COMPSCI 311: Introduction to Algorithms

Lecture 10: Divide and Conquer

Dan Sheldon

University of Massachusetts Amherst



Divide and Conquer: Recipe

» Divide problem into several parts
» Solve each part recursively

» Combine solutions to sub-problems into overall solution



Learning Goals

Greedy Divide and Conquer
Formulate problem
Design algorithm v
Prove correctness v
Analyze running time v

Specific algorithms Dijkstra, MST




Motivating Problem: Maximum Subsequence Sum (MSS)

» Input: array A of n numbers, e.g.

A=4,-35 -2 -1,2,6,—2

» Find: value of the largest subsequence sum

Ali] + Ali+ 1]+ ... + Alj]

> (empty subsequence allowed and has sum zero)

» MSS in example? 11 (first 7 elements)



Clicker

Which of the following is true for a maximum-sum subsequence?
A. It has more positive than negative numbers
B. It does not start or end with a negative number

C. Any maximal sequence of negative numbers is bordered by a sequence of positive
numbers with sum larger in absolute value



A Simple MSS Algorithm

Brute force in ©(n?) (c.f K&T Chapter 2, Exercise 6)

MSS(A)
Initialize all entries of n X n array B to zero
for i =1 ton do
sum =0
for j =itondo
compute sum of A[i] ... A[j]
Bli, j] = sum

Return maximum value among all B[, j]

Running time? O(n?). Can we do better?



Divide-and-conquer for MSS

» Recursive solution for MSS
> ldea:

» Find MSS L in left half of array
» Find MSS R in right half of array
» Find MSS M for sequence that crosses the midpoint

M=11
A=%-35-2-1,26,-2
—— ~—~

L=6 R=8

» Return max(L, R, M)
» Change one entry to make MSS=R. —2 — —10
» How to find L, R, M?



MSS(A, left, right)
if right — left < 2 then
Solve directly and return MSS
mid = I.Ieft+2rightJ
L = MSS(A, left, mid)
R = MSS(A, mid+1, right)

Setsum =0and L' =0
for i = mid down to left do
sum += Ali]
L’ = max(L’,sum)

Setsum=0and R =0
for ¢ mid+1 to right do
sum += Ali]
R’ = max(R',sum)

M=L+PR

return max (L, R, M)

> Base case

> Recurse on left and right halves

> Compute L’ (left part of M)

> Compute R’ (right part of M)

> Compute M

> Return max



MSS(A, left, right)
if right — left < 2 then

Solve directly and return MSS

mid = Lleft-;rightj
L = MSS(A, left, mid)
R = MSS(A, mid+1, right)

Setsum =0and L' =0
for i = mid down to left do
sum += A[i]
L' = max(L',sum)

Setsum=0and R' =0
for i mid+1 to right do
sum += Al
R’ = max(R',sum)
M=L+R

return max(L, R, M)

Running time?
» Let T'(n) be running time of MSS on array of
size n
» Two recursive calls on arrays of size n/2:
2T (n/2)
» Work outside of recursive calls: O(n)
» Running time

T(n) =2T(n/2) 4+ O(n)



Recurrence

» Recurrence
T(n) =2T(n/2) + O(n)

» sequence 7'(0),7(1),T(2),...
» T'(n) defined in terms of smaller values
» For running time, choose any convenient base case: T'(1) = O(1), T'(2) = O(1)

Goal: “solve” the recurrence = find simple expression for T'(n) for all n



Recurrence

» Recurrence (with convenient base case)

T(n) =2T(n/2) + O(n)



Clicker

o
2
[

2T (n/2) + O(n) T(n) <2T(n/2)+cn

<
<c

Why is it OK to use the same value of ¢ in both instances of the big-O definition?
A. It's not OK. You just took a shortcut. (By the way, you forgot about ng.)
B. Take ¢ = min{cy, co} where ¢; and ¢y are the values from each instance.

C. Take ¢ = max{cy,ca} where ¢; and ¢y are the values from each instance.



Recurrence

» Same recurrence with change of variable

2T (m/2) +cm, m >2

<
<c

> no difference, but sometimes helpful conceptually
» n = original input size, m = generic input size

» Three approaches to solve it

1. Unrolling
2. Recursion tree (another version of unrolling)
3. Guess and verify (proof by induction)



Recurrence Solving (1): Unrolling

» Idea 1: “unroll” the recurrence

T(n)

<2T(n/2)+cn m=n
< 2{2T(n/4)+c(n/2)} +cn m=mn/2
=4T(n/4) 4 2cn

<4[27(n/8) + c(n/4)] + 2n m=n/4
=8T(n/8) + 3cn

<...

<nT (1) +logy(n) - en = O(nlogn)



Clicker

Suppose we have the recurrence T'(n) = T'(n/2) + T'(n/3). What do we get after two
unrollings?

A. T(n/4)+ T(n/9)

B. T'(n/4) + 2T (n/6) + T'(n/9)
C. 2T'(n/6)

D. T(n/4)+T(n/6) +T(n/9)



Recurrence Solving (2): Recursion Tree

cn
cn

cn

» logy(n) + 1 levels x cn work per level
» Conclusion: T'(n) < cn(logn + 1)

O(nlogn)



Recurrence Solving (3): Guess and Verify

2T (n/2) +cn

<
<c

» Guess solution. T'(n) < cnlogn. Prove by (strong) induction.

» Base case
T(2)<c<c-2=c-2log2 Vv



Induction step

Strong induction:

» Assume T'(m) < c¢-mlogm for all m <n
» Prove T'(n) < c¢-nlogn.

T(n) <2T(n/2) +cn
< 2¢(n/2)log(n/2) +cn by ind. hyp. m =n/2
=cn(logn —1) 4+ cn

= cnlogn



Summary

Three approaches to solve first recurrence:

1. Unrolling v/
2. Recursion tree v/
3. Guess and verify (proof by induction) v’

Next: other recurrences!



