
A User Friendly Crowdsourcing Task Manager

Tomas Matera Jan Jakes Munan Cheng

Department of Computer Science and Engineering
University of California, San Diego

{tmatera,jajakes,mucheng}@cs.ucsd.edu

Serge Belongie

Cornell NYC Tech
Cornell University

1. Introduction

Data collection via crowdsourcing often entails creat-
ing a user interface, a server-side system to store the col-
lected information, data quality assurance algorithms and
other repetitive, time-consuming tasks. Although there are
some crowdsourcing web services that provide APIs such
as Amazon Mechanical Turk (MTurk)1, a lot of work still
has to be done to deploy a customized Human Intelligence
Task (HIT) and harvest the data.

We present a crowdsourcing task manager that allows
task requesters to deploy such tasks with just a few clicks,
share the task easily with their workers, deploy it to third-
party crowdsourcing services, automatically collect addi-
tional data about the activity of the workers and perform
quality assurance on the data. We demonstrate the capabil-
ities of the system using an example implementation of a
worker template for assessment of image similarity.

2. Related Work

Some crowdsourcing tools have been developed to work
with Amazon MTurk API such as TurKit [2], a tool provid-
ing a programming API to run iterative tasks on MTurk.
TurKit allows programmers to include HITs as a part of
their algorithm and thus iteratively ask wokers to work on
some data. A similar tool called Turkomatic [1] focuses on
running recursive tasks on MTurk, automates the workflow
of complex tasks and lets the workers subdivide the task into
smaller units. Another toolbox called LabelMe [3] was de-
veloped especially for labeling objects in images. Currently
it provides a web service, an iPhone application and Matlab
bindings.

In contrast to the above examples, our tool does not re-
quire downloading, setup or programming to be used since
it is built as a cloud service. Also, it does not focus on a
specific problem but intends to be highly general.

1http://aws.amazon.com/mturk/

Figure 1. Screenshot of the requester environment.

3. System Architecture

The system is built as a user-friendly Software as a Ser-
vice (SaaS) web application, running on top of Amazon
Web Services (AWS). It exposes two separate user envi-
ronments – a task requester interface to set up, manage and
monitor HITs (see Fig. 1), and a worker environment for the
actual data collection (see Fig. 2). The system cooperates
with other modules that take care of user authorization, re-
source management and credentials storage for third-party
crowdsourcing services in a secure way. In the remainder of
this section we briefly describe each of the key components
of the system.

3.1. Screen

A screen is a basic unit that exposes concrete data to the
worker and asks her to perform an action. Such action can
consist of anything that can be done in a web browser and
sent back to the server. The actual form of the action is
defined by a template (Sec. 3.3), the screens are grouped
into a set (Sec. 3.2), some of them can have a special role
(Sec. 3.4) and the time a worker spends on each screen is
monitored by a timer (Sec. 3.5).

1

http://aws.amazon.com/mturk/


Figure 2. Screenshot of the worker environment.

3.2. Set of Screens

A set of screens is the smallest unit of work a worker
must do to have his answers submitted. Each screen in the
set requires the worker to perform the same action but on
a different data. The total number of screens in the set can
be configured by the task requester. Each set can contain
a fixed number of special screens that serve to evaluate the
quality of the collected data. This functionality is further
explained in Sec. 3.4.

When deploying the crowdsourcing task to third-party
services such as MTurk, a set of screens will be also the
smallest unit for which a worker can be paid. The current
capabilities of the system are presented in Sec. 4.

3.3. Templates

A template defines the specific action that the worker
is requested to do and determines the appearance of the
screen. In the case of collecting image similarities the ac-
tion is implemented as a single or multiple item selection
where each of the displayed items can be enlarged to in-
spect the details before answering.

From the internal perspective, the template also defines
the type of data the tasks entail, which items will be shown
on the screens and the possible mechanisms for quality as-
surance.

3.4. Quality Assurance

Quality assurance is an essential part of crowdsourcing
since some of the workers may be unqualified or lack moti-
vation to provide correct responses. Fine-tuned settings on
third-party crowdsourcing services and worker redundancy
can address this problem to some extent, but in practice a
lot of wrong data can be still collected.

Our proposed system incorporates active detection of
incompetent workers through the use of catch trials (also
known as gold data), i.e., requester-prepared screens with
known, unambiguous solutions that can be added to each
screen set as desired. If a worker submits a wrong solution

the requester can discard the entire screen to keep out bad
data.

3.5. Timer

The time spent by the worker on a screen can reflect the
difficulty of a task and thereby provide some information
about the quality of the answer. Our system measures and
stores the times for each worker on every screen and the
interpretation of this information is up to the requester.

To achieve maximum precision the timers run on the
client side and monitor worker activity. If the user is inac-
tive or leaves the screen, the timer pauses and reverts back
to the last activity. On any activity the timer is started again
and continues from the last activity.

3.6. Goals

The task can be automatically terminated after reaching
desired goals. Currently the task can be limited in time, by
the number of submitted HITs or a combination of the two.

4. Third-party Platform Integration
To spread the task among the workers the system incor-

porates a workforce section that automates publishing tasks
onto third-party platforms. Currently, we support deploy-
ment of the tasks on Amazon MTurk. To simplify result
aggregation and analysis, the actual answers are stored in
our system together with those submitted by workers from
other sources. The requester can set up the automatic ap-
proval delay and choose to reject submissions that do not
meet the quality standard.

5. Future Work
To turn our system into a truly general crowdsourc-

ing tool, we plan to implement and test additional task
templates and automate more steps of the data collection
pipeline. We also intend to integrate with other third-party
crowdsourcing services to allow requesters to benefit from
alternatives to the very popular MTurk platform.

References
[1] A. Kulkarni, M. Can, and B. Hartmann. Turkomatic: Auto-

matic Recursive Task and Workflow Design for Mechanical
Turk, 2011. 1

[2] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. TurKit:
Human Computation Algorithms on Mechanical Turk, 2014.
UIST 2010. 1

[3] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman.
LabelMe: a Database and Web-based Tool for Image Annota-
tion. International Journal of Computer Vision, 77(1–3):157–
173, 2008. 1


