
COMPSCI 311: Introduction to Algorithms
Lecture 10: Divide and Conquer

Dan Sheldon

University of Massachusetts Amherst

Divide and Conquer: Recipe

▶ Divide problem into several parts

▶ Solve each part recursively

▶ Combine solutions to sub-problems into overall solution

Learning Goals

Greedy Divide and Conquer

Formulate problem
Design algorithm ✓
Prove correctness ✓
Analyze running time ✓
Specific algorithms Dijkstra, MST

Motivating Problem: Maximum Subsequence Sum (MSS)

▶ Input: array A of n numbers, e.g.

A = 4, −3, 5, −2, −1, 2, 6, −2

▶ Find: value of the largest subsequence sum

A[i] + A[i + 1] + . . . + A[j]

▶ (empty subsequence allowed and has sum zero)

▶ MSS in example? 11 (first 7 elements)

Clicker

Which of the following is true for a maximum-sum subsequence?

A. It has more positive than negative numbers

B. It does not start or end with a negative number

C. Any maximal sequence of negative numbers is bordered by a sequence of positive
numbers with sum larger in absolute value

A Simple MSS Algorithm

Brute force in Θ(n2) (c.f K&T Chapter 2, Exercise 6)

MSS(A)
Initialize all entries of n × n array B to zero
for i = 1 to n do

sum = 0
for j = i to n do

compute sum of A[i] ... A[j]
B[i, j] = sum

Return maximum value among all B[i, j]

Running time? O(n2). Can we do better?

Divide-and-conquer for MSS

▶ Recursive solution for MSS

▶ Idea:
▶ Find MSS L in left half of array
▶ Find MSS R in right half of array
▶ Find MSS M for sequence that crosses the midpoint

A =
M=11︷ ︸︸ ︷

4, −3, 5︸ ︷︷ ︸
L=6

, −2, −1, 2, 6︸︷︷︸
R=8

, −2

▶ Return max(L, R, M)
▶ Change one entry to make MSS=R. −2 → −10
▶ How to find L, R, M?

MSS(A, left, right)
if right − left ≤ 2 then ▷ Base case

Solve directly and return MSS

mid = ⌊ left+right
2 ⌋ ▷ Recurse on left and right halves

L = MSS(A, left, mid)
R = MSS(A, mid+1, right)

Set sum = 0 and L′ = 0 ▷ Compute L′ (left part of M)
for i = mid down to left do

sum += A[i]
L′ = max(L′, sum)

Set sum = 0 and R′ = 0 ▷ Compute R′ (right part of M)
for i mid+1 to right do

sum += A[i]
R′ = max(R′, sum)

M = L′ + R′ ▷ Compute M

return max(L, R, M) ▷ Return max

MSS(A, left, right)
if right − left ≤ 2 then

Solve directly and return MSS

mid = ⌊ left+right
2 ⌋

L = MSS(A, left, mid)
R = MSS(A, mid+1, right)

Set sum = 0 and L′ = 0
for i = mid down to left do

sum += A[i]
L′ = max(L′, sum)

Set sum = 0 and R′ = 0
for i mid+1 to right do

sum += A[i]
R′ = max(R′, sum)

M = L′ + R′

return max(L, R, M)

Running time?
▶ Let T (n) be running time of MSS on array of

size n
▶ Two recursive calls on arrays of size n/2:

2T (n/2)
▶ Work outside of recursive calls: O(n)
▶ Running time

T (n) = 2T (n/2) + O(n)

Recurrence

▶ Recurrence
T (n) = 2T (n/2) + O(n)

▶ sequence T (0), T (1), T (2), . . .
▶ T (n) defined in terms of smaller values
▶ For running time, choose any convenient base case: T (1) = O(1), T (2) = O(1)

Goal: “solve” the recurrence = find simple expression for T (n) for all n

Recurrence

▶ Recurrence (with convenient base case)

T (n) = 2T (n/2) + O(n)
T (1) = O(1)

▶ First, let’s use definition of Big-O:

T (n) ≤ 2T (n/2) + cn

T (1) ≤ c

Clicker

T (n) = 2T (n/2) + O(n)
T (1) = O(1)

T (n) ≤ 2T (n/2) + cn

T (1) ≤ c

Why is it OK to use the same value of c in both instances of the big-O definition?

A. It’s not OK. You just took a shortcut. (By the way, you forgot about n0.)

B. Take c = min{c1, c2} where c1 and c2 are the values from each instance.

C. Take c = max{c1, c2} where c1 and c2 are the values from each instance.

Recurrence

▶ Same recurrence with change of variable

T (m) ≤ 2T (m/2) + cm, m ≥ 2
T (1) ≤ c

▶ no difference, but sometimes helpful conceptually
▶ n = original input size, m = generic input size

▶ Three approaches to solve it
1. Unrolling
2. Recursion tree (another version of unrolling)
3. Guess and verify (proof by induction)

Recurrence Solving (1): Unrolling

▶ Idea 1: “unroll” the recurrence

T (n) ≤ 2T (n/2) + cn m = n

≤ 2
[
2T (n/4) + c(n/2)

]
+ cn m = n/2

= 4T (n/4) + 2cn

≤ 4
[
2T (n/8) + c(n/4)

]
+ 2cn m = n/4

= 8T (n/8) + 3cn
≤ . . .
. . .
≤ nT (1) + log2(n) · cn = O(n log n)

Clicker

Suppose we have the recurrence T (n) = T (n/2) + T (n/3). What do we get after two
unrollings?

A. T (n/4) + T (n/9)
B. T (n/4) + 2T (n/6) + T (n/9)
C. 2T (n/6)
D. T (n/4) + T (n/6) + T (n/9)

Recurrence Solving (2): Recursion Tree

T (n) +cn cn

T (n
2) T (n

2)+c n
2 +c n

2 cn

T (n
4) T (n

4) T (n
4) T (n

4)+c n
4 +c n

4 +c n
4 +c n

4 cn

T (n
8) T (n

8) T (n
8) T (n

8) T (n
8) T (n

8) T (n
8) T (n

8)

...

▶ log2(n) + 1 levels × cn work per level
▶ Conclusion: T (n) ≤ cn(log n + 1) = O(n log n)

Recurrence Solving (3): Guess and Verify

T (n) ≤ 2T (n/2) + cn

T (2) ≤ c

▶ Guess solution. T (n) ≤ cn log n. Prove by (strong) induction.

▶ Base case
T (2) ≤ c < c · 2 = c · 2 log 2 ✓

Induction step

Strong induction:

▶ Assume T (m) ≤ c · m log m for all m < n
▶ Prove T (n) ≤ c · n log n.

T (n) ≤ 2T (n/2) + cn

≤ 2c(n/2) log(n/2) + cn by ind. hyp. m = n/2
= cn(log n − 1) + cn

= cn log n

Summary

Three approaches to solve first recurrence:

1. Unrolling ✓
2. Recursion tree ✓
3. Guess and verify (proof by induction) ✓

Next: other recurrences!

