

CS 312: Algorithms

More Dynamic Programming: Rod Cutting

Dan Sheldon

Mount Holyoke College

Last Compiled: November 5, 2018

Dynamic Programming Recipe

- ▶ **Step 1:** Devise simple recursive algorithm
 - ▶ Make *one decision* by trying all possibilities
 - ▶ Use a recursive solver to evaluate the value of each
 - ▶ **Problem:** it does redundant work, often exponential time
- ▶ **Step 2:** Write recurrence for optimal value
- ▶ **Step 3:** Design iterative algorithm

- ▶ Weighted interval scheduling: first decision has two options
- ▶ Rod-cutting: first decision has n options

Rod Cutting

- ▶ Formulate problem on board
- ▶ **Problem Input:**
 - ▶ Steel rod of length n , can be cut into integer lengths
 - ▶ Price $p(i)$ for a rod of length i
- ▶ **Goal**
 - ▶ Cut rods into lengths i_1, \dots, i_k such that $i_1 + i_2 + \dots + i_k = n$.
 - ▶ Maximize value $p(i_1) + p(i_2) + \dots + p(i_n)$

First decision?

Choose length i of first piece, then recurse on smaller rod

Steps 1 and 2

Step 1: Recursive Algorithm.

```
CutRod(j)
  if j = 0 then return 0
  best = 0
  for i = 1 to j do
    val = p[i] + CutRod(j - i)
    best = max(best, val)
  end for
  return best
```

- ▶ Running time for CutRod(n)? $\Theta(2^n)$

Step 2: Recurrence

$$\text{OPT}(j) = \max_{1 \leq i \leq j} \{p_i + \text{OPT}(j - i)\}$$
$$\text{OPT}(0) = 0$$

From Recurrence to Algorithm

$$\text{OPT}(j) = \max_{1 \leq i \leq j} \{p_i + \text{OPT}(j - i)\}$$
$$\text{OPT}(0) = 0$$

What size memoization array M ? What order to fill?

- ▶ $M[\cdot]$ accepts same “arguments” as $\text{OPT}(j) \rightarrow$ indices of unique subproblems. Range of values of j determines size of M .
 $M[0..n]$
- ▶ Fill M so RHS values are computed before LHS. Fill from 0 to n

Step 3: Iterative Algorithm

- ▶ Array $M[0..n]$ where $M[j]$ holds value of $\text{OPT}(j)$. Fill from 0 to n .

CutRod-Iterative

```
Initialize array  $M[0..n]$ 
Set  $M[0] = 0$ 
for  $j = 1$  to  $n$  do
     $\text{best} = 0$ 
    for  $i = 1$  to  $j$  do
         $\text{val} = p[i] + M[j - i]$ 
         $\text{best} = \max(\text{best}, \text{val})$ 
    end for
    Set  $M[j] = \text{best}$ 
end for
```

- ▶ Running time? $\Theta(n^2)$ Note: body of for loop identical to recursive algorithm, directly implements recurrence

Epilogue: Recover Optimal Solution

Trace back from end and reconstruct choices that lead to optimal value

Run previous algorithm to fill in M array, but with the following modification: let $\text{first-cut}[j]$ be the index i that leads to the largest value when computing $M[j]$.

```
cuts = {}
 $j = n$  ▷ Remaining length
while  $j > 0$  do
     $j = j - \text{first-cut}[j]$ 
    cuts = cuts  $\cup \{\text{first-cut}[j]\}$ 
end while
```