
COMPSCI 311 Section 1: Introduction to Algorithms
Lecture 2: Asymptotic Notation and Efficiency

Dan Sheldon

University of Massachusetts

Algorithm design

▶ Formulate the problem precisely

▶ Design an algorithm to solve the problem

▶ Prove the algorithm is correct

▶ Analyze the algorithm’s running time

Example: Binary vs. Linear Search

An elegant algorithm you can teach to a 5-year old. You lose your page in 256-page
book:

Linear search: 1, 2, 3, 4, . . . , 256. search up to 256 pages

Binary search: 128, 64, 32, 16, 8, 4, 2, 1. search up to 8 pages

pages linear binary

256 256 8
512 512 9
1024 1024 10
2048 2048 11
n ≤ n ≤ log(n)

Example: Binary vs. Linear Search

Board example: plot of n vs. log(n)

Take-aways:

▶ Measure running time (# steps) as function of input size (n)
▶ Need tools to compare growth-rates of functions
▶ Big difference between brute-force and clever algorithms!

Big-O: Motivation
What is the running time of this algorithm? How many “primitive steps” are executed
for an input array A of size n?

sum = 0
n← length of array A
for i= 1 to n do

for j= 1 to n do
sum += A[i]*A[j]

The (worst-case) running time as a function of n has the form

T (n) = an2 + bn + c

We would like to coarsely categorize this as “order n2” or O(n2)

▶ Ignore constants, lower-order terms
▶ Need tools to compare growth rates of functions: “asymptotic order notation”

(big-O)

Big-O: Formal Definition

Definition: The function T (n) is O(f(n)) if there exist constants c > 0 and n0 ≥ 0
such that

T (n) ≤ cf(n) for all n ≥ n0

We say that f is an asymptotic upper bound for T .

Example:
T (n) = 2n2 + n + 2

≤ 2n2 + n2 + 2n2 if n ≥ 1
T (n) ≤ 5︸︷︷︸

c

n2 if n ≥ 1︸︷︷︸
n0

So T (n) is O(n2)

Example
Example: T (n) = 2n2 + n + 2 is O(n3)

T (n) = 2n2 + n + 2
≤ 2n3 + n3 + 2n3 if n ≥ 1

T (n) ≤ 5︸︷︷︸
c

n3 if n ≥ 1︸︷︷︸
n0

Big-O bounds do not need to be tight!

Big-O: Examples

Claim n2 + 106n is O(n2)

To prove this we need to show that

n2 + 106n ≤ cn2 for all n ≥ n0

Clicker. Which values of c and n0 make this statement true?

A. c = 2, n0 = 106

B. c = 106 + 1, n0 = 1

C. Both A and B

D. Neither A nor B

Big-O: Examples

▶ If T (n) = n2 + 106n then T (n) is O(n2)

▶ If T (n) = n3 + n log n then T (n) is O(n3)

▶ If T (n) = 2
√

log n then T (n) is O(n)

Clicker

Let f(n) = 4n2 + 23n log2 n + 500. Which of the following are true?

A. f(n) is O(n2)

B. f(n) is O(n3)

C. Both A and B

D. Neither A nor B

The Big Idea: How to Use Big-O

Study pseudocode to determine running time T (n) of an algorithm as a function of n:

T (n) = 2n2 + n + 2

Prove that T (n) is asymptotically upper-bounded by simpler function using big-O
definition:

T (n) = 2n2 + n + 2
≤ 2n2 + n2 + 2n2 if n ≥ 1
≤ 5n2 if n ≥ 1

This is the right way to think about big-O, but too much work. We’ll develop properties
of big-O that simplify proving big-O bounds, and use these properties to take
shortcuts while analyzing algorithms (you probably learned the shortcuts without
knowing formal justification).

Properties of Big-O Notation

Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).

Example:

▶ 2n2 + n + 1︸ ︷︷ ︸
f(n)

is O(n2︸︷︷︸
g(n)

)

▶ n2︸︷︷︸
g(n)

is O(n3︸︷︷︸
h(n)

)

▶ Therefore, 2n2 + n + 1 is O(n3)

Transitivity Proof

Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).

Proof: we know from the definition that

▶ f(n) ≤ cg(n) for all n ≥ n0
▶ g(n) ≤ c′h(n) for all n ≥ n′

0

Therefore
f(n) ≤ cg(n) if n ≥ n0

≤ c(c′h(n)) if n ≥ n0 and n ≥ n′
0

= cc′︸︷︷︸
c′′

h(n) if n ≥ max{n0, n′
0}︸ ︷︷ ︸

n′′
0

f(n) ≤ c′′h(n) if n ≥ n′′
0

Know how to do proofs using Big-O definition.

Properties of Big-O Notation

Claims (Additivity):

▶ If f is O(h) and g is O(h), then f + g is O(h).

3n2︸︷︷︸
O(n5)

+ n4︸︷︷︸
O(n5)

is O(n5)

▶ If f is O(g), then f + g is O(g)

n3︸︷︷︸
g(n)

+ 23n + n log n︸ ︷︷ ︸
f(n)

is O(n3)

Significance of Additivity

▶ OK to drop lower order terms:

2n5 + 10n3 + 4n log n + 1000n is O(n5)

▶ Polynomials: Only highest-degree term matters. If ad > 0 then:

a0 + a1n + a2n2 + . . . + adnd is O(nd)

▶ You are using additivity when you ignore the running time of statements outside for
loops!

Other Useful Facts: Log vs. Poly vs. Exp

Fact: logb(n) is O(nd) for all b > 1, d > 0

All polynomials grow faster than logarithm of any base

Fact: nd is O(rn) when r > 1

Exponential functions grow faster than polynomials

Logarithm review
Definition: logb(n) is the unique number c such that bc = n

Informally: the number of times you can divide n into b parts until each part has size one

Properties:

▶ Log of product → sum of logs
▶ log(xy) = log x + log y
▶ log(xk) = k log x

▶ logb(·) is inverse of b(·)

▶ logb(bn) = n
▶ blogb(n) = n

▶ loga n = loga b︸ ︷︷ ︸
const.

· logb n (logs in any two bases are proportional)

When using big-O, it’s OK not to specify base. Assume log2 if not specified.

Big-O comparison

Which grows faster?
n(log n)3 vs. n4/3

simplifies to
(log n)3 vs. n1/3

simplifies to
log n vs. n1/9

▶ We know log n is O(nd) for all d > 0
▶ ⇒ log n is O(n1/9)
▶ ⇒ n(log n)3 is O(n4/3)

Apply transformations (monotone, invertible) to both functions.
Try taking log.

Big-O: Correct Usage

Big-O: a way to categorize growth rate of functions relative to other functions.

Not: “the running time of my algorithm”.

Correct Usage:

▶ The worst-case running time of the algorithm in input of size n is T (n).
▶ T (n) is O(n3).
▶ The running time of the algorithm is O(n3).

Incorrect Usage:

▶ O(n3) is the running time of the algorithm. (There are many different asymptotic
upper bounds to the running time of the algorithm.)

