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Abstract

We present a batch policy search algorithm that has several desirable properties: it has
few parameters that require expert tuning, it can leverage approximate models of the en-
vironment, it can seamlessly handle continuous states and actions, (informally speaking)
it is guaranteed to converge to a globally optimal policy even in partially observable envi-
ronments, and in our simulations it outperforms a state-of-the-art baseline. The primary
limitation of our algorithm is its high computational complexity—each policy improvement
step involves the optimization of a known (not necessarily convex) function.

1. Introduction

We present a batch policy search algorithm for episodic Markov decision processes (MDPs)
or partially observable Markov decision processes (POMDPs). Given that one or more
policies have been deployed in an environment that can be modeled as an MDP or POMDP,
batch policy search algorithms take data collected from running the currently deployed
policies and use it to search for an improved policy. Being able to use past experience
to improve future performance in this way is a critical capability for intelligent agents
(Shortreed et al., 2011; Pietquin et al., 2011).

One strong batch reinforcement learning algorithm is fitted q-iteration (Ernst et al.,
2005, FQI). Although existing batch policy search algorithms like FQI have achieved signif-
icant success, most prior methods have several drawbacks: 1) they are not guaranteed to
converge to a globally optimal policy when using function approximation or in the presence
of partial observability, 2) if an approximate model of the MDP or POMDP is available, it
is not always obvious how such information can or should be incorporated to improve data
efficiency, and 3) value-function based methods like FQI cannot leverage knowledge about
a policy class that is known to perform well (e.g., PID controllers for control problems).

In this paper we present magical policy search (MPS), a new batch policy search algo-
rithm that addresses the limitations just described. MPS is the result of the straightforward
combination of two ideas. The first idea is that a batch policy search algorithm can simply
return the policy that maximizes a data-based prediction of how good each policy is (Levine
and Koltun, 2013, Section 3). We combine this idea with the recently proposed MAGIC
estimator, which uses historical data to make predictions about how good each policy is
(Thomas and Brunskill, 2016). The synthesis of these two ideas results in a batch policy
search algorithm that can drastically improve data efficiency relative to existing model-free
methods like FQI when an approximate model of the (PO)MDP is available.
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2. Notation and Problem Statement

We assume that the reader is familiar with reinforcement learning (Sutton and Barto,
1998) and, although our results extend directly to POMDPs, for simplicity we adopt no-
tational standard MDPNv1 for MDPs (Thomas, 2015a). For all policies, π, let v(π) :=
E[
∑L

t=0 γ
tRt|π] denote the expected discounted return if policy π were to be used, where

γt ∈ [0, 1] is a discounting parameter, L is the finite horizon, and Rt is the uniformly
bounded reward at time t. We do not assume that the transition and reward functions of
the MDP are known, and so v is not known. Instead, we must make inferences about it
from historical data, D. This historical data contains the observed states (observations),
actions, and rewards, produced from the deployment of the current and past policies called
behavior policies. We assume that D contains data from n ∈ N>0 episodes. Batch policy
search algorithms are algorithms that take the historical data, D, an approximate model,
and a set of policies, Π, called the feasible set, as input. They produce as output a policy
π ∈ Π with the goal of maximizing v(π).

3. Background: Off-Policy Policy Evaluation (OPE)

In this section we review off-policy policy evaluation (OPE) algorithms that lie at the
heart of our proposed method. An OPE algorithm, v̂, takes historical data, D, as input
as well as a policy, πe, called the evaluation policy. It produces as output an estimate,
v̂(πe|D), of the performance, v(πe), of the evaluation policy. That is, v̂(πe|D) ≈ v(πe).
One of the earliest and most well-known OPE estimators is the importance sampling (IS)
estimator, v̂IS, introduced by Precup et al. (2000). Given mild assumptions, the IS estimator
is unbiased, i.e., E[v̂IS(πe|D)] = v(πe) and strongly consistent, i.e., E[v̂IS(πe|D)]

a.s.−→ v(πe),
(Precup et al., 2000). The primary drawback of the IS estimator is that it tends to have
impractically high variance when the behavior and evaluation policies are not similar.

The approximate model (AM) estimator, v̂AM, is an OPE algorithm that uses historical
data to build an approximation of the MDP or POMDP. It then uses the performance of the
evaluation policy on this approximate model as an estimate of the evaluation policy’s actual
performance. Although the AM estimator tends to have much lower variance than the IS
estimator, it is often not unbiased nor asymptotically correct. That is, if the true MDP
cannot be represented by the approximate model (e.g., when using function approximation)
or if there is partial observability, then as the amount of historical data goes to infinity, the
most common maximum-likelihood approximate models will cause v̂AM(πe|D) to converge
to values that may be quite different from v(πe).

The MAGIC estimator, v̂MAGIC, is a recently proposed estimator that combines the de-
sirable properties of the IS and AM estimators. Experiments show that it tends to perform
like whichever estimator is better, v̂AM or a variant of v̂IS, and sometimes performs orders
of magnitude better than both (in terms of mean squared error) (Thomas and Brunskill,
2016). The variant of v̂IS used by MAGIC is called the weighted doubly robust (WDR) esti-
mator, which we denote by v̂WDR. The MAGIC estimator is derived by defining a spectrum
of estimators between the WDR and AM estimators: v̂(j) for j ∈ {−2,−1, 0, 1, . . . , L− 1},
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where v̂(−2) = v̂AM and v̂(L−1) = v̂WDR.1 Rather than select a single estimator from
this spectrum of estimators, the MAGIC estimator acts more like a product of experts
system (Hinton, 2002)—it uses a weighted combination of all of the different estimators,
v̂MAGIC(D) :=

∑L−1
j=−2wj v̂

(j)(D), where the weights, wi, are selected to minimize a predic-
tion of the resulting mean squared error.

4. Background: Batch Policy Search

Some recent works have used a batch policy search algorithm that we call surrogate objective
policy search (SOPS).2 SOPS creates a surrogate objective function, v̂, that estimates the
true objective function, v, and for which v̂(π) is known for all π ∈ Π. SOPS then selects
the policy that maximizes v̂. Specifically, SOPS selects the policy that maximizes an OPE
estimator: arg maxπ∈Π v̂(π|D)− λc(π), where c(π) is some notion of the complexity of the
policy π and λ ∈ R≥0 is a parameter that scales regularization. Levine and Koltun (2013)
suggest using a weighted importance sampling estimator (Precup et al., 2000) and a defini-
tion of c that leverages properties that are particular to the importance sampling estimator.
Thomas et al. (2015) also propose using a weighted form of importance sampling, but reg-
ularize based on how close to deterministic a policy is. However, both Levine and Koltun
(2013) and Thomas et al. (2015) propose more than just SOPS. Levine and Koltun (2013)
propose guiding the policy search using the iterative linear-quadratic regulator control the-
oretic algorithm, and it is not clear how this could be extended to non-control applications
like the digital marketing experiment that we propose. Thomas et al. (2015) propose using
SOPS as a subroutine in an algorithm that guarantees improvement with high confidence,
which requires significantly more data than merely finding a policy that tends to be better
than the behavior policies.

To the best of our knowledge, using SOPS (without augmentations) as a batch policy
search algorithm has not been proposed. One reason for this might be that the search over
π ∈ Π requires the OPE algorithm to be run on a wide distribution of policies, some of which
can be very different from the behavior policies. In these cases importance sampling based
methods tend not to perform well, and so the policy search algorithm must be restricted to
proposing policies that are too similar to the behavior policies to be of practical use. In the
next section we argue that this limitation can be mitigated by using MAGIC as the OPE
algorithm in SOPS.

5. Magical Policy Search (MPS)

We propose using the MAGIC estimator as the OPE subroutine in SOPS, and therefore
refer to our algorithm as magical policy search (MPS). MPS is defined by the equation:

π ∈ arg max
π∈Π

v̂MAGIC(π|D). (1)

1. Although Thomas and Brunskill (2016) focus on the case where j 6= −2, they point out in footnote 8
that when an approximate model is available a priori, using j = −2 can be important.

2. Levine and Koltun (2013, Section 3) call this method importance sampled policy search. We do not adopt
this name because we consider using OPE methods like v̂AM that do not use importance sampling.
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In practice, we find approximate solutions to this arg max using CMA-ES, a general-purpose
black-box optimization algorithm (Hansen, 2006).3 Using MAGIC as a subroutine in SOPS
has several benefits over using conventional importance sampling methods. Most impor-
tantly, its ability to leverage approximate models means that the estimates produced by
MAGIC can be accurate even for policies that are quite different from the behavior policies.

That is, if using SOPS with an importance sampling variant, the OPE predictions will
have extremely high variance for policies that are very different from the behavior policies.
As a result, SOPS tends to find policies that importance sampling predicts will be near
optimal, but which in fact are quite bad. To stop SOPS from selecting these policies, past
work used regularization to limit the set of policies to those that are in some way “close”
to the behavior policies.

Unlike purely importance sampling methods, for policies that are very different from the
behavior policy, MAGIC automatically relies on the approximate model. So, when there is
little data, the MAGIC estimator is similar to the AM estimator, and so MPS proposes a
policy that makes sense given the prior knowledge provided in the approximate model. As
more data arrives, the MAGIC estimator begins to look more like an importance sampling
estimator for policies close to the behavior policy, but still resembles the AM estimator for
distant policies. MPS will therefore continue to return the policy that makes sense based
on the prior knowledge provided in the approximate model until the importance sampling
estimator becomes more accurate than the model for a region of policy space that includes
better policies. As a result of this behavior, in our experiments we found that MPS does
not require the regularization term in SOPS. Although we therefore omit the regularizing
term from MPS, it can easily be included by adding −λc(π) to the right side of (1), using a
model selection method like cross-validation to tune λ, and one of the proposed definitions
of c(π) (Levine and Koltun, 2013; Thomas et al., 2015).

Recall that MAGIC uses an approximate model. For some applications an approximate
model might be available a priori. For example, approximate models of some medical
reinforcement learning applications have been constructed from expert knowledge and used
to find policies that were then deployed for patients (Jagodnik and van den Bogert, 2007).
Although the models resulted in decent policies, there remained room for improvement due
to discrepancies between the expert models and the real world (Thomas et al., 2009). In
other cases, a model might not be available a priori. In these cases, the approximate model
can be constructed using some or all of the historical data.

6. Theoretical Analysis of MPS

In the supplemental document we present our primary theoretical result formally—here
we provide an overview. We show that the performance of the policy produced by SOPS
converges almost surely to the performance of an optimal policy given remarkably weak

3. The only parameter of CMA-ES that we tuned was the initial covariance matrix, which we set so that
it covered Π. The low number of hyperparameters that must be tuned for the MAGIC estimator and
CMA-ES means that MPS does not require much expert tuning. Specifically, the hyperparameters of
MPS that might require tuning are the initial covariance matrix for CMA-ES, the number of iterations
of CMA-ES to run (as many as possible) and the number of bootstrap samples to use in MAGIC (also
as many as possible). Additionally, some terms that we view as part of the problem statement could be
viewed as tunable hyperparameters: the approximate model used and the feasible set, Π.
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assumptions. Essentially, as long as the OPE method used is strongly consistent—like all of
the importance sampling estimators and the MAGIC estimator (Thomas, 2015b; Thomas
and Brunskill, 2016))—then even if the objective function, v, is discontinuous (even point
discontinuities are allowed), the value, v(π), of the policy, π, returned by MPS will converge
almost surely to the value, v(π?) of an optimal policy, π? ∈ Π, as the amount of historical
data goes to infinity (as n → ∞). Intuitively, SOPS and MPS are able to achieve global
optimality because every trajectory can be used to improve the estimate of the performance
of every policy in Π simultaneously (via the OPE method). Recall that MPS is a variant
of SOPS, and so this result applies to MPS.

Notice, however, that the convergence guarantee requires the assumption that4 the
implementation of MPS finds the π ∈ Π that maximizes the magic estimator, which in
itself is a challenging optimization problem. However, the convergence guarantee that we
provide is still important for several reasons. First, our guarantee is interesting because it
informs the user about how the method should behave. If a gradient method for a smooth
optimization problem fails to converge to a solution (global or local) using a large fixed step
size, we know that we can decrease the step size and, once the step size is small enough,
it should converge. Similarly here, if our method does not converge to a sufficiently good
policy, the proof shows that we should increase the power of the internal search algorithm.
In our implementation, this would mean running more iterations of CMA-ES and including
random restarts. Second, our convergence guarantee allows for partial observability (since
the MAGIC estimator is strongly consistent even if the environment is a POMDP). To
the best of our knowledge, the convergence guarantees for FQI and KBRL do not hold
for POMDPs—they work for continuous states, but not when there is partial observability
(which is common for real applications).

7. Empirical Evaluation of MPS

We applied MPS, SOPS (using the WDR estimator rather than MAGIC), and FQI to a
simulated digital marketing problem. In this problem, the agent is given a description of
the user visiting a web page and must select which advertisement to show to the user. The
agent gets a reward of one if the user clicks on the advertisement and a reward of zero
otherwise. The description of the user is a real vector in [0, 1]m, each element of which
encodes the agent’s current belief about the user’s interest in a particular topic. After each
advertisement is shown, the belief about the user’s interests is updated (based on which
advertisement was shown and whether or not it was clicked) and the agent must select
another advertisement to show.

Digital marketing is a good application for showcasing the benefits of MPS because it
is reasonable to assume that an approximate model is available a priori. Specifically the
mechanism that updates the belief about a users interests is known, so an approximate
model can perfectly model these dynamics. However, there may be uncertainty about
exactly how likely a user is to click based on the current belief state. Therefore in our
simulation we use an approximate model with only a rough hand-crafted estimate of the
true dynamics for computing whether or not a user will click.

4. Several other assumptions are required, like that real numbers are perfectly represented and that the
real environment is perfectly modeled as a POMDP, which often may be false (Thomas et al., 2017).
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Figure 1: Performances on the digital marketing benchmark. “Optimal”, “Model”, and
“Random” correspond to the mean returns of an optimal policy, and optimal
policy for the approximate model, and the policy that selects actions uniformly
randomly.

Figure 1 shows the mean returns of the policies produced by the methods that we
considered. Notice that this is not a sequential plot—the point at n = 256 corresponds to
selecting a policy using 256 trajectories of historical data generated by the random policy
(e.g., the policy produced from n = 128 trajectories was not used to create the policy shown
for n = 256 trajectories). We averaged the results over 20 trials and include standard error
bars.

Given just n = 8 trajectories of historical data, MPS is able to improve significantly
upon the model policy. The fact that MPS performs better than both the model policy
and SOPS+WDR suggests that this is a setting where the MAGIC estimator outperforms
both WDR and AM (the two estimators that it blends between). Notice that SOPS+WDR
improves faster than FQI—we suspect that this is because it is “guided” by the approxi-
mate model (Thomas and Brunskill, 2016), while FQI ignores the approximate model. As
anticipated, in trials using far more data, we found that eventually the performance of FQI
reached levels similar to that of MPS and SOPS+WDR.

Given extremely limited data, n = 2 or n = 4, MPS does better than FQI and
SOPS+WDR, but dips below the performance of the model policy. We suspect that this is
because given so little data, MAGIC is unable to determine whether it should trust the ap-
proximate model or the importance sampling estimates. Still, MPS’s use of the model likely
gives it an advantage over model-free FQI and SOPS+WDR, which uses the approximate
model only as a control variate.

8. Conclusion

We have presented a new policy search algorithm, magical policy search (MPS), which
searches for the policy that maximizes an estimate of the true objective function, created
from historical data. The estimate of the true objective function is generated by a recently
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proposed estimator called the MAGIC estimator, which can make efficient use of approxi-
mate models. We proved that the expected returns of the policies produced by MPS, and a
more general form of MPS that we call surrogate objective policy search (SOPS), converges
with probability one to the expected return of a globally optimal policy as the amount of
historical data goes to infinity. We also argued that the assumptions required to ensure con-
vergence are remarkably weak relative to the assumptions required by other reinforcement
learning algorithms. Finally, we evaluated MPS on a simulated digital marketing bench-
mark wherein it is reasonable to expect that an approximate model of some environmental
dynamics would be available. We found that, by leveraging the approximate model, MPS
significantly outperformed fitted q-iteration and another related SOPS algorithm.
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Appendix A. Theoretical Results

In §A.1 we present formal clarifications, definitions and assumptions. In §A.2 we discuss
the assumptions and how they can be satisfied. Finally, in §A.3 we present our main result
as Theorem 1.

A.1 A Clarification, Definitions, and Assumptions

Recall that the historical data, D, is a random variable. To further formalize this notion,
let (Ω,F , µ) be a probability space and Dn : Ω→ D be a random variable. That is, Dn(ω)
is a particular sample of the entire set of historical data with n trajectories, where ω ∈ Ω.

Definition 1 (Piecewise Lipschitz continuity). We say that a function f : M → R on a
metric space (M,d) is piecewise Lipschitz continuous with Lipschitz constant K and with
respect to a countable partition, {M1,M2, . . . }, of M if f is Lipschitz continuous with Lip-
schitz constant K on all metric spaces in {(Mi, d)}∞i=1.

Definition 2 (δ-covering). If (M,d) is a metric space, a set X ⊆ M is a δ-covering of
(M,d) if and only if maxy∈M minx∈X d(x, y) ≤ δ.

Assumption 1 (Consistent OPE). For all π ∈ Π, v̂(π|Dn(ω))
a.s.−→ v(π), and λ = 0.

Assumption 2 (Piecewise Lipschitz objectives). The feasible set of policies, Π, is equipped
with a metric, dΠ, such that for all Dn(ω) there exist countable partition of Π, Πv :=
{Πv

1,Π
v
2, . . . } and Πv̂ := {Πv̂

1,Π
v̂
2, . . . }, where v and v̂(·|Dn(ω)) are piecewise Lipschitz con-

tinuous with respect to Πv and Πv̂ respectively with Lipschitz constants K and K̂. Further-
more, for all i ∈ N>0 and all δ > 0 there exist countable δ-covers of Πv

i and Πv̂
i .

A.2 Discussion of Definitions and Assumptions

Assumption 1 will be useful to show that the surrogate objective function converges al-
most surely to the true objective function, v. Thomas and Brunskill (2016, Theorem 3)
showed that Assumption 1 holds for v̂MAGIC given reasonable assumptions. Furthermore,
the assumption that λ = 0 is satisfied by MPS since it does not use a regularizing term.

Assumption 2 ensures that v and v̂ are piecewise Lipschitz continuous and that Π is
a reasonable set (i.e., notice that the requirement that δ-covers exist is satisfied if Π is
countable or Π ⊆ Rnθ for any integer nθ ∈ N>0). Consider the two most common settings
considered by proofs for reinforcement learning methods: the setting where the number
of policies is countable (e.g., deterministic policies for an MDP with countable state and
action sets), and the setting where a stochastic policy is parameterized by θ ∈ Rnθ . In the
former setting, Π can be partitioned into |Π| singletons (sets with one element) to satisfy
Assumption 2. In the latter setting, a common assumption is that ∂π(a|s,θ)/∂θ exists and
is bounded for all s, a, and θ. In this setting, v is Lipschitz continuous over Π (this is evident
from the policy gradient theorem (Sutton and Barto, 1998) and the fact that the q-function
is bounded given our assumption that rewards are bounded and the horizon, L, is finite). If
the importance weights are bounded (which Thomas and Brunskill (2016) already require
to ensure Assumption 1) then v̂MAGIC is also piecewise Lipschitz continuous in this setting.

Although these two settings are the most commonly considered, Assumption 2 holds
for a significantly more general class of problems. For example, consider parameterized
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Figure 2: Example piecewise Lipschitz function, v. Here v is zero for small values of θ1 and
elsewhere it is a grid of functions that are each Lipschitz, but where there are dis-
continuities between each cell of the grid. Furthermore, there may be a countable
number of point discontinuities (and the maximum may be at one of these points,
which would have a probability of zero of being sampled during a random search
of policy space). Here, the partition of Π would include separate regions for each
point discontinuity, each cell of the grid (minus the point discontinuities), and a
separate region for the line of discontinuities occurring at θ1 = θ2.

policies for an MDP where θ = (θ1, θ2) ∈ R2. The surface in Figure 2 gives an example
of a piecewise Lipschitz v (as a function of θ) that showcases how general Assumption 2
is. Discontinuous objective functions like this can occur, for example, when the stochastic
policy is parameterized using a neural network with a step activation function. The fact
that SOPS and MPS can almost surely converge to an optimal policy for v with flat regions
and discontinuities like those of Figure 2 stems from its use of an OPE estimator. When
a trajectory is generated using a single behavior policy (which may or may not even be in
Π), the resulting information is used by the OPE algorithm (e.g., MAGIC) to update the
surface of the entire surrogate objective function—to improve the predictions of the value of
every policy in Π simultaneously. As a result, even if a unique optimal policy is at a point
discontinuity which the gradient might never point toward and which has zero probability
of being sampled by any continuous distribution over the feasible set, SOPS and MPS will
find it with probability one.

A.3 Primary Theoretical Result

We are now ready to present our primary result: given the aforementioned assumptions,
the performance of the policy produced by SOPS (e.g., MPS) is guaranteed to converge
almost surely to the performance of an optimal policy as the amount of historical data goes
to infinity.

Theorem 1 (Global optimality). If Assumptions 1 and 2 hold, then v(SOPS(D))
a.s.−→

maxπ∈Π v(π).

10
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Proof By Assumption 1 and one of the common definitions of almost sure convergence,

∀π ∈ Π,∀ε > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : |v̂(π|Dn(ω))− v(π)| < ε}
)

=1.

Notice that, because Π may not be countable, this does not immediately imply that the
probabilistic statement happens for all π ∈ Π simultaneously, i.e., it does not immediately
follow that:

∀ε > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : ∀π ∈ Π, |v̂(π|Dn(ω))− v(π)| < ε}
)

=1.

Let C(δ) denote the union of all of the points in the δ-covers of the countable partitions
of Π assumed to exist by Assumption 2. Since the s are countable and the δ-covers for
each region are assumed to be countable, we have that C(δ) is countable for all δ. So,
we have that, for all δ, the probabilistic statement in question does hold for all π ∈ C(δ)
simultaneously. That is:

∀δ > 0, ∀ε > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : ∀π ∈ C(δ), |v̂(π|Dn(ω))− v(π)| < ε}
)

=1. (2)

Consider a π 6∈ C(δ). By the definition of a δ-cover and Assumption 2, we have that ∃π′ ∈
Πv
i , d(π, π′) ≤ δ. Furthermore, since Assumption 2 requires v to be Lipschitz continuous

on Πv
i , we have that |v(π) − v(π′)| ≤ Kδ. By the same argument for v̂ rather than v, we

have that |v̂(π) − v̂(π′)| ≤ K̂δ. So, |v̂(π|Dn(ω)) − v(π)| ≤ |v̂(π|Dn(ω)) − v(π′)| + Kδ ≤
|v̂(π′|Dn(ω))− v(π′)|+ δ(K + K̂). This means that for all δ > 0:(
∀π ∈ C(δ), |v̂(π|Dn(ω))−v(π)| < ε

)
=⇒

(
∀π ∈ Π, |v̂(π|Dn(ω))− v(π)| < ε+ δ(K + K̂)

)
.

Substituting this into (2), we have that

∀δ > 0, ∀ε > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : ∀π ∈ Π, |v̂(π|Dn(ω))− v(π)| < ε+ δ(K + K̂)}
)

=1.

Consider the specific choice of δ := ε/(K + K̂). We then have the following, where ε′ = 2ε:

∀ε′ > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : ∀π ∈ Π, |v̂(π|Dn(ω))− v(π)| < ε′}
)

=1. (3)

Let π? ∈ arg maxπ∈Π v(π) and π̂? ∈ arg maxπ∈Π v̂(π|Dn(ω)) (we suppress the dependency
of π̂? on ω). If ∀π ∈ Π, |v̂(π|Dn(ω))− v(π)| < ε′, then we have (by considering π = π? and
π = π̂?):

|v̂(π?|Dn(ω))− v(π?)| < ε′ (4)

|v̂(π̂?|Dn(ω))− v(π̂?)| < ε′, (5)

and so:

v(π̂?)
(a)

≤v(π?) (6)

(b)
<v̂(π?|Dn(ω)) + ε′

(c)

≤ v̂(π̂?|Dn(ω)) + ε′

(d)

≤v(π̂?) + 2ε′, (7)

11
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where (a) comes from the definition of π? as the maximizer of v, (b) comes from (4),
(c) comes from the definition of π̂? as the maximizer of v̂, and (d) comes from (5). So,
considering (6) and (7), it follows that |v(π̂?)− v(π?)| ≤ 2ε′. So, (3) implies that:

∀ε′ > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : |v(π̂?)− v(π?)| < 2ε′}
)

=1.

Equivalently, using ε′′ = 2ε′ and SOPS(D) := π̂?, we have that

∀ε′′ > 0,Pr
(

lim inf
n→∞

{ω ∈ Ω : |v(SOPS(D)− v(π?)| < ε′′}
)

=1,

which, by the definition of almost sure convergence, means that v(SOPS(D))
a.s.−→ maxπ∈Π v(π).
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