CS 312: Algorithms

More Dynamic Programming: Rod Cutting

Dan Sheldon

Mount Holyoke College

Last Compiled: November 5, 2018

Dynamic Programming Recipe

v

v

v

v

v

Step 1: Devise simple recursive algorithm

» Make one decision by trying all possibilities
» Use a recursive solver to evaluate the value of each
» Problem: it does redundant work, often exponential time

Step 2: Write recurrence for optimal value

Step 3: Design iterative algorithm

Weighted interval scheduling: first decision has two options
Rod-cutting: first decision has n options

Rod Cutting

» Formulate problem on board

» Problem Input:

» Steel rod of length n, can be cut into integer lengths
» Price p(i) for a rod of length 4

» Goal

» Cut rods into lengths i1, ..., 4 such that iy +is +...ip = n.

> Maximize value p(i1) + p(ia) + ... + p(in)

First decision?

Choose length i of first piece, then recurse on smaller rod

Steps 1 and 2
Step 1: Recursive Algorithm.

CutRod(7)
if j = 0 then return 0
best = 0

fori=1to j do
val = p[i| + CutRod(j — 7)
best = max(best, val)

end for

return best

> Running time for CutRod(n)? ©(2")

Step 2: Recurrence
OPT(j) = max {p; + OPT(j — i)}
OPT(0) =0

From Recurrence to Algorithm

OPT(j) = max {pi + OPT(j — i)}

OPT(0) = 0

What size memoization array M? What order to fill?

| 4

>

M|] accepts same “arguments” as OPT(j) — indices of unique
subproblems. Range of values of j determines size of M.
M]I0..n]

Fill M so RHS values are computed before LHS. Fill from 0 to n




Step 3: lterative Algorithm

> Array M(0..n] where M[j] holds value of OPT(j). Fill from 0 to

n.

CutRod-Iterative
Initialize array M|0..n]
Set M[0] =0
for j =1 tondo
best =0
fori=1to j do
val = pli] + M[j —1]
best = max(best, val)
end for
Set M[j] = best
end for

> Running time? ©(n?) Note: body of for loop identical to
recursive algorithm, directly implements recurrence

Epilogue: Recover Optimal Solution

Trace back from end and reconstruct choices that lead to optimal
value

Run previous algorithm to fill in M array, but with the following
modification: let first-cut[j] be the index i that leads to the
largest value when computing Mj].

cuts = {}
j=n > Remaining length
while j > 0 do

j = j — first-cut[j]
cuts = cuts U {first-cut[j]}
end while




