

COMPSCI 311: Introduction to Algorithms

Lecture 12: Divide and Conquer

Dan Sheldon

University of Massachusetts Amherst

A More General Recurrence

$$\begin{aligned} T(n) &\leq q \cdot T(n/2) + cn \\ T(2) &\leq c \end{aligned}$$

- ▶ What does the algorithm look like?
 - ▶ q recursive calls to itself on problems of **half** the size
 - ▶ $O(n)$ work outside of the recursive calls
- ▶ **Exercises / board work:** $q = 1, q > 2$ (recursion trees)

Review

Recursion Tree: $q = 1$

level # problems

0 1

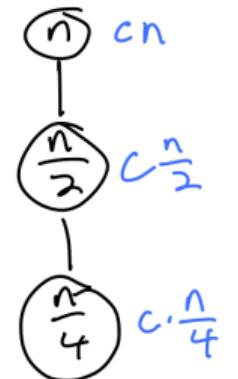
1 1

2 1

3 1

4 1

$\log_2(n) - 1$



work/level

cn

$c \cdot \frac{n}{2}$

$c \cdot \frac{n}{4}$

\vdots

$c \cdot \frac{n}{2^i}$

\vdots

2

Review

Recursion Tree: $q > 2$

level #problems

0 1

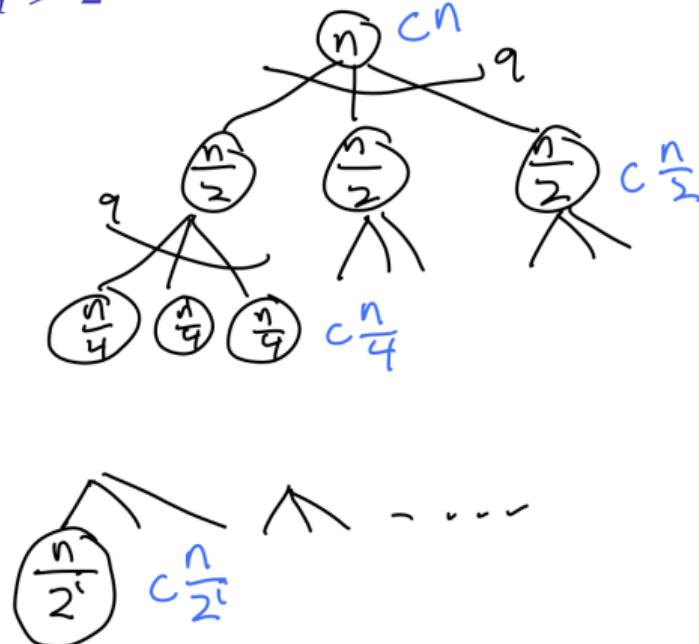
1 q

2 q^2

⋮

i q^i

⋮



work/level

$$cn = cn$$

$$q \cdot c \frac{n}{2} = cn \left(\frac{q}{2}\right)$$

$$q^2 \cdot c \frac{n}{4} = cn \left(\frac{q^2}{2^2}\right)$$

⋮ ⋮

$$q^i \cdot c \frac{n}{2^i} = cn \left(\frac{q^i}{2^i}\right)$$

$$d = \log_2(n) - 1$$

General Case

Work at level j of recursion tree:

$$\underbrace{q^j}_{\text{num. subproblems}} \times \underbrace{cn/2^j}_{\text{work per subproblem}} = \left(\frac{q}{2}\right)^j cn$$

Total work:

$$T(n) = cn \cdot \sum_{j=0}^d \left(\frac{q}{2}\right)^j \quad (d = \log_2 n - 1)$$

$q = 1$? Easy to see $T(n) \leq 2cn = O(n)$.

Useful Fact: Geometric Sum

If $r \neq 1$ then

$$1 + r + r^2 + \dots + r^d = \frac{r^{d+1} - 1}{r - 1}$$

General Case ($q > 2$)

$$T(n) = cn \cdot \sum_{j=0}^d \left(\frac{q}{2}\right)^j \quad (d = \log_2 n - 1)$$

Let $r = q/2 > 1$. Then

Therefore,

$$\begin{aligned} \sum_{j=0}^d r^j &= \frac{r^{d+1} - 1}{r - 1} \\ &\leq \frac{1}{r-1} r^{d+1} \\ &= \frac{1}{r-1} \left(\frac{q}{2}\right)^{\log_2 n} \\ &= \frac{1}{r-1} n^{\log_2 \frac{q}{2}} \\ &= O(n^{\log_2 q - 1}) \end{aligned}$$

$$\begin{aligned} T(n) &= cn \cdot O(n^{\log_2 q - 1}) \\ &= O(n^{\log_2 q}) \end{aligned}$$

E.g., $q = 3$, $T(n)$ is $O(n^{1.59})$

Summary

Useful general recurrence and its solutions:

$$T(n) \leq q \cdot T(n/2) + cn$$

1. $q = 1$: $T(n) = O(n)$ dominated by root
2. $q = 2$: $T(n) = O(n \log n)$ same work every level
3. $q > 2$: $T(n) = O(n^{\log_2 q})$ dominated by leaves

Work at is either exponentially decreasing, staying same, or exponentially increasing with level

Algorithms with these recurrences?

1. ???
2. MSS, Mergesort
3. Integer multiplication...

Clicker Question

Which of the following is *not* true ?

- A. $n \log n = O(n^2)$
- B. $n \log n = O(n^{1.1})$
- C. There exists some k such that $n \log n = \Theta(n^k)$.
- D. $n \log n = \Omega(n \log \log n)$

Master Theorem

Consider the general recurrence:

$$T(n) \leq aT\left(\frac{n}{b}\right) + cn^d$$

Clicker. How many leaves are in the recursion tree?

- A. $\Theta(a^{\log_b n})$
- B. $\Theta(n^{\log_b a})$
- C. $\Theta(b^{\log_a n})$
- D. Both a and b

Master Theorem

Consider the general recurrence:

$$T(n) \leq aT\left(\frac{n}{b}\right) + cn^d$$

Clicker. How much work is done outside recursion at the root of the recursion tree?

- A. $\Theta(n^d)$
- B. $\Theta(n^a)$
- C. $\Theta(n^b)$
- D. None of the above

Master Theorem

Consider the general recurrence:

$$T(n) \leq aT\left(\frac{n}{b}\right) + cn^d$$

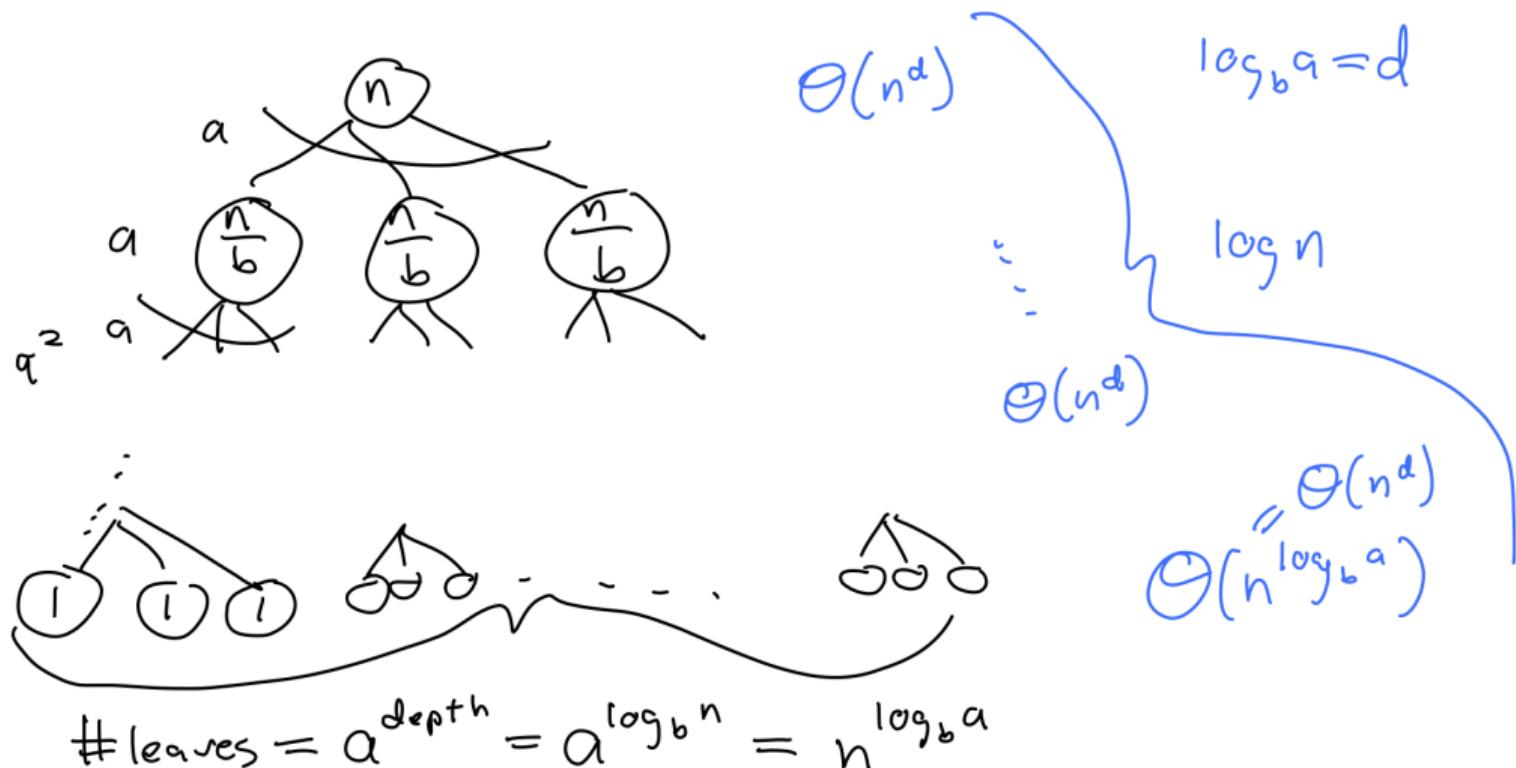
This solves to:

$$T(n) = \begin{cases} \Theta(n^d) & \text{if } \log_b a < d \\ \Theta(n^d \log n) & \text{if } \log_b a = d \\ \Theta(n^{\log_b a}) & \text{if } \log_b a > d \end{cases}$$

Intuition: work at each level of the recursion tree is (1) decreasing exponentially, (2) staying the same, (3) increasing exponentially.

Pick the largest of work at root vs. work at leaves; multiply by $\log n$ if same.

Master Theorem Intuition Review



Clicker

Master Theorem:

$$T(n) \leq aT\left(\frac{n}{b}\right) + cn^d$$

$$T(n) = \begin{cases} \Theta(n^d) & \text{if } \log_b a < d \\ \Theta(n^d \log n) & \text{if } \log_b a = d \\ \Theta(n^{\log_b a}) & \text{if } \log_b a > d \end{cases}$$

Suppose $T(n) = 9T(n/3) + n^d$. What is the largest value for d below such that $T(n) = \Theta(n^2)$?

- A. $d = 1$
- B. $d = 1.5$
- C. $d = 2$
- D. $d = 3$