
CS 312: Algorithms
More Dynamic Programming: Rod Cutting

Dan Sheldon

Mount Holyoke College

Last Compiled: November 5, 2018

Dynamic Programming Recipe

I Step 1: Devise simple recursive algorithm
I Make one decision by trying all possibilities
I Use a recursive solver to evaluate the value of each
I Problem: it does redundant work, often exponential time

I Step 2: Write recurrence for optimal value

I Step 3: Design iterative algorithm

I Weighted interval scheduling: first decision has two options
I Rod-cutting: first decision has n options

Rod Cutting

I Formulate problem on board

I Problem Input:
I Steel rod of length n, can be cut into integer lengths
I Price p(i) for a rod of length i

I Goal
I Cut rods into lengths i1, . . . , ik such that i1 + i2 + . . . ik = n.
I Maximize value p(i1) + p(i2) + . . . + p(in)

First decision?

Choose length i of first piece, then recurse on smaller rod

Steps 1 and 2
Step 1: Recursive Algorithm.

CutRod(j)
if j = 0 then return 0
best = 0
for i = 1 to j do

val = p[i] + CutRod(j − i)
best = max(best, val)

end for
return best

I Running time for CutRod(n)? Θ(2n)

Step 2: Recurrence

OPT(j) = max
1≤i≤j

{
pi + OPT(j − i)

}

OPT(0) = 0

From Recurrence to Algorithm

OPT(j) = max
1≤i≤j

{
pi + OPT(j − i)

}

OPT(0) = 0

What size memoization array M? What order to fill?

I M [·] accepts same “arguments” as OPT(j) → indices of unique
subproblems. Range of values of j determines size of M .
M [0..n]

I Fill M so RHS values are computed before LHS. Fill from 0 to n



Step 3: Iterative Algorithm
I Array M [0..n] where M [j] holds value of OPT(j). Fill from 0 to

n.
CutRod-Iterative
Initialize array M [0..n]
Set M [0] = 0
for j = 1 to n do

best = 0
for i = 1 to j do

val = p[i] + M [j − i]
best = max(best, val)

end for
Set M [j] = best

end for

I Running time? Θ(n2) Note: body of for loop identical to
recursive algorithm, directly implements recurrence

Epilogue: Recover Optimal Solution

Trace back from end and reconstruct choices that lead to optimal
value

Run previous algorithm to fill in M array, but with the following
modification: let first-cut[j] be the index i that leads to the
largest value when computing M [j].

cuts = {}
j = n . Remaining length
while j > 0 do

j = j − first-cut[j]
cuts = cuts ∪ {first-cut[j]}

end while


