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Abstract

In this work we develop efficient methods for learning random MAP predictors
for structured label problems. In particular, we construct posterior distributions
over perturbations that can be adjusted via stochastic gradient methods. We show
that every smooth posterior distribution would suffice to define a smooth PAC-
Bayesian risk bound suitable for gradient methods. In addition, we relate the pos-
terior distributions to computational properties of the MAP predictors. We sug-
gest multiplicative posteriors to learn super-modular potential functions that ac-
company specialized MAP predictors such as graph-cuts. We also describe label-
augmented posterior models that can use efficient MAP approximations, such as
those arising from linear program relaxations.

1 Introduction

Learning and inference in complex models drives much of the research in machine learning appli-
cations, from computer vision, natural language processing, to computational biology, [1, 18, 21].
The inference problem in such cases involves assessing the likelihood of possible structured-labels,
whether objects, parsers, or molecular structures. Given a training dataset of instances and labels, the
learning problem amounts to estimate the parameters of the inference engine, so as to best describe
the labels of observed instances. The goodness of fit is usually measured by a loss function.

The structures of labels are specified by assignments of random variables, and the likelihood of the
assignments are described by a potential function. Usually, it is often feasible to only find the most
likely or maximum a-posteriori (MAP) assignment rather than sampling according to their likeli-
hood. Indeed, substantial effort has gone into developing algorithms for recovering MAP assign-
ments, either based on specific parametrized restrictions such as super-modularity [2] or by devising
approximate methods based on linear programming relaxations [21]. Learning MAP predictors is
usually done by structured-SVMs, when comparing a loss adjusted MAP prediction to its training
label [25]. In practice all loss functions that are used decompose according to the potential function,
so as not to increase the complexity of the MAP prediction task. Nevertheless, non-decomposable
loss functions capture the structures in the data that we would like to learn.

Bayesian approaches for expected loss minimization, or risk, effortlessly deal with non-
decomposable loss functions. The inference procedure samples a structure according to its posterior
likelihood, given the data, and computes its loss for the training label. Recently [17, 23] constructed
probability models through MAP predictions. These models are described by the robustness of the
MAP prediction to random changes of its parameters. Therefore, one can draw unbiased samples
from these distributions using random MAP predictions. Interestingly, when incorporating these
probability models to learning the posterior distribution for Bayesian loss minimization one would
ultimately use the PAC-Bayesian risk [11, 19, 3, 20, 5, 10].

Our work explores the different posterior distributions that emerge from PAC-Bayesian risk mini-
mization. We focus on computational aspects when constructing posterior distributions, so that they
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could be used to minimize the risk bound efficiently. We show that every smooth posterior distribu-
tion would suffice to define a smooth risk bound which can be minimized through gradient decent.
In addition, we suggest to relate the posterior distributions to the computational properties of the
MAP predictors. We suggest multiplicative posterior models to learn super-modular potential func-
tions, that come with specialized MAP predictors such as graph-cuts algorithm [2]. We also describe
label-augmented posterior models that can use efficient MAP approximations, such as those arising
from linear program relaxations [21].

2 Background

Learning complex models typically involves reasoning about the states of discrete variables whose
labels (assignments of values) specify the discrete structures of interest. The learning task which
we consider in this work is to fit parameters w that produce to most accurate prediction y ∈ Y
to a given object x. Structures of labels are conveniently described by a discrete product space
Y = Y1 × · · · × Yn. We describe the potential of relating a label y to an object x with respect to
the parameters w by real valued functions θ(y;x,w). Our goal is to learn the parameters w that
best describe the training data (x, y) ∈ S. Within Bayesian perspectives, the posterior distribution,
i.e., the distribution that one learns given the training data, is composed from a distribution over the
parameter space qw(γ) and over the labels space P [y|w, x] ∝ exp θ(y;x,w). Using the Bayes rule
we derive the posterior distribution over the structures

P [y|x] =

∫
P [y|γ, x]qw(γ)dγ (1)

Unfortunately, sampling algorithms over complex models are provably hard in theory and tend to
be slow in many cases of practical interest [7]. This is in contrast to the maximum a-posterior
(MAP) prediction, which can be computed efficiently for many practical cases, even when sampling
is provably hard.

(MAP predictor) yw(x) = arg max
y1,...,yn

θ(y;x,w) (2)

Recently, [17, 23] suggested to change of the Bayesian posterior probability models to utilize the
MAP prediction in a deterministic manner. This approach allows to sample from the posterior
distribution with a single MAP prediction:

(Random MAP predictor) P [y|x]
def
= Pγ∼qw

[
y = yγ(x)

]
(3)

A potential function is decomposed along a graphical model if it has the form θ(y;x,w) =∑
i∈V θi(yi;x,w) +

∑
i,j θi,j∈E(yi, yj ;x,w). If the graph has no cycles, the MAP prediction can

be computed efficiently using the belief propagation algorithm. Nevertheless, there are cases where
MAP prediction can be computed efficiently for graph with cycles. A potential function is called
supermodular if it is defined over Y = {−1, 1}n and its pairwise interactions favor adjacent states to
have the same label, i.e., θi,j(−1,−1;x,w)+θi,j(1, 1;x,w) ≥ θi,j(−1, 1;x,w)+θi,j(1,−1;x,w).
In such cases MAP prediction reduces to computing the min-cut (graph-cuts) algorithm.

Recently, a sequence of works attempt to solve the MAP prediction task for non-supermodular
potential function as well as general regions. These cases usually involve potentials function that
are described by a family R of subsets of variables r ⊂ {1, ..., n}, called regions. We denote by yr
the set of labels that correspond to the region r, namely (yi)i∈r and consider the following potential
functions θ(y;x,w) =

∑
r∈R θr(yr;x,w). In these cases, the MAP prediction can be formulated

as an integer linear program:

b∗ ∈ arg max
br(yr)

∑
r,yr

br(yr)θr(yr;x,w) (4)

s.t. br(yr) ∈ {0, 1},
∑
yr

br(yr) = 1,
∑
ys\yr

bs(ys) = br(yr) ∀r ⊂ s

The correspondence between MAP prediction integer linear program solutions is (yw(x))i =
arg maxyi b

∗
i (yi). Although integer linear program solvers provide an alternative to MAP predic-

tion, they may be restricted to problems of small size. This restriction can be relaxed when one
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replaces the integral constraints br(yr) ∈ {0, 1} with nonnegative constraints br(yr) ≥ 0. These
linear program relaxations can be solved efficiently using different convex max-product solvers, and
whenever these solvers produce an integral solution it is guaranteed to be the MAP prediction [21].

Given training data of object-label pairs, the learning objective is to estimate a posterior distribution
over the structured-labels, defined in Equation (3). The goodness of fit is measured by a loss function
L(ŷ, y). As we focus on random MAP predictors our goal is to learn the parameters w that minimize
the expected random MAP prediction loss, or randomized risk. We define the randomized risk at a
single instance-label pair as

R(w, x, y) =
∑
ŷ∈Y

Pγ∼qw
[
ŷ = yγ(x)

]
L(ŷ, y).

Alternatively, the randomized risk takes the form R(w, x, y) = Eγ∼qw [L(yγ(x), y)]. The random-
ized risk originates within the PAC-Bayesian generalization bounds. Intuitively, if the training set is
an independent sample, one would expect that best predictor on the training set to perform well on
unlabeled objects at test time.

3 Minimizing PAC-Bayesian generalization bounds

Our approach is based on the PAC-Bayesian risk analysis of random MAP predictors. In the fol-
lowing we state the PAC-Bayesian generalization bound for structured predictors and describe the
gradients of these bounds for any smooth posterior distribution.

The PAC-Bayesian generalization bound describes the expected loss, or randomized risk, when con-
sidering the true distributions over object-labels in the world R(w) = E(x,y)∼ρ [R(w, x, y)]. It up-
pers bound the randomized risk by the empirical randomized riskRS(w) = 1

|S|
∑

(x,y)∈S R(w, x, y)

and a penalty term which decreases proportionally to the training set size. Here we state the PAC-
Bayesian theorem, that holds uniformly for all posterior distributions over the predictions.

Theorem 1. (Catoni [3], see also [5]). Let L(ŷ, y) ∈ [0, 1] be a bounded loss function. Let
p(γ) be any probability density function and let qw(γ) be a family of probability density functions
parameterized by w. Let KL(qw||p) =

∫
qw(γ) log(qw(γ)/p(γ)). Then, for any δ ∈ (0, 1] and for

any real number λ > 0, with probability at least 1−δ over the draw of the training set the following
holds simultaneously for all w

R(w) ≤ 1

1− exp(−λ)

(
λRS(w) +

KL(qw||p) + log(1/δ)

|S|

)
For completeness we present a proof sketch for the theorem in the appendix, following Seeger’s
PAC-Bayesian approach [19], extended to to the structured label case [13]. The proof technique
replaces prior randomized risk, with the posterior randomized risk that holds uniformly for every w,
while penalizing this change by their KL-divergence. This change-of-measure step is close in spirit
to the one that is performed in importance sampling. The proof is then concluded by simple convex
bound on the moment generating function of the empirical risk.

To find the best posterior distribution, that minimizes the randomized risk, one can minimize its
empirical upper bound. We show that whenever the posterior distributions have smooth probability
density functions qw(γ), the random MAP predictor probability model is smooth as a function of w.
Thus the randomized risk bound can be minimized with gradient methods.

Theorem 2. Assume qw(γ) is smooth as a function of its parameters, then the PAC-Bayesian bound
is smooth as a function of w:

∇wRS(w) =
1

|S|
∑

(x,y)∈S

Eγ∼qw

[
∇w[log qw(γ)]L(yγ(x), y)

]
Moreover, the KL-divergence is a smooth function of w and its gradient takes the form:

∇wKL(qw||p) = Eγ∼qw

[
∇w[log qw(γ)]

(
log(qw(γ)/p(γ)) + 1

)]
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Proof: First we note that R(w, x, y) =
∫
qw(γ)L(yγ(x), y)dγ. Since qw(γ) is a probability density

function and L(ŷ, y) ∈ [0, 1] we can differentiate under the integral (cf. [4] Theorem 2.27).

∇wR(w, x, y) =

∫
∇wqw(γ)L(yγ(x), y)dγ

Using the identity ∇wqw(γ) = qw(γ)∇w log(qw(γ)) the first part of the proof follows. The
second part of the proof follows in the same manner, while noting that ∇w(qw(γ) log qw(γ)) =
(∇wqw(γ))(log qw(γ) + 1). �

The gradient of the randomized empirical risk is governed by the gradient of the log-probability
density function of its corresponding posterior model. For example, Gaussian model with mean w
and identity covariance matrix has the probability density function qw(γ) ∝ exp(−‖γ − w‖2/2),
thus the gradient of its log-density is the linear moment γ, i.e., ∇w[log qw] = γ − w.

Taking any smooth distribution qw(γ), we can find the parameters w by descending along the
stochastic gradient of the PAC-Bayesian generalization bound. The gradient of the random-
ized empirical risk is formed by two expectations, over the sample points and the posterior
distribution. Computing these expectations is time consuming, thus we use a single sample
∇γ [log qw(γ)]L(yγ(x), y) as an unbiased estimator for the gradient of the randomized empirical
risk. Similarly we estimate the gradient of the KL-divergence with an unbiased estimator which
requires a single sample of ∇w[log qw(γ)](log(qw(γ)/p(γ)) + 1). This approach, called stochastic
approximation or online gradient descent, amounts to use the stochastic gradient update rule

w ← w − η · λ∇w[log qw(γ)]
(
L(yγ(x), y) + log(qw(γ)/p(γ)) + 1

)
where η is the learning rate. Next, we explore different posterior distributions from computational
perspectives. Specifically, we show how to learn the posterior model so to ensure the computational
efficiency of its MAP predictor.

4 Learning posterior distributions efficiently

The ability to efficiently apply MAP predictors is key to the success of the learning process. Al-
though MAP predictions are NP-hard in general, there are posterior models for which they can
be computed efficiently. For example, whenever the potential function corresponds to a graphical
model with no cycles, MAP prediction can be efficiently computed for any learned parameters w.

Learning unconstrained parameters with random MAP predictors provides some freedom in choos-
ing the posterior distribution. In fact, Theorem 2 suggests one is able to learn any posterior distribu-
tion, while performing gradient descent on its risk bound, as long as its probability density function
is smooth. We show that for unconstrained parameters, additive posterior distributions simplify the
learning problem, and the complexity of the bound (i.e., its KL-divergence) mostly depends on its
prior distribution.
Corollary 1. Let q0(γ) be a smooth probability density function with zero mean and set the posterior
distribution using additive shifts qw(γ) = q0(γ − w). Let H(q) = −Eγ∼q[log q(γ)] be the entropy
function. Then

KL(qw||p) = −H(q0)− Eγ∼q0 [log p(γ + γ)]

In particular, if p(γ) ∝ exp(−‖γ‖2) is Gaussian then∇wKL(qw||p) = w

Proof: KL(qw||p) = −H(qw) − Eγ∼qw [log p(γ)]. By a linear change of variable, γ̂ = γ − w it
follows that H(qw) = H(q0) thus ∇wH(qw) = 0. Similarly Eγ∼qw [log p(γ)] = Eγ∼q0 [log p(γ +
w)]. Finally, if p(γ) is Gaussian then Eγ∼q0 [log p(γ + w)] = −w2 − Eγ∼q0 [γ2]. �

This result implies that every additively-shifted smooth posterior distribution may consider the KL-
divergence penalty as the square regularization when using a Gaussian prior p(γ) ∝ exp(−‖γ‖2).
This generalizes the standard claim on Gaussian posterior distributions [11], for which q0(γ) are
Gaussians. Thus one can use different posterior distributions to better fit the randomized empirical
risk, without increasing the computational complexity over Gaussian processes.

Learning unconstrained parameters can be efficiently applied to tree structured graphical models.
This, however, is restrictive. Many practical problems require more complex models, with many
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cycles. For some of these models linear program solvers give efficient, although sometimes approx-
imate, MAP predictions. For supermodular models there are specific solvers, such as graph-cuts,
that produce fast and accurate MAP predictions. In the following we show how to define posterior
distributions that guarantee efficient predictions, thus allowing efficient sampling and learning. For
linear program relaxations that may provide approximate MAP prediction, we show how to define
posterior distribution over extended set of labels that can be realized efficiently. For supermodular
solvers, we define posterior distributions over constrained set of parameters to guarantee efficient
random MAP predictions.

4.1 Learning posterior models with approximate MAP predictions

MAP prediction can be phrased as an integer linear program, stated in Equation (4). The computa-
tional burden of integer linear programs can be relaxed when one replaces the integral constraints
with nonnegative constraints, thus producing in some cases approximate MAP predictions. An im-
portant learning challenge is to extend the posterior distribution and its corresponding randomized
risk to incorporate approximate MAP solutions. Approximate MAP predictions are linear relaxation
solutions, hence they are described by its feasible set, usually called the local polytope:

L(R) =
{
br(yr) : br(yr) ≥ 0,

∑
yr

br(yr) = 1, ∀r ⊂ s
∑
ys\yr

bs(ys) = br(yr)
}

Linear programs solutions are usually the extreme points of their feasible polytope. The local poly-
tope is defined by a finite set of equalities and inequalities, thus it has a finite number of extreme
points. The posterior model that is defined in Equation (3) can be effortlessly extended to the finite
set of the local polytope extreme points [15]. This approach has two flaws. First, linear program
solutions might not be extreme points, and decoding such a point usually requires additional com-
putational effort. Second, without describing the linear program solutions one cannot incorporate
loss functions that take the structural properties of approximate MAP predictions into account when
computing the the randomized risk.
Theorem 3. Consider approximate MAP predictions that arise from relaxation of the MAP predic-
tion problem in Equation (4).

arg max
br(yr)

∑
r,yr

br(yr)θr(yr;x,w) s.t. b ∈ L(R)

Then any optimal solution b∗ is described by a vector ỹw(x) in the finite power sets over the regions,
Ỹ ⊂ ×r2Yr :

ỹw(x) = (ỹw,r(x))r∈R where ỹw,r(x) = {yr : b∗r(yr) > 0}
Moreover, if there is a unique optimal solution b∗ then it corresponds to an extreme point in the local
polytope.

Proof: The program is convex over a compact set, then strong duality holds. Fixing the Lagrange
multipliers λr→s(yr) to the marginal constraints

∑
ys\yr bs(ys) = br(yr), and considering the prob-

ability constraints as the domain of the program, we derive the dual program∑
r

max
yr

{
θr(yr;x,w) +

∑
c:c⊂r

λc→r(yc)−
∑
p:p⊃r

λr→p(yr)
}

Lagrange optimality constraints (or equivalently, Danskin Theorem) determine the primal op-
timal solutions b∗r(yr) to be probability distributions over the set arg maxyr{θr(yr;x,w) +∑
c:c⊂r λ

∗
c→r(yc) −

∑
p:p⊃r λ

∗
r→p(yr)} that satisfy the marginalization constraints. Thus ỹw,r(x)

is the information that identifies the primal optimal solutions, i.e., any other primal feasible solution
that has the same ỹw,r(x) is also a primal optimal solution. �

This theorem extends Proposition 3 in [6] to non-binary and non-pairwise graphical models. The
theorem describes the discrete structures of approximate MAP predictions. Thus we are able to
define posterior distributions that use efficient, although approximate, predictions while taking into
account their structures. To integrate these posterior distributions to randomized risk we extend the
loss function to L(ỹw(x), y). One can verify that the results in Section 3 follow through, e.g., by
considering loss functions L : Ỹ × Ỹ → [0, 1] while the training examples labels belong to the
subset Y ⊂ Ỹ .
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4.2 Learning constrained posterior models

MAP predictions can be computed efficiently in important practical cases, e.g., supermodular poten-
tial functions satisfying θi,j(−1,−1;x,w) + θi,j(1, 1;x,w) ≥ θi,j(−1, 1;x,w) + θi,j(1,−1;x,w).
Whenever we restrict ourselves to symmetric potential function θi,j(yi, yj ;x,w) = wi,jyiyj , super-
modularity translates to nonnegative constraint on the parameters wi,j ≥ 0. In order to model
posterior distributions that allow efficient sampling we define models over the constrained parame-
ter space. The additive posterior models qw(γ) = q0(γ − w) are inappropriate for this purpose, as
they have a positive probability for negative γ values and would generate non-supermodular models.

To learn constrained parameters we require to devise posterior distributions that respect these con-
straints. For nonnegative parameters we apply posterior distributions that are defined on the non-
negative real numbers. We suggest to incorporate the parameters of the posterior distribution in a
multiplicative manner into a distribution over the nonnegative real numbers. For any distribution
qα(γ) we determine a posterior distribution with parameters w as qw(γ) = qα(γ/w)/w. We show
that multiplicative posterior models naturally provide log-barrier functions over the constrained set
of nonnegative numbers. This property is important to the computational efficiency of the bound
minimization algorithm.

Corollary 2. For any probability distribution qα(γ), let qα,w(γ) = qα(γ/w)/w be the parametrized
posterior distribution. Then

KL(qα,w||p) = −H(qα)− logw − Eγ∼qα [log p(wγ)]

Define the Gamma function Γ(α) =
∫∞
0
γα−1 exp(−γ). If p(γ) = qα(γ) = γα−1 exp(−γ)/Γ(α)

have the Gamma distribution with parameter α, then Eγ∼qα [log p(wγ)] = (α − 1) logw − αw.
Alternatively, if p(γ) are truncated Gaussians then Eγ∼qα [log p(wγ)] = α

2w
2 + log

√
π/2.

Proof: The entropy of multiplicative posterior models naturally implies the log-barrier function:

−H(qα,w)
γ̂=γ/w

=

∫
qα(γ̂)

(
log qα(γ̂)− logw

)
dγ̂ = −H(qα)− logw.

Similarly, Eγ∼qα,w [log p(γ)] = Eγ∼qα [log p(wγ)]. The special cases for the Gamma and the trun-
cated normal distribution follow by a direct computation. �

The multiplicative posterior distribution would provide the barrier function− logw as part of its KL-
divergence. Thus the multiplicative posterior effortlessly enforces the constraints of its parameters.
This property suggests that using multiplicative rules are computationally favorable. Interestingly,
using a prior model with Gamma distribution adds to the barrier function a linear regularization term
‖w‖1 that encourages sparsity. On the other hand, a prior model with a truncated Gaussian adds a
square regularization term which drifts the nonnegative parameters away from zero. A computatioal
disadvantage of the Gaussian prior is that its barrier function cannot be controlled by a parameter α.

5 Empirical evaluation

We perform experiments on an interactive image segmentation. We use the Grabcut dataset proposed
by Blake et al. [1] which consists of 50 images of objects on cluttered backgrounds and the goal is
to obtain the pixel accurate segmentations of the object given an initial “trimap”, see Figure1. The
“trimap” is an approximate segmentation of the image into regions that are well inside, well outside
and the boundary of the object, something a user can easily specify in an interactive application.

A popular approach for segmentation is the GrabCut approach [2, 1]. We learn parameters for the
“Gaussian Mixture Markov Random Field” (GMMRF) formulation of [1] using a potential func-
tion over foreground/background segmentations Y = {−1, 1}n: θ(y;x,w) =

∑
l∈V θi(yi;x,w) +∑

i,j∈E θi,j(yi, yj ;x,w). The local potentials are θi(yi;x,w) = wyi logP (yi|x), where wyi are
parameters to be learned while P (yi|x) are obtained from a Gaussian mixture model learned on the
background and foreground pixels for an image x in the initial “trimap”. The pairwise potentials are
θi,j(yi, yj ;x,w) = wa exp(−(xi − xj)2)yiyj , where xi denotes the intensity of image x at pixel
i, and wa are the parameters to be learned for the angles a ∈ {0, 90,−45, 45}. These potential
functions are supermodular as long as the parameters wa are nonnegative, thus MAP prediction can
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Method Grabcut loss PASCAL loss
Our method 7.77% 5.29%

Structured SVM (hamming loss) 9.74% 6.66%
Structured SVM (all-zero loss) 7.87% 5.63%

GMMRF (Blake et al. [1]) 7.88% 5.85%
Perturb-and-MAP ([17]) 8.19% 5.76%

Table 1: Learning the Grabcut segmentations using two different loss functions. Our learned param-
eters outperform structured SVM approaches and Perturb-and-MAP moment matching

Figure 1: Two examples of image (left), input “trimap” (middle) and the final segmentation (right)
produced using our learned parameters.

be computed efficiently with the graph-cuts algorithm. For these parameters we use multiplicative
posterior model with the Gamma distribution. The dataset does not come with a standard train-
ing/test split so we use the odd set of images for training and even set of images for testing. We use
stochastic gradient descent with the step parameter decaying as ηt = η

to+t
for 250 iterations.

We use two different loss functions for training/testing for our approach to illustrate the flexibility
of our approach for learning using various task specific loss functions. The GrabCut loss measures
the fraction of incorrect pixels labels in the region specified as the boundary in the “trimap”. The
PASCAL loss, a commonly used loss in various image segmentation benchmarks, measures the ratio
of the intersection over union of the foregrounds of ground truth segmentation and the solution.

As a comparison we also trained parameters using moment matching of MAP perturbations [17]
and structured SVM with different loss functions. We use a stochastic gradient approach with a
decaying step size for 1000 iterations. Using structured SVM, solving loss-augmented inference
maxŷ∈Y {L(y, ŷ) + θ(y;x,w)} with the hamming loss can be efficiently done using graph-cuts. We
also consider learning parameters with all-zero loss function, i.e., L(y, ŷ) ≡ 0. To ensure that the
weights remain non-negative we project the weights into the non-negative side.

Table 1 shows the results of learning using various methods. On comparing methods using the
GrabCut loss, our method obtains comparable results to the GMMRF framework of [1], which
used hand-tuned parameters, and it is significantly better when PASCAL loss is used. Our method
also outperforms the parameters learned using structured SVM and Perturb-and-MAP approaches.
In our experiments the structured SVM with the hamming loss did not perform well – the loss
augmented inference tended to focus on maximum violations instead of good solutions which causes
the parameters to change even though the MAP solution has a low loss (a similar phenomenon was
observed in [22]). Using the all-zero loss tends to produce better results in practice as seen in Table 1.
Figure 1 shows some examples images, the input “trimaps”, and the segmentations obtained using
our approach.

6 Related work

Recent years have introduced many optimization techniques that lend efficient MAP predictors for
complex models. These MAP predictors can be integrated to learn complex models using structured-
SVM [25]. Structured-SVM has a drawback, as its MAP prediction is adjusted by the loss function,
therefore it has an augmented complexity. Recently, there has been an effort to efficiently integrate
non-decomposable loss function into structured-SVMs [24]. However this approach does not hold
for any loss function.

Bayesian approaches to loss minimization treat separately the prediction process and the loss in-
curred, [12]. However, the Bayesian approach depends on the efficiency of its sampling procedure,
but unfortunately, sampling in complex models is harder that the MAP prediction task [7].
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The recent works [17, 23, 8, 9, 16] integrate efficient MAP predictors into Bayesian modeling. [23]
describes the Bayesian perspectives, while [17, 8] describe their relations to the Gibbs distribu-
tion and moment matching. [9] provide unbiased samples form the Gibbs distribution using MAP
predictors and [16] present their measure concentration properties. Other strategies for producing
(pseudo) samples efficiently include Herding [26]. However, these approaches do not consider risk
minimization.

The random MAP predictor models in Equation (3) play a key role in PAC-Bayesian theory
[14, 11, 19, 3, 20, 5, 10]. The PAC-Bayesian approaches focus on generalization bounds to the
object-label distribution. However, the posterior models in the PAC-Bayesian approaches were not
extensively studied in the past. In most cases the posterior model remained undefined. [10] inves-
tigate linear predictors with Gaussian posterior models to have a structured-SVM like bound. This
bound holds uniformly for every λ and its derivation is quite involved. In contrast we use Catoni’s
PAC-Bayesian bound that is not uniform over λ but does not require the log |S| term [3, 5]. The sim-
plicity of Catoni’s bound (see Appendix) makes it amenable to different extensions. In our work, we
extend these results to smooth posterior distributions, while maintaining the quadratic regularization
form. We also describe posterior distributions for non-linear models. In different perspective, [3, 5]
describe the optimal posterior, but unfortunately there is no efficient sampling procedure for this
posterior model. In contrast, our work explores posterior models which allow efficient sampling.
We investigate two posterior models: the multiplicative models, for constrained MAP solvers such
as graph-cuts, and posterior models for approximate MAP solutions.

7 Discussion

Learning complex models requires to consider non-decomposable loss functions that take into ac-
count the desirable structures. We suggest to use the Bayesian perspectives to efficiently sample and
learn such models using random MAP predictions. We show that every smooth posterior distribu-
tion would suffice to define a smooth PAC-Bayesian risk bound which can be minimized through
gradient decent. In addition, we suggest to relate the posterior distributions to the computational
properties of the MAP predictors. We suggest multiplicative posterior models to learn supermodular
potential functions, that come with specialized MAP predictors such as graph-cuts algorithm. We
also describe label-augmented posterior models that can use efficient MAP approximations, such
as those arising from linear program relaxations. We did not evaluate the performance of these
posterior models and further explorations of such models is required.

The results here focus on posterior models that would allow for efficient sampling using MAP pre-
dictions. There are other cases for which specific posterior distributions might be handy, e.g., learn-
ing posterior distributions of Gaussian mixture models. In these cases, the parameters include the
covariance matrix, thus would require to sample over the family of positive definite matrices.

A Proof sketch for Theorem 1

Theorem 2.1 in [5]: For any distribution D over object-labels pairs, for any w-parametrized
distribution qw, for any prior distribution p, for any δ ∈ (0, 1], and for any convex function
D : [0, 1] × [0, 1] → R, with probability at least 1 − δ over the draw of the training set the di-
vergence D(Eγ∼qwRS(γ), Eγ∼qwR(γ)) is upper bounded simultaneously for all w by

1

|S|

[
KL(qw||p) + log

(1

δ
Eγ∼pES∼Dm exp

(
mD(RS(γ), R(γ))

))]
For D(RS(γ), R(γ)) = F(R(γ)) − λRS(γ), the bound reduces to a simple convex bound on the
moment generating function of the empirical risk: ES∼Dm exp

(
mD(RS(γ, x, y), R(γ, x, y))

)
=

exp(mF(R(γ)))ES∼Dm exp(−mλRS(γ)) Since the exponent function is a convex function of
RS(γ) = RS(γ) · 1 + (1−RS(γ)) · 0, the moment generating function bound is exp(−λRS(γ)) ≤
RS(γ) exp(−λ) + (1 − RS(γ)). Since ESRS(γ) = R(γ), the right term in the risk bound in
can be made 1 when choosing F(R(γ)) to be the inverse of the moment generating function
bound. This is Catoni’s bound [3, 5] for the structured labels case. To derive Theorem 1 we ap-
ply exp(−x) ≤ 1 − x to derive the lower bound (1 − exp(−λ))Eγ∼qwR(γ) − λEγ∼qwRS(γ) ≤
D(Eγ∼qwRS(γ), Eγ∼qwR(γ)).
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