COMPSCI 311 Section 1: Introduction to Algorithms

Lecture 2: Asymptotic Notation and Efficiency

Dan Sheldon

University of Massachusetts

Algorithm design

» Formulate the problem precisely
» Design an algorithm to solve the problem
» Prove the algorithm is correct

» Analyze the algorithm’s running time

Example: Binary vs. Linear Search

An elegant algorithm you can teach to a 5-year old. You lose your page in 256-page
book:

Linear search: 1, 2, 3, 4, ..., 256. search up to 256 pages
Binary search: 128, 64, 32, 16, 8, 4, 2, 1. search up to 8 pages

pages linear binary
256 256 8
512 512 9
1024 1024 10
2048 2048 11

n <n < log(n)

Example: Binary vs. Linear Search

Board example: plot of n vs. log(n)

Take-aways:

» Measure running time (# steps) as function of input size (n)
> Need tools to compare growth-rates of functions
> Big difference between brute-force and clever algorithms!

Big-O: Motivation
What is the running time of this algorithm? How many “primitive steps” are executed
for an input array A of size n?

sum =0
n < length of array A
for i=1tondo
for j=1ton do
sum += A[i|*A[j]

The (worst-case) running time as a function of n has the form
T(n) =an®+bn+c

We would like to coarsely categorize this as “order n?" or O(n?)

P Ignore constants, lower-order terms
» Need tools to compare growth rates of functions: "asymptotic order notation”

(big-O)

Big-O: Formal Definition

Definition: The function T'(n) is O(f(n)) if there exist constants ¢ > 0 and ng > 0
such that

T(n) < cf(n) for all n > ng

We say that f is an asymptotic upper bound for T

Example:
T(n)=2n*+n+2
<2n?+nf+20? ifn>1
T(n)<_5 n? ifn> 1
—~~ —~—
c no

So T'(n) is O(n?)

Example
Example: T'(n) = 2n? + n + 2 is O(n?)

T(n) =2n?+n+2
< 2n® +n® + 2n°
T(n) < 5 n?
—~

Cc

Big-O bounds do not need to be tight!

Big-O: Examples

Claim n? + 10%n is O(n?)

To prove this we need to show that

n? +10% < en? foralln > no

Clicker. Which values of ¢ and ng make this statement true?
A. c=2,ng=10°

B.c=10+1,ng=1

C. Both A and B

D. Neither A nor B

Big-O: Examples

» If T(n) = n? + 100 then T'(n) is O(n?)
» If T'(n) = n® + nlogn then T'(n) is O(n?)
> If T(n) = 2V1°8™ then T'(n) is O(n)

Clicker

Let f(n) = 4n? + 23nlog, n + 500. Which of the following are true?
2

A. f(n)is O(n?)
B. f(n)is O(n?)
C. Both A and B
D. Neither A nor B

The Big Idea: How to Use Big-O

Study pseudocode to determine running time 7'(n) of an algorithm as a function of n:

T(n)=2n*+n+2

Prove that T'(n) is asymptotically upper-bounded by simpler function using big-O
definition:
T(n)=2n+n+2
<2n?+n+20? ifn>1
< 5n? if n>1

This is the right way to think about big-O, but too much work. We'll develop properties
of big-O that simplify proving big-O bounds, and use these properties to take
shortcuts while analyzing algorithms (you probably learned the shortcuts without
knowing formal justification).

Properties of Big-O Notation

Claim (Transitivity): If f is O(g) and g is O(h), then f is O(h).
Example:
2 . 2
> 2n°+n+1 |SO(£/)
f(n) g(n)
> n? isO(n?)
~~ ~~
g(n) h(n)

» Therefore, 2n% +n + 1 is O(n?)

Transitivity Proof
Claim (Transitivity): If f is O(g) and g is O(h), then fis O(h).

Proof: we know from the definition that

» f(n) <cg(n) for all n > ny
> g(n) < dh(n) for all n > ny

Therefore
f(n) < cg(n) if n > ng
g(h(n)) if n>mngand n > n
h(n) if n > max{no, ng}
C” "
"o
f(n) < "h(n) if n > ng

Know how to do proofs using Big-O definition.

Properties of Big-O Notation

Claims (Additivity):
» If fis O(h) and g is O(h), then f+ g is O(h).

> If fis O(g), then f+ gis O(g)

£i+ 23n +nlogn is O(n®)

Significance of Additivity

» OK to drop lower order terms:

2n° 4+ 10n3 + 4nlogn + 1000n is O(n%)

» Polynomials: Only highest-degree term matters. If a; > 0 then:

ag + ayn 4 agn® + ... + agn? is O(n?)

» You are using additivity when you ignore the running time of statements outside for
loops!

Other Useful Facts: Log vs. Poly vs. Exp

Fact: log,(n) is O(n?) for all b > 1,d > 0

All polynomials grow faster than logarithm of any base

Fact: n? is O(r") when r > 1

Exponential functions grow faster than polynomials

Logarithm review

Definition: log(n) is the unique number ¢ such that b =n

Informally: the number of times you can divide n into b parts until each part has size one

Properties:

» Log of product — sum of logs
> log(xy) =logz +logy
> log(z*) = klogx

> log,(-) is inverse of b(")
> log,(b") =n
> plog(n) —
» log,n =log, b-log,n (logs in any two bases are proportional)
——
const.

When using big-O, it's OK not to specify base. Assume log, if not specified.

Big-O comparison

Which grows faster?
n(logn)® vs. n*/3
simplifies to
(logn)® vs. nl/3
simplifies to
logn vs. nl/?
» We know logn is O(n?) for all d > 0
> = logn is O(n'/?)
> = n(logn)® is O(n*/3)

Apply transformations (monotone, invertible) to both functions.
Try taking log.

Big-O: Correct Usage

Big-0O: a way to categorize growth rate of functions relative to other functions.

Not: “the running time of my algorithm".

Correct Usage:

» The worst-case running time of the algorithm in input of size n is T'(n).
> T(n)is O(n?).
» The running time of the algorithm is O(n?3).

Incorrect Usage:

» O(n?) is the running time of the algorithm. (There are many different asymptotic
upper bounds to the running time of the algorithm.)

