
COMPSCI 311 Section 1: Introduction to Algorithms
Lecture 3: Big-Omega, Big-Theta, Running-Time Analysis

Dan Sheldon

University of Massachusetts

{February 9, 2025}



Clicker

Suppose f is O(g). Which of the following is true?

A. g is O(f)
B. g is not O(f)
C. g may be O(f), depending on the particular functions f and g



Limitations of Big-O

▶ 10 log(n) is O(log n), but also O(n), O(n2), O(n3), . . .

▶ 4n2 + 10n + 100 is O(n2), but also O(n3), O(n4), O(n5), . . .



Big-Ω Motivation

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

Fact: run time is O(n3)

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..

Fact: run time is O(n3)

Conclusion: foo and bar have the same asymptotic running time. What is wrong?



More Big-Ω Motivation

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]

What is the running time of sum-product?

Easy to see it is O(n2). Could it be better? O(n)?



Big-Ω

Informally: T grows at least as fast as f

Definition: The function T (n) is Ω(f(n)) if there exist constants c > 0 and n0 ≥ 0
such that

T (n) ≥ cf(n) for all n ≥ n0

f is an asymptotic lower bound for T



Big-Ω Examples

4n + 10 = Ω(n) 1
2n2 = Ω(n2)



Clicker

Claim n − 10 is Ω(n)

To prove this we need to show that

n − 10 ≥ cn for all n ≥ n0

Clicker. What is the largest value of c below for which we can find some n0 to make
this statement true?

A. c = 0.5
B. c = 0.99
C. c = 2
D. c = 20



Big-Ω

Exercise: let T (n) be the running time of sum-product. Show that T (n) is Ω(n2)

Algorithm sum-product
sum = 0
for i= 1 to n do

for j= i to n do
sum += A[i]*A[j]



Solution

Hard way

▶ Count exactly how many times the loop executes

1 + 2 + . . . + n = n(n + 1)
2 = Ω(n2)

Easy way

▶ Ignore all loop executions where i > n/2 or j < n/2
▶ The inner statement executes at least (n/2)2 = Ω(n2) times



Big-Θ

Definition: the function T (n) is Θ(f(n)) if it is both O(f(n)) and Ω(f(n)).

f is an asymptotically tight bound of T

Example. T (n) = 32n2 + 17n + 1

▶ T (n) is Θ(n2)
▶ T (n) is neither Θ(n) nor Θ(n3)



Big-Θ example

How do we correctly compare the running time of these algorithms?

Algorithm foo
for i= 1 to n do

for j= 1 to n do
do something...

Algorithm bar
for i= 1 to n do

for j= 1 to n do
for k= 1 to n do

do something else..

Answer: foo is Θ(n2) and bar is Θ(n3). They do not have the same asymptotic running
time.



Additivity Revisited

Suppose f and g are two (non-negative) functions and f is O(g)

Old version: Then f + g is O(g)

New version: Then f + g is Θ(g)

n2︸︷︷︸
g

+ 42n + n log n︸ ︷︷ ︸
f

is Θ(n2)



Efficiency

When is an algorithm efficient?

Stable Matching Brute force: Ω(n!)
Propose-and-Reject?: O(n2)

We must have done something clever



Polynomial Time

Definition: an algorithm runs in polynomial time if its running time is O(nd) for some
constant d



Polynomial Time: Examples

These are polynomial time:

f1(n) = n
f2(n) = 4n + 100
f3(n) = n log(n) + 2n + 20
f4(n) = 0.01n2

f5(n) = n2

f6(n) = 20n2 + 2n + 3

Not polynomial time:

f7(n) = 2n

f8(n) = 3n

f9(n) = n!



Why Polynomial Time ?

Why is this a good definition of efficiency?

▶ Matches practice: almost all practically efficient algorithms have this property.

▶ Usually distinguishes a clever algorithm from a “brute force” approach.

▶ Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient
algorithm exists.



Bonus if Time: Clicker Fun



Clicker

Algorithm Print1(n)
for i=1 to n do

print “X”
for j=1 to n do

print “Y”

What is the output of this algorithm with n = 4? (ignore spaces)

A. XYYY XYYY XYYY
B. XXXX YYYY YYYY YYYY YYYY
C. XYYYY XYYYY XYYYY XYYYY
D. XYYYYY XYYYYY XYYYYY XYYYYY



Clicker

Algorithm Print1(n)
for i=1 to n do

print “X”
for j=1 to n do

print “Y”

What is the exact number of characters printed as a function of n?

A. n
B. n2

C. n2 − n
D. n2 + n



Clicker

Algorithm Print1(n)
for i=1 to n do

print “X”
for j=1 to n do

print “Y”

The running time is:

A. Ω(
√

n)
B. Θ(n2)
C. O(n4)
D. all of the above



Clicker

Algorithm Print2(n)
for i=1 to n do

print “X”
if i == 1 then

for j=1 to n do
print “Y”

What is the output of this algorithm with n = 4? (ignore spaces)

A. XXXX YYYY YYYY YYYY YYYY
B. XYYYY XYYYY XYYYY XYYYY
C. XYYYY X X X
D. XYYYYY XYYYYY XYYYYY XYYYYY



Clicker

Algorithm Print2(n)
for i=1 to n do

print “X”
if i == 1 then

for j=1 to n do
print “Y”

What is the exact number of characters printed as a function of n?

A. n
B. 2n
C. n2 − n
D. n2



Clicker

Algorithm Print2(n)
for i=1 to n do

print “X”
if i == 1 then

for j=1 to n do
print “Y”

What is the tight running-time bound of the algorithm?

A. Θ(log n)
B. Θ(n)
C. Θ(n2)
D. Θ(n3)


