubblesBank. Figure source: Deng et al. [29]

appearance and geometric relationships between parts. See Ramanan [84] for a ex-
cellent survey of classical part-based models.

Similarity, a sub-field of Human-Computer Interaction (HCI) designs “games
with purpose” to annotate properties of images including attributes and part labels.
A well known example is the ESP game [99] where a pair of annotators indepen-
dently tag images and get rewarded only if the tags match. This make it competitive
encouraging participation and reduces vandalism. Some frameworks discussed in
this chapter such as pairwise correspondence for part annotations, describing the
differences for attribute discovery, and the Bubbles game, fall into this category. For
a good overview of such techniques see the lecture notes by Law and Ahn [53].

We also did not cover methods that discover the structure of objects by analyzing
its motion over time. This has been well studied in robotics to discover the kinematic
structure of articulated objects [15, 93]. Although this works best at the instance-
level, the strategy has been used to discover parts within a category [88].

Finally, a number of recent works discover PnAs within the framework of deep
CNNs for fine-grained recognition [12, 57, 111, 112]. Although these methods have
been very successful, they bring a new set of challenges. One of them is training
models for a new domain when limited labeled data is available. Factorization of the
appearance using parts and attributes, either using labels provided explicitly through
annotations, or implicitly in the model, continues to be the method of choice for such
situations.
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