
Mechanizing Soundness of Off-Policy Evaluation
Jared Yeager #

Manning College of Information and Computer Sciences,
University of Massachusetts Amherst, MA, USA

J. Eliot B. Moss #

Manning College of Information and Computer Sciences,
University of Massachusetts Amherst, MA, USA

Michael Norrish #

School of Computing, Australian National University, Canberra, Australia

Philip S. Thomas #

Manning College of Information and Computer Sciences,
University of Massachusetts Amherst, MA, USA

Abstract
There are reinforcement learning scenarios – e.g., in medicine – where we are compelled to be as
confident as possible that a policy change will result in an improvement before implementing it.
In such scenarios, we can employ off-policy evaluation (OPE). The basic idea of OPE is to record
histories of behaviors under the current policy, and then develop an estimate of the quality of
a proposed new policy, seeing what the behavior would have been under the new policy. As we
are evaluating the policy without actually using it, we have the “off-policy” of OPE. Applying a
concentration inequality to the estimate, we derive a confidence interval for the expected quality
of the new policy. If the confidence interval lies above that of the current policy, we can change
policies with high confidence that we will do no harm.

We focus here on the mathematics of this method, by mechanizing the soundness of off-
policy evaluation. A natural side effect of the mechanization is both to clarify all the result’s
mathematical assumptions and preconditions, and to further develop HOL4’s library of verified
statistical mathematics, including concentration inequalities. Of more significance, the OPE method
relies on importance sampling, whose soundness we prove using a measure-theoretic approach.
In fact, we generalize the standard result, showing it for contexts comprising both discrete and
continuous probability distributions.
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1 Introduction

Reinforcement learning (RL) algorithms are machine learning algorithms that learn to make
sequences of optimal or nearly optimal decisions through interactions with their environment.
Their use has been proposed for a variety of high-risk high-reward applications including
improving sepsis treatment [21], insulin dosing for type 1 diabetes treatment [40], epilepsy
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treatment [12], and for various applications related to autonomous vehicles [10]. However,
none of these proposed applications have come to fruition, partially due to concerns about
safety. If the RL algorithm proposed a new policy (mechanism for making decisions) that is
worse than a currently used policy it could be dangerous or costly.

To ensure that the policies produced by RL algorithms are safe, RL researchers have
recently increased their focus on off-policy evaluation (OPE) methods – methods that
use historical data collected from the use of a current policy to estimate and bound the
performance of a newly proposed policy without requiring the (possibly dangerous) newly
proposed policy to actually be used [32, 18, 39]. These methods are based on importance
sampling. At a high level, the idea of importance sampling for RL is to consider previous runs
of the current policy (or policies) and to take a weighted average of the observed historical
performance, where the weight corresponds to the likelihood of the historical observations
under the newly proposed policy divided by their likelihood under the current policy. Because
importance sampling provides unbiased estimates of the performance of the newly proposed
policy [38], confidence intervals for the mean of a random variable (e.g., based on Hoeffding’s
inequality [14] or Student’s t-test [34]) can be applied to obtain confidence intervals for the
performance of the new policy if it were to be used.

Particularly in cases like medicine, we desire more than just confidence in a statistical
result in the sense of confidence intervals, but also confidence that the overall process of OPE
is sound. A step in that direction is mechanizing a proof of OPE’s soundness, much like
how other researchers provided mechanized proofs for the soundness of supervised learning
generalization guarantees (as opposed to the reinforcement learning guarantees we provide) [3].
A complete program of establishing confidence would further prove correctness of a software
implementation of OPE down to machine code – a step we leave to future work.

Concerning the mathematics of OPE, previous work has offered hand proofs for the cases
of discrete probability distributions and continuous ones, but not for hybrid distributions –
ones with both discrete and continuous components. Yet hybrid distributions arise quite
naturally in practice because many systems have both discrete controls, such as on-off
switches, and continuous ones, such as throttles and torque actuators. Another example
is when a robot component experiences contact with an external object, which constrains
actions and movement, versus no-contact when actions and movement are less constrained.
Thus there can be a discrete probability that a throttle cannot be used in the current state,
and in other states a continuous distribution of how much throttle to apply.

In addition to rounding out the mathematics of OPE by handling hybrid distributions,
mechanizing a proof of OPE clarifies the preconditions of its soundness, ensuring that hand
proofs did not overlook anything of significance.

1.1 Contributions
Our starting point is the existing HOL4 libraries, which include a number of theorems about
probability and measure theory, but not much in the way of statistics.
The main results we present here are:

OPE gives an unbiased estimate for any property (statistic) of the new policy representable
as an integrable function on histories.
Thus, more specifically, OPE gives an unbiased estimate of the standard RL performance
metric: the expected discounted sum of rewards [35], also known as the expected return.
Applying Hoeffding’s inequality, we obtain a confidence interval for the expected return
for any desired confidence level.

Other similar results we do not explicitly present here:
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OPE gives an unbiased estimate for any property (statistic) of the new policy that can
be represented as a positive measurable function on histories.
From that result we further show that OPE gives an unbiased estimate for any point
of the cumulative distribution function of any property (statistic) of the new policy
representable as a measurable function on histories.

Other contributions include:
Proof of Hoeffding’s inequality (and Hoeffding’s Lemma) in HOL4.
Machinery in HOL4 to represent trajectories and histories, and measure spaces over them.
Machinery in HOL4 to represent arbitrary n-way product measure spaces.

Our HOL4 sources are available from https://github.com/jdyeager/itp_ope.

2 Background

First, let us further clarify the starting point for our work, namely theories already present in
the HOL4 libraries. Hurd [16, 17] developed the original formulation of measure theory and
probability. Coble [8] added Lebesgue integration, Radon-Nikodym derivative, and random
variable theories. Mhamdi [26] added formalization of “almost everywhere” and proved
Markov’s inequality, and later refined integration to allow extended real results [27]. Tian [41]
applied that extension to measure theory and probability. There are similar developments of
much of this background theory in Isabelle/HOL (by Hölzl and Heller [15]), and in Coq (by
Boldo et al. [5]).

While much of what OPE builds on is standard mathematics, such as measure theory,
there are a few mathematical topics worthy of mention here. One is how Radon-Nikodym
derivatives (already in HOL4) allow us to fold the discrete, continuous, and hybrid probability
distribution cases into one general case. Another is the expression of OPE itself (not in
HOL4). Among more standard results, we review briefly below Markov’s inequality (in
HOL4), Hoeffding’s Lemma, and Hoeffding’s inequality (both new to HOL4 – Hoeffding’s
inequality has been proven in Coq [3]). Before we review these mathematical topics, we first
mention some standard definitions we use in our proofs:

Extended reals: The extended reals (R̄) consist of the real numbers augmented with +∞
and −∞, and are useful in capturing unbounded measures and integrals.

Sigma algebras: Let X be a set of points and Σ be a set of subsets of X, Σ ⊆ 2X .1 We
say (X, Σ) is a sigma algebra if X ∈ Σ and Σ is closed under complementation and
countable unions. This appears in HOL4 as (note the indexing/extracting functions space
and subsets):

subset-class X Σ def= ∀ s. s ∈ Σ ⇒ s ⊆ X ,
algebra a def=

subset-class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
(∀ s. s ∈ subsets a ⇒ space a − s ∈ subsets a) ∧
∀ s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a, and

σ-algebra a def= algebra a ∧ ∀ c. countable c ∧ c ⊆ subsets a ⇒
⋃

c ∈ subsets a.

There is a standard sigma algebra over the extended reals, called Borel in HOL4. This is
useful when integrating measurable functions.

1 Σ is a conventional name for the measurable sets, not to be confused with summation.
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Measurable functions: For (X, Σ) and (Y, T ) sigma algebras, f : X → Y is a measurable
function (from (X, Σ) to (Y, T )) if ∀E ∈ T : f−1(E) ∈ Σ. In HOL4:

⊢ f ∈ measurable a b ⇐⇒
σ-algebra a ∧ σ-algebra b ∧ f ∈ (space a → space b) ∧
∀ s. s ∈ subsets b ⇒ f −1 s ∩ space a ∈ subsets a.

In HOL4 these are called Borel-measureable functions if (Y, T ) is the Borel sigma algebra.
Measure spaces: For µ : Σ → R̄, we say µ is a measure and (X, Σ, µ) a measure space if:

(X, Σ) is a sigma algebra; µ(∅) = 0; and µ is positive and countably additive. Expressed
in detail in HOL4 this is:

measure-space m def=
σ-algebra (m-space m, measurable-sets m) ∧ positive m ∧ countably-additive m, where

positive m def= measure m ∅ = 0 ∧ ∀ s. s ∈ measurable-sets m ⇒ 0 ≤ measure m s, and
countably-additive m def=
∀ f . f ∈ (N → measurable-sets m) ∧ (∀ i j. i ̸= j ⇒ DISJOINT (f i) (f j)) ∧⋃

(IMAGE f N) ∈ measurable-sets m ⇒
measure m (

⋃
(IMAGE f N)) = suminf (measure m ◦ f ).

Sigma finite measure spaces: A measure space is sigma finite if it can be partitioned into
countably many measurable sets of finite measure, or equivalently (as represented in
HOL4), the space is the limit of measurable sets of finite measure:

sigma-finite-measure-space m def= measure-space m ∧ sigma-finite m, where
sigma-finite m def=
∃ f . f ∈ (N → measurable-sets m) ∧ (∀ n. f n ⊆ f (SUC n)) ∧⋃

(IMAGE f N) = m-space m ∧ ∀ n. measure m (f n) < +∞.

Almost Everywhere: A property is said to be true almost everywhere (a.e.) if the set of
points where the property is false has measure zero. In HOL4 this appears as a quantifier:

(AE x :: m. P x) def= ∃ N . null-set m N ∧ { x | x ∈ m-space m ∧ ¬P x } ⊆ N , where
null-set m s def= s ∈ measurable-sets m ∧ measure m s = 0.

Density: We will find it useful to take a measure space (X, Σ, µ) and positive function f ,
and re-weight µ by f , thus incorporating f into µ. This is done by integrating over f :

density m f def= (m-space m, measurable-sets m, f ∗ m), where
f ∗ m def= (λ s.

∫ + m (λ x. f x · 1 s x)).

Probability: Probability, both mathematically and in HOL4, is a renaming of measure theory
concepts:

prob-space p def= measure-space p ∧ measure p (m-space p) = 1,
p-space def= m-space,
events def= measurable-sets,
prob def= measure,
real-random-variable X p def=

random-variable X p Borel ∧ ∀ x. x ∈ p-space p ⇒ X x ̸= −∞ ∧ X x ̸= +∞,
random-variable X p s def= X ∈ measurable (p-space p, events p) s, and
expectation def=

∫
.
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For convenience of notation, we use Pp[s] and Ep[f ] in lieu of prob and expectation
respectively, where the subscript p is the probability space and the set s is intersected
with p-space p.

Markov’s inequality: This, perhaps less basic, result gives an upper bound to how much of
a positive function is above a given threshold:

⊢ prob-space p ∧ integrable p X ∧ 0 < c ⇒
Pp[{ x | c ≤ |X x| } ] ≤ c−1 · Ep[(λ x. |X x|)].

We use this in proving Hoeffding’s inequality.
Hoeffding’s lemma: This result gives an upper bound to a moment generating function of a

real-valued random variable with expectation 0, bounded almost everywhere between a

and b:

E
[
ecX

]
≤ exp

(
c2(b − a)2

8

)
.

This is used in proving Hoeffding’s inequality.
Hoeffding’s inequality: This result bounds how much a sum of random variables deviates

from its expectation. For n variables Xi, respectively bounded almost everywhere between
ai and bi, for t > 0, where Sn =

∑n
i=1 Xi:

P (Sn − E [Sn] ≥ t) ≤ exp
(

− 2t2∑n
i=1(bi − ai)2

)
.

2.1 Off-Policy Evaluation
Here we present a standard mathematical formulation of an RL problem, known as a partially
observable Markov decision process (POMDP) with a state-free policy [19, Section 7.1], using
the motivating example of optimizing dosing for type 1 diabetes treatment [4, 40]. In this
motivating application an RL algorithm is used to determine how much insulin should be
injected into a person’s blood prior to their eating each meal, in order to keep their blood
glucose (blood sugar) near ideal levels.

Let S, O, and A be sets of states, observations, and actions respectively. For simplicity
when first presenting these methods, we assume that these sets are finite, resulting in
subsequent distributions being discrete. However, our formalization is for the general setting
where these can be arbitrary measurable spaces and distributions over these sets can be
discrete, continuous, or hybrid. In the diabetes treatment example, each state s ∈ S is a
complete characterization of the patient and the meal they will eat. The RL agent does not
know or observe the state, but rather makes an observation o ∈ O. For example, in prior
work [4, 40], the observation corresponded to a vector of three real numbers indicating the
patients’ current blood glucose level (from a sample of the person’s blood), target blood
glucose level (as specified by a doctor), and the size of the meal they are about to eat (in
grams of carbohydrates, roughly estimated by the patient). Each action a ∈ A is a positive
real number corresponding to an amount of insulin that could be injected.

The environment that an RL agent interacts with has state St ∈ S at time t ∈
{−1, 0, 1, . . . , T − 1}, where S−1 denotes an initial state. Here T , the number of time
steps before the process terminates, is called the horizon. The initial state is sampled from
an initial state distribution d0. The RL agent does not necessarily observe the state itself,
and instead makes some observation Ot ∈ O where Ot ∼ Ω(·|St−1) – where the notation
X ∼ Z(·|Y ) indicates drawing X from the joint distribution Z(x, y) with y fixed with value

ITP 2022
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Y , or equivalently, drawing X from the distribution λx.Z(x, Y ). Next the RL agent selects
an action At ∈ A according to a policy π, where At ∼ π(·|Ot). This action causes the state
of the environment to change to St ∼ P (·|St−1, At), where P is called the transition function.
This transition of the environment results in the agent’s receiving a real-valued reward,
Rt ∼ dR(·|St−1, At, St).

A trajectory T = (S−1, O0, A0, S0, R0, O1, A1, S1, R1, . . . , OT −1, AT −1, ST −1, RT −1) is
the sequence of states, observations, actions, and rewards observed during one run from
time t = 0 to time t = T − 1 (one such run is called an episode). A history H is
similar, but contains only the terms that are known to the RL algorithm, namely H =
(O0, A0, R0, O1, A1, R1, . . . , OT −1, AT −1, RT −1) (keeping the observations but dropping the
states).

The return of an episode is the discounted sum of rewards, and can be viewed as a
function g of the trajectory or history: g(T ) = g(H) =

∑T −1
t=0 γtRt, where γ ∈ [0, 1] is a

parameter that discounts rewards that occur later in the trajectory. The performance of
a policy π is the expected discounted sum of rewards that result from using the policy to
make decisions: J(π) = E[g(H)|π].2 We assume that we have access to n histories (Hi)n

i=1
generated by past policies (βi)n

i=1, and also to a newly proposed policy π. OPE methods [32]
use the historical data D = (Hi)n

i=1 to estimate J(π).
To further ground this notation and terminology, consider again our diabetes treatment

example. Here, insulin injections are given prior to each meal, and each day is considered a
separate episode. Assuming three meals per day, this corresponds to a horizon of T = 3. S−1
corresponds to a complete description of the patient and meal just prior to eating breakfast,
O0 is the observation about the state of the person and meal (blood glucose, target blood
glucose, and meal size) just prior to breakfast, A0 is the amount of insulin (a real number)
to be injected prior to eating breakfast, S0 is the state of the patient just prior to eating
lunch, etc. The reward Rt is designed to penalize deviation from optimal blood glucose
levels, with larger penalties for dangerously low blood levels, called hypoglycemia. The precise
specification of these rewards must be carefully designed by experts to ensure that an agent
that maximizes the expected discounted sum of rewards will produce the desired behavior
[4, Page 11]. Current basic insulin dosage calculators determine the injection size using
equations similar to:

injection size = blood glucose − target blood glucose
CF + meal size

CR , (1)

where CF and CR are parameters chosen by a doctor [40], and which should be fine-tuned
over time. When viewed as a policy, the injection size is the action At; and the blood glucose,
target blood glucose, and meal size correspond to the observation Ot. If (1) were used to
select actions, this would correspond to a deterministic policy. To make this policy stochastic
(as required for off-policy evaluation and RL in general), one might add a Gaussian random
variable with a mean of 0 (we will call this “noise”) to the injection size, and π(At|Ot) would
then correspond to the probability of At being the action given observation Ot when using (1)
with noise added.

However, the addition of noise to the action might result in unsafe injection sizes that
deviate significantly (but with low probability) from the injection size intended by the doctor
when they specified values for CF and CR. Though there are more sophisticated techniques

2 The definition of J(π) is not a conditional expected value. The conditioning notation indicates that the
history H was generated by selecting actions using the policy π.
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for creating a stochastic policy for this application that could be trusted [40], here we present
one intuitive motivating alternative: the magnitude of the noise might be limited to some
maximum value, ηmax. Let E[At|Ot] denote the expected injection size given observation Ot

– that is, the injection prescribed by (1). Notice that the inclusion of clipped noise to the
action results in the policy being a hybrid distribution, with probability density on the open
interval (E[At|Ot] − ηmax, E[At|Ot] + ηmax) and probability masses at E[At|Ot] − ηmax and
E[At|Ot] + ηmax.

Lastly, for the diabetes treatment example the data D corresponds to data collected using
initial values for CR and CF chosen by a doctor, with one history per day. The goal of an
RL agent would be to use this data to find a new policy (new values for CR and CF) that
results in an increased expected return. If the rewards, Rt, are defined appropriately, this
would correspond to values for CR and CF that better regulate the patient’s blood glucose
levels. However, if the new policy is worse, it could have devastating consequences. For
example, a single instance of severe hypoglycemia triples the five year mortality rate for a
person with type 1 diabetes [25] and can have other severe consequences [40].

The importance sampling [20] estimator for J(π) is then IS = 1
n

∑n
i=1

(
Pr(Hi|π)
Pr(Hi|βi) g(Hi)

)
.

Denoting actions and observations at time t in the ith trajectory or history as Ai
t and Oi

t

respectively, some simplification shows IS is equivalent to [32, 38]:

IS = 1
n

n∑
i=1

(ρi(Hi)g(Hi)) , where ρi(Hi) =
T −1∏
t=0

π(Ai
t|Oi

t)
βi(Ai

t|Oi
t)

.

Peer reviewed (but not machine verified) proofs have shown that, when for all i and
H Pr(H|βi) = 0 → Pr(H|π) = 0 (a condition assumed from here on, for histories and
trajectories), the importance sampling estimator is unbiased [32, 37]. That is, E[IS] = J(π).

We now provide an overview of the proof that the importance sampling estimator is
unbiased. Let Tπ and Hπ denote the sets of all possible trajectories and histories when using
policy π. We write T ∼ π or H ∼ π to denote that a trajectory or history is generated using
the policy π. Similarly, when a policy is used as a subscript on a probability it indicates that
the relevant random variables come from using the specified policy. For example, Prπ(H)
is the probability of history H when policy π is used. As with g, the ρi can be viewed as
functions of histories or trajectories: ρi(T ) = ρi(H) =

∏T −1
t=0

π(Ai
t|Oi

t)
βi(Ai

t|Oi
t) . We now begin with

J(π) = ET ∼π [g(T )] and derive an equality to E[IS], following the four steps that we later
use in our HOL4 proof. For the first three steps, it suffices to consider unindexed β and ρ.
1. We begin with a change of measure – changing from trajectories generated by π to

trajectories generated by β.

ET ∼π [g(T )] =
∑

T ∈Tπ

Pr
π

(T )g(T ) =
∑

T ∈Tπ

Pr
β

(T )Prπ(T )
Prβ(T )g(T ) = ET ∼β

[
Prπ(T )
Prβ(T )g(T )

]
,

2. Next we show that the ratio of the probability of T under π divided by the probability
under β does not depend on functions that are not known in practice (e.g., the transition
and observation functions P and Ω). That is:

Prπ(T )
Prβ(T ) =

d0(S−1)
∏T −1

t=0 Ω(Ot|St−1)π(At|Ot)P (St|St−1, At)dR(Rt|St−1, At, St)
d0(S−1)

∏T −1
t=0 Ω(Ot|St−1)β(At|Ot)P (St|St−1, At)dR(Rt|St−1, At, St)

=
T −1∏
t=0

π(At|Ot)
β(At|Ot)

= ρ(T ).

Combining with the previous result, we therefore have that J(π) = ET ∼β [ρ(T )g(T )].

ITP 2022
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3. Next, as neither ρ(T ) nor g(T ) depend on the states, we apply the law of total probability
to sum out the states and get: ET ∼β [ρ(T )g(T )] = EH∼β [ρ(H)g(H)]. Combining with
the previous result, we therefore have that J(π) = EH∼β [ρ(H)g(H)].

4. Finally, we bring these results – and another application of the law of total probability –
together to show (writing Hn ∼ βn for the more precise (Hi)n

i=1 ∼ (βi)n
i=1):

EHn∼βn [IS] = EHn∼βn

[
1
n

n∑
i=1

(ρi(Hi)g(Hi))
]

= 1
n

n∑
i=1

EHn∼βn [ρi(Hi)g(Hi)]

= 1
n

n∑
i=1

EHi∼βi
[ρi(Hi)g(Hi)] = 1

n

n∑
i=1

JT (π) = JT (π).

Our goal is to mechanize this proof, establishing the result for hybrid (mixed discrete and
continuous) distributions.

2.2 Radon-Nikodym Derivatives
Radon-Nikodym derivatives generalize the concept of probability density functions (PDFs)
and probability mass functions (PMFs) and allow us to transform one measure space into
another via the density operator above. They capture the idea of a point-wise density ratio
between two measure spaces, allowing a change of measure by integration.

Consider measure spaces (X, Σ, µ) and (X, Σ, ν), and function f such that ν = f ∗ µ,
where f is called a Radon-Nikodym derivative. If we take (X, Σ, µ) to be the canonical
uniform measure space on the real line and f to be the PDF of a normal distribution, then
ν(s) = (f ∗ µ)(s) would be the probability that a random number drawn from a normal
distribution is in s, and ν((−∞, x)) would be the normal cumulative distribution function
(CDF) at x.

In this context discrete, continuous, and hybrid measures (e.g., probability measures,
though this discussion applies to all measures) refer to characteristics of ν, such as whether
it characterizes a distribution that has point masses (like a Bernoulli distribution), density
(like a normal distribution), or both. In cases where we do not have access to ν (such as
a π-weighted measure space for trajectories), we might use a different measure µ together
with a correction term that “re-weights” the samples from µ. This re-weighting term is the
Radon-Nikodym derivative.

We want our proofs to capture discrete, continuous, and hybrid ν. PDFs cannot capture
discrete distributions, PMFs cannot capture continuous distributions, and neither can capture
hybrid distributions. Taking a measure-theoretic approach using Radon-Nikodym derivatives
allows us to capture all of these cases. Though this could also be achieved using PDFs and
Dirac delta functions, Dirac delta functions are generalized functions [29] not functions, are
not currently in the HOL4 libraries, and present challenges for completing a formal proof [33].

3 Proofs

We now present salient aspects of the mechanized proofs, covering Hoeffding’s inequality,
product spaces and isomorphisms, trajectories and histories, importance sampling, OPE, and
lastly confidence intervals on OPE.

3.1 Hoeffding’s Inequality
Much of what is needed to prove Hoeffding’s inequality is already in HOL4’s library. We do
need a theorem about the expectation of the product of independent random variables:
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▶ Lemma 1 (Product of Independent Variables).

⊢ prob-space p ∧ (∀ i. i < n ⇒ real-random-variable Xi p) ∧
independent p X (count n) ∧ (∀ i. i < n ⇒ integrable p Xi ) ⇒
Ep[(λ x.

∏
i < n (Xi x))] =

∏
i < n Ep[Xi ].

In addition to the standard presentation of Hoeffding’s lemma, we prove a generalized version
(not centered at 0):

▶ Lemma 2 (Hoeffding’s lemma).

⊢ prob-space p ∧ real-random-variable X p ∧ Ep[X ] = 0 ∧ a ≤ 0 ∧ 0 ≤ b ∧
(AE x :: p. a ≤ X x ∧ X x ≤ b) ⇒
Ep[(λ x. exp (c · X x))] ≤ exp (c2 · (b − a)2 / 8); and

⊢ prob-space p ∧ real-random-variable X p ∧ (AE x :: p. a ≤ X x ∧ X x ≤ b) ⇒
Ep[(λ x. exp (c · (X x − Ep[X ])))] ≤ exp (c2 · (b − a)2 / 8).

Hoeffding’s inequality then follows with some algebra:

▶ Lemma 3 (Hoeffding’s inequality [14]). Given p a probability space, n a positive natural
number, and Xi<n, n independent random variables drawn from p that almost surely lie in
their respective intervals [ai, bi], let Sn x =

∑
i < n (Xi x). We then have that the probability

that the sum of the Xi minus their expectation exceeds some fixed t is bounded above by an
expression in t and the ai and bi:

⊢ Pp[{ x | t ≤ Sn x − Ep[(λ x. Sn x)] } ] ≤ exp (−2 · t2 /
∑

i < n(bi − ai)2)

We also prove a corollary, for positive δ, that is more helpful in constructing confidence
intervals:

⊢ 1 − δ ≤
Pp[{ x |

n−1 · Sn x − sqrt (ln δ−1 ·
∑

i < n(bi − ai)2 / (2 · n2)) ≤
Ep[(λ y. n−1 · Sn y)] } ].

The proof is straightforward, directly paralleling one found in Wikipedia:3

P (Sn − E [Sn] ≥ t) where Sn =
n∑

i=1
Xi

= P (exp(s(Sn − E [Sn])) ≥ exp(st)) for s > 0, by monotonicity of exp
≤ exp(−st) E [exp(s(Sn − E [Sn]))] by Markov’s inequality

= exp(−st)
n∏

i=1
E [exp(s(Xi − E [Xi]))] by algebraic manipulation

≤ exp(−st)
n∏

i=1
exp

(s2(bi − ai)2

8

)
by Hoeffding’s lemma

3 See https://en.wikipedia.org/wiki/Hoeffding%27s_inequality, as of February, 2022. The
Wikipedia formulation assumes the probability space for the Xi without naming it. In HOL4 it
is an explicit argument p, and x is a point in that space.
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= exp
(

−st + 1
8 s2

n∑
i=1

(bi − ai)2

)
by algebraic manipulation

= exp
(

− 2t2∑n
i=1(bi − ai)2

)
by setting s = 4t∑n

i=1(bi − ai)2

The corollary can be obtained by setting t =

√√√√ln δ−1
n∑

i=1
(bi − ai)2/2 and dividing

everything by n.

3.2 Product Spaces

Our proofs use measure spaces that are products of arbitrary (finite) numbers of measure
spaces. A technical limitation of HOL4’s type system is that it does not support arbitrary
n-tuples of types. To model such things requires using an indexing function of type num → α

where α subsumes the types of all the dimensions. The existing Martingale theory package
provides theorems about pairwise products of measure spaces. We recapitulate that approach
in the inductive step of building n-fold products.

▶ Definition 4 (pi-m-space). The space of a product measure space is the product of the spaces
of the component measure spaces. We use a subsidiary definition updated-at, which defines
n-fold product sets. The term f Ln 7→ eM denotes a function that is everywhere the same as
f except at n, where it maps to e.

pi-m-space 0 mn def= { (λ i. ARB) }
pi-m-space (SUC n) mn def= updated-at n (pi-m-space n mn) (m-space (mn n)), where

updated-at n fs s def= { f Ln 7→ eM | f ∈ fs ∧ e ∈ s } .

▶ Definition 5 (pi-measurable-sets). The measurable sets of a product measure space are those
of the smallest sigma algebra formed by the rectangular sets of the component measure spaces.
We use a subsidiary definition pi-prod-sets, which defines the n-fold rectangular sets. pi-sig-alg
is a packaging of the space and measurable sets.

pi-measurable-sets 0 mn def= POW { (λ i. ARB) }
pi-measurable-sets (SUC n) mn def=

subsets
(sigma (pi-m-space (SUC n) mn)

{ { f Ln 7→ eM | f ∈ fs ∧ e ∈ s } |
fs ∈ pi-measurable-sets n mn ∧ s ∈ measurable-sets (mn n) } );

pi-prod-sets n fsts sts def= { updated-at n fs s | fs ∈ fsts ∧ s ∈ sts } ; and

pi-sig-alg n mn def= (pi-m-space n mn, pi-measurable-sets n mn).
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▶ Definition 6 (pi-measure). The measure of a set in a product measure space is obtained
by integrating over an indicator function of that set. pi-measure-space is a packaging of all
components of the measure space.

pi-measure 0 mn def= (λ fs. 1 fs (λ i. ARB))
pi-measure (SUC n) mn def=
(λ fs.

∫ + (mn n) (λ e.
∫ + (pi-measure-space n mn) (λ f . 1 fs f Ln 7→ eM))); and

pi-measure-space n mn def=
(pi-m-space n mn, pi-measurable-sets n mn, pi-measure n mn).

3.3 Isomorphisms
We show that these product spaces are indeed measure spaces. The proof uses recursion to
show an (n + 1)-way product space of sigma finite measure spaces is a sigma finite measure
space because it is “equivalent to” a 2-way product of an n-way product and the remaining
space. Firstly, we address the 2-way product being a sigma finite measure space:

▶ Theorem 7 (2-Way Product is a Sigma Finite Measure Space). A product of 2 sigma finite
measure spaces is a sigma finite measure space.

⊢ sigma-finite-measure-space m1 ∧ sigma-finite-measure-space m2 ⇒
sigma-finite-measure-space (m1 × m2).

We also need results formalizing what it means for a measure space to be “equivalent to”
another one. Specifically, two measure spaces are isomorphic if there is a “measure preserving”
function between them, along the lines of Halmos [13, p. 164]:

▶ Definition 8 (Isomorphic Measure Spaces).

m0 ∼= m1
def= ∃ f . f ∈ measure-preserving m0 m1

where

measure-preserving m0 m1
def=

{ f |
f ∈ measurability-preserving (sig-alg m0) (sig-alg m1) ∧
∀ s. s ∈ measurable-sets m0 ⇒ measure m0 s = measure m1 (IMAGE f s) } ; and

measurability-preserving a b def=
{ f |
σ-algebra a ∧ σ-algebra b ∧ BIJ f (space a) (space b) ∧
(∀ s. s ∈ subsets a ⇒ IMAGE f s ∈ subsets b) ∧
∀ s. s ∈ subsets b ⇒ f −1 s ∩ space a ∈ subsets a } .

These definitions allow us to formalize the utility of isomorphisms:

▶ Theorem 9 (Isomorphisms Preserve Sigma Finiteness). Isomorphism to a sigma finite
measure space implies being a sigma finite measure space

⊢ sigma-finite-measure-space m0 ∧ m0 ∼= m1 ⇒ sigma-finite-measure-space m1.

Finally, we combine Theorems 7 and 9 with the existence of a measure-preserving function:
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▶ Theorem 10 (n-Way Product is a Sigma Finite Measure Space). A product of n sigma finite
measure spaces is a sigma finite measure space.

⊢ (∀ i. i < n ⇒ sigma-finite-measure-space (mn i)) ⇒
sigma-finite-measure-space (pi-measure-space n mn); because

⊢ sigma-finite-measure-space (pi-measure-space n mn) ∧
sigma-finite-measure-space (mn n) ⇒
(λ (f , e). f Ln 7→ eM) ∈
measure-preserving (pi-measure-space n mn × mn n)
(pi-measure-space (SUC n) mn).

This approach appears again when working with trajectory and history measure spaces.

3.4 Variable Name Conventions and Standard Assumptions
In our model of OPE, we model sets of states, observations, actions, and rewards. At the very
least, we need sigma algebras of these, and as the later distributions will need base measure
spaces, we need full measure spaces for each of these. Below, these are respectively denoted
ms, mo, ma, mr . The underlying type variables we use for these are σ, ω, α, ρ respectively
(for less general results, ρ, the reward type, is usually of type extreal). For convenience, these
standard measure parameters are omitted from argument/parameter lists henceforth, as are
assumptions that these spaces are either measure spaces or sigma finite measure spaces.

Individual states are typically s and s′ (s′ being the later state); observations are o,
actions are a, r is reward, and h is history or trajectory (they seldom appear simultaneously).
The length of trajectories or histories is n or T , while the number of rows in the database
is N .

3.5 Trajectories and Histories as Types
We now show our development of trajectories and histories (described in Section 2.1) as
types in HOL4. The respective types are defined:

▶ Definition 11 (Histories and Trajectories as HOL Types).

(α, ρ, ω) hist = hnil | hcons ((α, ρ, ω) hist) ω α ρ

(α, ρ, σ, ω) traj = init σ | tcons ((α, ρ, σ, ω) traj) ω α σ ρ

A history is isomorphic to a list of observation, action, and reward triples; these are drawn
from the type variables ω, α, and ρ respectively. The order of arguments in our definition is
deliberate: we consider the non-recursive arguments to the “cons” functions to be at the end
(rather than head) of the history. A trajectory adds a required initial state of type σ, and
then adds a state between each action and reward of a history. The function t-hist extracts
the state-less triples from a trajectory, giving a history. We write |t| to record the number of
steps in a trajectory (i.e., |init s| = 0), and t-st t is the function that returns the final state
of trajectory t.

The definition and machinery of history measure spaces directly parallels, and was developed
after, that of trajectories. It suffices to speak only of trajectories here.

Originally, we considered measure spaces of all trajectories of all lengths. This was
abandoned for two reasons. First, it was unnecessary. For any database of histories (which
contains a finite number of histories), there is a longest trajectory among those from which
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the histories are derived. All other histories/trajectories can be extended to the same length
via “do nothing” actions. This is why a maximum number of steps is taken in the literature
as described earlier. Moreover, only fixed-length PDF-weighted trajectory measure spaces
can form probability spaces, which is necessary later on.

Even though we abandoned the use of different trajectory lengths, we pursued it long
enough that it inspired trajectory spaces and measurable sets to be defined in a not-directly-
recursive manner (unlike the n-way product space). The development parallels that of
product spaces directly, as opposed to only within an inductive step.

▶ Definition 12 (traj-m-space-n). A product measure space’s space is a cross product of the
component measure spaces’ spaces. We mirror that with traj-cross, which takes a trajectory of
sets and returns a set of trajectories, each element of which falls component-wise within the
input. In order to get a trajectory of spaces of the desired length, we make a helper function
named traj-n-gen.

traj-m-space-n n ms mo ma mr def=
traj-cross (traj-n-gen n (m-space ms) (m-space mo) (m-space ma) (m-space mr));

traj-cross (init ss) (init s) def= s ∈ ss
traj-cross (init ss) (tcons h w a s r) def= F
traj-cross (tcons hs ws as ss rs) (init s) def= F
traj-cross (tcons hs ws as ss rs) (tcons h w a s r) def=
w ∈ ws ∧ a ∈ as ∧ s ∈ ss ∧ r ∈ rs ∧ traj-cross hs h; and

traj-n-gen 0 sg og ag rg def= init sg
traj-n-gen (SUC n) sg og ag rg def= tcons (traj-n-gen n sg og ag rg) og ag sg rg.

▶ Definition 13 (traj-measurable-sets-n). A product measure space’s measurable sets form a
sigma algebra containing all cross products (the “rectangular” sets) of the component measure
spaces’ measurable sets. We mirror that with traj-rect-sets-n, which takes a trajectory of sets
of measurable sets, to a set of trajectories of measurable sets, to a set of rectangular sets of
trajectories. traj-sig-alg-n is a pairing of the space and measurable sets.

traj-measurable-sets-n n def=
subsets (sigma (traj-m-space-n n) (traj-rect-sets-n n));

traj-rect-sets-n n def=
IMAGE traj-cross
(traj-cross

(traj-n-gen n (measurable-sets ms) (measurable-sets mo)
(measurable-sets ma) (measurable-sets mr))); and

traj-sig-alg-n n def= (traj-m-space-n n, traj-measurable-sets-n n).

▶ Definition 14 (traj-measure-n). The measure of a set is obtained by integrating over an
indicator function of that set. traj-measure-space-n is a pairing of all components of the measure
space:
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traj-measure-n 0 def= (λ hs.
∫ + ms (λ s. 1 hs (init s)))

traj-measure-n (SUC n) def=
(λ hs.∫ + (traj-measure-space-n n)

(λ h.∫ + mo
(λ o.∫ + ma

(λ a.
∫ + ms (λ s.

∫ + mr (λ r . 1 hs (tcons h o a s r))))))); and

traj-measure-space-n n def= (traj-m-space-n n, traj-measurable-sets-n n, traj-measure-n n).

Many steps in later proofs require these to be measure spaces, which we prove inductively by
showing they form sigma finite measure spaces:

▶ Theorem 15 (History and Trajectory Measure Spaces).

⊢ sigma-finite-measure-space (traj-measure-space-n n); because
⊢ traj-measure-space-n 0 ∼= ms; and
⊢ traj-measure-space-n (SUC n) ∼= traj-measure-space-n n × mo × ma × ms × mr .
⊢ sigma-finite-measure-space (hist-space n); because
⊢ hist-space (SUC n) ∼= hist-space n × mo × ma × mr .

3.6 Preconditions and Useful Functions
Before developing the main OPE results, the mechanization identifies our standard pre-
conditions on d0 (initial state distribution), Ω (the observation distribution), β (current
policy), π (new policy), P (transition distribution), and dR (reward distribution), grouping
them together in a predicate valid-dist-gen-funs. The conditions are about as minimal as one
could hope: the distribution functions need to be positive, non-infinite, measurable, and
integrate to 1 (form a probability space when used for making a density space). We omit the
full definition, but assume it in all contexts mentioning our various distribution functions
hereafter.

▶ Definition 16 (Trajectory PDF, Importance Ratio, and Return). Using those preconditions,
we define a number of functions, specifically the return, importance ratio, and PDF:

traj-pdf d0 P Ω dR β (init s) def= d0 s
traj-pdf d0 P Ω dR β (tcons h w a s r) def=

traj-pdf d0 P Ω dR β h · Ω (t-st h) w · β w a · P (t-st h) a s · dR (t-st h) a s r ;

importance-ratio π β (init s) def= 1
importance-ratio π β (tcons h w a s r) def= importance-ratio π β h · π w a · (β w a)−1; and

traj-return γ (init s) def= 0
traj-return γ (tcons h w a s r) def= traj-return γ h + γ|h| · r .

There are similarly defined analogous functions for histories: hist-pdf, h-importance-ratio, and
hist-return.
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▶ Definition 17 (History PDF). hist-pdf is particularly interesting in that it requires a helper
function that serves as a PDF of history and final state, where the non-final states are
integrated away recursively.

hist-pdf ms d0 P Ω dR β h def=
∫ + ms (hist-lst-pdf ms d0 P Ω dR β h); and

hist-lst-pdf ms d0 P Ω dR β hnil s′ def= d0 s′

hist-lst-pdf ms d0 P Ω dR β (hcons h o a r) s′ def=
β o a ·

∫ + ms (λ s. hist-lst-pdf ms d0 P Ω dR β h s · Ω s o · P s a s′ · dR s a s′ r).

Many steps in later proofs require these (and their history analogs) to be measurable:

⊢ traj-pdf d0 P Ω dR β ∈ Borel-measurable (traj-sig-alg-n n);

⊢ (∀ w a. w ∈ m-space mo ∧ a ∈ m-space ma ∧ β w a = 0 ⇒ π w a = 0) ⇒
importance-ratio π β ∈ Borel-measurable (traj-sig-alg-n n); and

⊢ sig-alg mr = Borel ⇒ traj-return γ ∈ Borel-measurable (traj-sig-alg-n n).

3.7 Importance Sampling
We now start to address OPE as described in Section 2.1. The first step is to shift the
density measure space from the π PDF to the β PDF, by showing that the PDF ratio is a
Radon-Nikodym derivative from one space to the other:

⊢ (∀ w a. w ∈ m-space mo ∧ a ∈ m-space ma ∧ β w a = 0 ⇒ π w a = 0) ∧
f ∈ Borel-measurable (traj-sig-alg-n n) ⇒∫

(density (traj-measure-space-n n) (traj-pdf d0 P Ω dR π)) f =∫
(density (traj-measure-space-n n) (traj-pdf d0 P Ω dR β))

(λ h. traj-pdf d0 P Ω dR π h · (traj-pdf d0 P Ω dR β h)−1 · f h).

We next replace the ratio of PDFs with the importance ratio, via reasonably straightforward
algebra:

⊢ h ∈ traj-m-space-n n ∧ traj-pdf d0 P Ω dR β h ̸= 0 ⇒
traj-pdf d0 P Ω dR π h · (traj-pdf d0 P Ω dR β h)−1 =
importance-ratio π β h.

▶ Theorem 18 (Importance Ratio). We combine our last two results to allow us to calculate
an expectation (integral, here) in π-weighted trajectory space given trajectories in β-weighted
trajectory space:

⊢ (∀ w a. w ∈ m-space mo ∧ a ∈ m-space ma ∧ β w a = 0 ⇒ π w a = 0) ∧
f ∈ Borel-measurable (traj-sig-alg-n n) ⇒∫

(density (traj-measure-space-n n) (traj-pdf d0 P Ω dR π)) f =∫
(density (traj-measure-space-n n) (traj-pdf d0 P Ω dR β))

(λ h. importance-ratio π β h · f h).

3.8 Off-Policy Evaluation
The next step is to shift from the β trajectory PDF to the β history PDF, justifying the use
of the empirical estimator. To that end, after some involved changes in order of integration,
we are able to show:

ITP 2022



32:16 Mechanizing Soundness of Off-Policy Evaluation

▶ Theorem 19 (Trajectories to Histories). Integrals in the trajectory measure space (assumed
sigma finite), can be recast as integrals in the history space:

⊢ (∀ x. x ∈ hist-m-space-n n ⇒ 0 ≤ f x) ∧
f ∈ Borel-measurable (hist-sig-alg-n n) ⇒∫ + (density (traj-measure-space-n n) (traj-pdf d0 P Ω dR β)) (f ◦ t-hist) =∫ + (density (hist-space n) (hist-pdf ms d0 P Ω dR β)) f .

A useful corollary – used in later proofs – follows:

▶ Corollary 20. Since the PDF-weighted trajectory space is a probability space, setting the
positive function in the earlier result to be the constant 1, we derive that the PDF-weighted
history space is also a probability space:

⊢ prob-space (density (traj-measure-space-n n) (traj-pdf d0 P Ω dR β)); and thus
⊢ prob-space (density (hist-space n) (hist-pdf ms d0 P Ω dR β)).

Finally, we combine Theorems 18 and 19:

▶ Theorem 21. It is possible to estimate the expected return in π-weighted trajectory space
by appeal to the empirical return of β-weighted history space:

⊢ (∀ w a. w ∈ m-space mo ∧ a ∈ m-space ma ∧ β w a = 0 ⇒ π w a = 0) ∧
f ∈ Borel-measurable (hist-sig-alg-n n) ⇒∫

(density (traj-measure-space-n n) (traj-pdf d0 P Ω dR π)) (f ◦ t-hist) =∫
(density (hist-space n) (hist-pdf ms d0 P Ω dR β))

(λ h. h-importance-ratio π β h · f h).

3.9 Database Estimate
To complete OPE, we go from an empirical estimate based on a single history, to one based
on an average over histories. We first prove a lemma to help go from product space back to
the individual spaces:

▶ Theorem 22. An integral (expectation) over a sum (thus average) in product space can be
reduced to a sum (or average) of integrals over individual spaces:

⊢ (∀ i. i < n ⇒ prob-space mni ) ∧ (∀ i. i < n ⇒ integrable mni fi ) ⇒∫
(pi-measure-spacen mn) (λ x.

∑
i < n (fi xi )) =

∑
i < n (

∫
mni fi ).

We use that to generalize Theorem 21:

▶ Theorem 23. It is possible to estimate the expected return in π-weighted trajectory space
by appeal to an average of empirical returns in βi-weighted history spaces. Let

p = pi-measure-spacen (λ i. density (hist-space T ) (hist-pdf ms d0 P Z dR βi ))
τ = density (traj-measure-space-n T ) (traj-pdf d0 P Z dR phi)

and assume the various implicit measure spaces (ma, mo, etc.) are sigma finite measure
spaces; that n is strictly positive, and that π is zero whenever any of the βi are, i.e.:

∀ i o a. i < n ∧ o ∈ m-space mo ∧ a ∈ m-space ma ∧ βi o a = 0 ⇒ π o a = 0

then:

⊢ integrable (density (hist-space nT ) (hist-pdf ms d0 P Ω dR π)) f ⇒∫
p (λ D. n−1 ·

∑
i < n(h-importance-ratio π βi Di · f Di)) =

∫
τ (f ◦ t-hist).
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3.10 Confidence Interval
For brevity, we define the database-based estimate of the return as

data-returnn π β γ D def=
n−1 ·

∑
i < n (h-importance-ratio π βi Di · hist-return γ Di )

At this point we have shown that OPE gives an unbiased estimate of the expected return
of the new policy. However, it is even more useful to have a confidence interval around
this expectation. We develop a confidence interval using Hoeffding’s inequality (other
concentration inequalities could be used here). Using Hoeffding’s inequality requires a further
precondition: bounding almost everywhere the importance ratio times the return. The final
result is:

▶ Theorem 24 (Unbiasedness of Off-Policy Evaluation on Return). Let

S =
∑
i < n

(UBi − LBi )2 / (2 · n2)

p = pi-measure-spacen (λ i. density (hist-space T ) (hist-pdf ms d0 P Ω dR βi ))
τ = density (traj-measure-space-n T ) (traj-pdf d0 P Ω dR π)

and assume the various implicit measure spaces (ma, mo, etc.) are sigma finite measure
spaces; that n and δ are both greater than 0, and that π is zero whenever any of the βi are,
i.e.:

∀ i o a. i < n ∧ o ∈ m-space mo ∧ a ∈ m-space ma ∧ βi o a = 0 ⇒ π o a = 0

then:

⊢ sig-alg mr = Borel ∧
(∀ h. h ∈ hist-m-space-n T ⇒ Gmin ≤ hist-return γ h ∧ hist-return γ h ≤ Gmax) ∧
(∀ i. i < n ⇒

AEh :: density (hist-space T ) (hist-pdf ms d0 P Ω dR βi).
LBi ≤ h-importance-ratio π βi h · hist-return γ h ∧
h-importance-ratio π βi h · hist-return γ h ≤ UBi) ⇒

1 − δ ≤ Pp[{ D | data-returnn π β γ D − sqrt (ln δ−1 · S) ≤ Eτ [traj-return γ] } ].

In other words, the one-sided confidence interval whose lower bound is
√

ln δ−1 · S less than
our estimator captures the expected return of the new policy with probability at least 1 − δ.
As such, if we have reason to believe – such as an upper-bounded confidence interval – that
the expected return under the current policy is below the estimator confidence interval with
probability at least 1 − ϵ, then the probability that the new policy’s expected return is better
is at least (1 − δ)(1 − ϵ)

3.11 The HOL4 Mechanization
The proof of Hoeffding’s inequality took on the order of two person-months of effort and
OPE took about three-person months. In terms of lines of HOL4 code, our running library
of important and useful general-purpose results is currently around 4800 lines, Hoeffding’s
inequality and variants take another 500 lines, the development of product measure spaces and
isomorphisms requires about 1000 lines, and the rest of the OPE development is approximately
3500 lines long, for a total of about 10,000 lines. As may often be the case when adding
new theories, it is helpful to refine and enhance the theorem prover’s formula simplification
capabilities to reduce the number of small, tedious, steps – though many remain.

ITP 2022



32:18 Mechanizing Soundness of Off-Policy Evaluation

4 Conclusion and Future Work

While the expected return, J(π), is the most common performance metric in RL, for some
high-risk applications parameters of the return distribution other than the expected value
can better characterize the risk of applying the policy π. For example, RL researchers have
studied using coherent risk measures [31, 7, 36, 30, 28] like the conditional value at risk
(CVaR) [1] of the return distribution. The extension of our results to this setting will require
an additional step: though we have shown off-policy pointwise convergence to the CDF
of returns under π, we must show uniform convergence following the hand-checked proof
of Chandak et al. [6]. Uniform convergence of off-policy estimates to the CDF of returns
under π would allow for estimates and confidence intervals for all parameters of the return
distribution [6], including CVaR, variance, and quantiles.

Our main result uses Hoeffding’s inequality to obtain a confidence interval. As concen-
tration inequalities go, Hoeffding’s inequality is easy to prove, but also notoriously loose.
Thus another fruitful direction for future work is mechanizing proofs of other, tighter,
concentration inequalites, such as Maurer and Pontil’s empirical Bernstein bound [24],
Anderson’s inequality [2] using Massart’s tight constants [23] for the Dvoretsky-Kiefer-
Wolfowitz inequality [9], or an extremely tight confidence interval conjectured independently
by multiple researchers [11, 22].

There are places where our development might be tightened by relaxing preconditions.
For example, the constraint that the distribution generation functions form probability
spaces isn’t necessary for showing that any of the PDF functions are measurable, but we
still use the precondition valid-dist-gen-funs for brevity of proof statement in lemmas that are
ultimately used when valid-dist-gen-funs in its entirety is necessary. There are also cases where
a definition takes in extraneous information. For example, pi-m-space and traj-m-space-n take
entire measure spaces, but use only the spaces of those measure spaces.

Finally, our histories are isomorphic to lists, and trajectories are in turn lists with extra
information between adjacent elements, making them what the HOL4 library would call
finite paths. It would be appealing to develop more generalized theories about measure
spaces based on these library notions, allowing our trajectory and history results to fall out
as special cases. Moreover, the product measure space results could be expressed in terms of
list measure spaces.

More generally, given our development of measure spaces over histories and trajectories,
a variety of other results in RL might be mechanized.

It is reassuring that our proof of the soundness of OPE brought no big surprises. In
particular, it was encouraging that the ultimate pre-conditions were just the measure spaces
being sigma finite and the distribution generating functions being non-negative, finite,
measurable, and integrating to 1. At the same time, it is satisfying to record OPE’s
generalization to hybrid distributions and to lay groundwork for several future directions.
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