
A REINFORCEMENT LEARNING CONTROLLER

FOR FUNCTIONAL ELECTRICAL STIMULATION OF

A HUMAN ARM

BY

PHILIP SEBASTIAN THOMAS, B.S.

Submitted in partial fulfillment of the requirements

for the degree of Master of Science

Thesis Advisor: Dr. Michael S. Branicky

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

August, 2009

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

candidate for the ______________________degree *.

(signed)___
 (chair of the committee)

 __

 __

 __

 __

 __

(date) _______________________

*We also certify that written approval has been obtained for any
proprietary material contained therein.

Philip S. Thomas

Master of Science

Michael S. Branicky

Antonie van den Bogert

Soumya Ray

19 June 2009

1

TABLE OF CONTENTS

List of Figures 5

List of Tables 8

List of Algorithms 9

Abstract 10

Acknowledgements 11

Chapter 1: Introduction 12

1.1 Functional Electrical Stimulation (FES) 12

1.2 Problem Statement (Adaptive RL FES Controller Task) 15

1.3 Thesis Contribution 17

1.4 Thesis Outline 18

1.5 Implementation 20

Chapter 2: Background 21

2.1 Proportional Derivative (PD) and

Proportional Integral Derivative (PID) Controllers 21

2.2 Reinforcement Learning (RL) 24

2.2.1 History 25

2.2.2 Problem Statement 26

2.2.3 Value Function 28

2.2.4 Optimal Policy 30

2.2.5 Q-Functions 31

2.2.6 Temporal Difference (TD) Methods 32

2.2.7 Discrete Actor-Critic 33

2.2.8 Continuous Actor-Critic 38

2

2.2.9 Stochastic Real-Valued Unit Algorithm (SRV Algorithm) 40

2.2.10 Continuous Actor-Critic Analysis 42

2.3 Function Approximators 44

2.3.1 Artificial Neural Networks (ANNs) 46

2.3.2 Functional Link Networks (FLNs) 50

2.3.3 k-Nearest Neighbors (k-NN) 51

2.3.4 Locally Weighted Regression (LWR) 53

2.3.5 Radial Basis Functions (RBFs) 57

2.3.6 Function Approximator Performance Summary 59

2.4 Pendulum Swing-Up Case Study 60

Chapter 3: Incremental Locally Weighted Regression (ILWR) 65

3.1 Experiments 70

3.1.1 Sigmoid Environment 71

3.1.2 Double Environment 74

3.1.3 FitzHugh-Nagumo Approximation (Accuracy) 80

3.1.4 FitzHugh-Nagumo Approximation (Learning Speed) 85

3.1.5 Non-Stationary Function 87

3.2 Conclusion 92

Chapter 4: DAS1 Arm Simulation Experiments 95

4.1 Pre-Training and Evaluation 96

4.2 Control Test (CT) 97

4.3 Baseline Biceps Test (BBT) 98

4.4 Fatigued Triceps Test (FTT) 98

4.5 Noise Robustness Test (NRT) 99

4.6 Fatigued Biceps Test (FBT) 100

3

4.7 Toggling Test (TT) 100

4.8 Delayed Reward Test (DRT) 101

4.9 Discrete Reward Test (DiRT) 102

4.10 Continuous Learning Modification (CLM) 104

Chapter 5: DAS1 ANN Actor-Critic Results 105

5.1 Pre-Training 105

5.2 Parameter Optimization 108

5.3 Control Test (CT) 112

5.4 Baseline Biceps Test (BBT) 114

5.5 Fatigued Triceps Test (FTT) 115

5.6 Effects of Exploration 117

5.7 Noise Robustness Test (NRT) 120

5.8 Delayed Reward Test (DRT) 122

5.9 Discrete Reward Test (DiRT) 123

5.10 Continuous Learning Modification (CLM) 124

5.11 An Unexplained and Unexpected Phenomenon 125

Chapter 6: ANN Long-Term Stability 129

6.1 TD-Error Cap 129

6.2 Muscle Force Weight 130

6.3 Monitor Critic 132

6.4 Weight Decay Term 134

6.5 Hybrid Controller Achieving Fast Learning and Long-Term Stability 138

6.6 Conclusion 142

Chapter 7: DAS1 ILWR-Critic Results 144

7.1 Pre-Training 145

4

7.2 Parameter Optimization 146

7.3 Control Test (CT) 148

7.4 Baseline Biceps Test (BBT) 149

7.5 Fatigued Triceps Test (FTT) 150

7.6 Noise Robustness Test (NRT) 151

7.7 Conclusion 152

Chapter 8: Conclusion 154

8.1 Results and Contribution 154

8.2 Future Work 158

Appendix A 162

Appendix B 164

Appendix C 169

Appendix D 181

Appendix E 183

Appendix F 187

References 188

5

LIST OF FIGURES
 1.1 Functional Electrical Simulation Setup 13

 1.2 Functional Electrical Simulation Block Diagram 13

 1.3 Dynamic Arm Simulator 1 16

 2.1 Reinforcement Learning Diagram 27

 2.2 Actor-Critic Diagram 34

 2.3 k-Nearest Neighbor Performance on Utility Approximation Task 52

 2.4 Locally Weighted Regression Point Weighting 56

 2.5 Pendulum Swing-Up Task 60

 2.6 Continuous Actor-Critic Learning Curve for Pendulum Swing-Up Task 62

 2.7 Critic Accuracy on Pendulum Swing-Up Task 63

 3.1 Example ILWR Problem 68

 3.2 SI-ILWR Sigmoid Approximation 72

 3.3 DI-ILWR Sigmoid Approximation 72

 3.4 SO-ILWR Sigmoid Approximation 73

 3.5 Learning Curves for Double Environment, 10 Knowledge Points 76

 3.6 Learning Curves for Double Environment, 100 Knowledge Points 77

 3.7 Learning Curves for Double Environment, 100 Knowledge Points, Long-Term 78

 3.8 Knowledge Point Distributions on Double Environment 79

 3.9 FitzHugh-Nagumo Function 81

 3.10 FitzHugh-Nagumo Accurate Approximation Results 82

 3.11 Knowledge Point Distribution on FitzHugh-Nagumo Accurate

 Approximation Task 83

 3.12 ILWR Approximations of FitzHugh-Nagumo Function 84

 3.13 Error in ILWR Approximations of FitzHugh-Nagumo Function 85

6

 3.14 FitzHugh-Nagumo Rapid Approximation Task Results 87

 3.15 Non-Stationary Function 88

 3.16 Difference in Non-Stationary Function 88

 3.17 Non-Stationary Function Approximation Results 90

 3.18 Approximated Surface of Non-Stationary Function 90

 3.19 Error in Approximated Surface of Non-Stationary Function 91

 3.20 Modified Non-Stationary Function Approximation Results 92

 4.1 Reward Signal on DAS1 103

 5.1 Pre-Trained ANN Arm Movements 107

 5.2 Exploration of Parameter Sets A and B 110

 5.3 Fast and Slow Parameters' Learning Curves on the Control Test 113

 5.4 Joint Angle Trajectories on the Control Test 113

 5.5 Fast and Slow Parameters' Learning Curves on the Baseline Biceps Test 114

 5.6 Joint Angle Trajectories on the Baseline Biceps Test 115

 5.7 Fast and Slow Parameters' Learning Curves on the Fatigued Triceps Test 116

 5.8 Joint Angle Trajectories on the Fatigued Triceps Test 117

 5.9 Parameter Sets A and B's Learning Curves on the Control Test 118

 5.10 Parameter Sets A and B's Learning Curves on the Fatigued Triceps Test 118

 5.11 Parameter Sets A and B's Learning Curves on the Baseline Biceps Test 119

 5.12 Fast Parameters' Learning Curve on the Noise Robustness Test 121

 5.13 Fast Parameters' Learning Curve on the Noise Robustness Test with Bias 121

 5.14 Fast Parameter Variants on the Delayed Reward Test 122

 5.15 Fast Parameters' Learning Curve on the Discrete Reward Test 124

 5.16 Fast Parameters' Learning Curve with the Continuous Learning Modification 125

7

 5.17 Fast Parameters' Learning Curve on the Baseline Biceps Test with Random

 TD-Error 126

 5.18 Fast Parameters' Short-Term Learning Curve on the Baseline Biceps Test 126

 5.19 TD-Error from Fast Parameters on the Baseline Biceps Test 127

 6.1 Fast Parameters with TD-Error Cap on the Baseline Biceps Test 130

 6.2 Fast Parameters with Various Muscle Force Weights on Baseline Biceps Test 131

 6.3 Fast Parameters with Monitored Critic on the Baseline Biceps Test, 20k = 133

 6.4 Fast Parameters with Monitored Critic on the Baseline Biceps Test, 200k = 134

 6.5 General Parameters' Learning Curve on the Control Test 137

 6.6 General Parameters' Learning Curve on the Fatigued Triceps Test 137

 6.7 General Parameters' Learning Curve on the Baseline Biceps Test 138

 6.8 Hybrid Controller's Learning Curves on the Control and Fatigued Triceps Tests 140

 6.9 Hybrid Controller's Learning Curve on the Baseline Biceps Test 141

 6.10 Hybrid Controller's Learning Curve on the Noise Robustness Test 141

 6.11 Hybrid Controller's Learning Curve on the Toggling Test 142

 7.1 TD-Error Magnitude During ILWR Critic Pre-Training 146

 7.2 Typical Knowledge Point Weights 148

 7.3 Performance (ILWR-Critic) on the Control Test 149

 7.4 Performance (ILWR-Critic) on the Baseline Biceps Test 150

 7.5 Performance (ILWR-Critic) on the Fatigued Triceps Test 151

 7.6 Performance (ILWR-Critic) on the Noise Robustness Test 152

 8.1 Muscle Stimulation Over Time After Using the Fast Parameters on the

 Baseline Biceps Test 160

8

LIST OF TABLES
 2.1 PD Controller Gains 22

 2.2 Critic for 10 10× Gridworld 38

 2.3 Artificial Neural Network Training Times and Utility Approximation

 Task Results 49

 2.4 Functional Link Network Features 50

 2.5 Locally Weighted Regression Results for Utility Approximation Task 57

 2.6 Summary of Results on Utility Approximation Task 59

 3.1 Performance Comparison for Double Environment 75

 3.2 ILWR and ANN Parameters for FitzHugh-Nagumo Rapid Approximation Task 86

 3.3 ILWR and ANN Parameters for Non-Stationary Function Approximation 89

 4.1 Reward Signal Discretization 103

 5.1: Parameter Sets A and B 109

 5.2: Fast and Slow Parameter Sets 112

 6.1 General Parameters 135

 6.2 General Parameters' Initial Performance 136

 7.1 ILWR-Pretrain Parameters 145

 7.2 ILWR Parameters 147

 F1 Complete Parameter Set Listing 187

 F2 Parameter Set Comments 187

9

LIST OF ALGORITHMS
 2.1 Locally Weighted Regression 54

 2.2 Leave-One-Out Cross Validation 55

 C1 Computing M 178

 C2 Computing
,i jx

∂
∂
β 180

10

A Reinforcement Learning Controller for

Functional Electrical Stimulation of a Human Arm

Abstract

by

PHILIP SEBASTIAN THOMAS

This thesis demonstrates the feasibility of using reinforcement learning (RL) for

functional electrical stimulation (FES) control of a human arm as an improvement over (i)

previous closed-loop controllers for upper extremities that are unable to adapt to changing

system dynamics and (ii) previous RL controllers that required thousands of arm movements to

learn. We describe the relevance of the control task and how it can be applied to help people with

spinal cord injuries. We also provide simulations that show previous closed-loop controllers are

insufficient. We provide background on possible RL techniques for control, focusing on a

continuous actor-critic architecture that uses function approximators for its mappings. We test

various function approximators, including Artificial Neural Networks (ANNs) and Locally

Weighted Regression (LWR) for this purpose. Next, we introduce a novel function

approximator, Incremental Locally Weighted Regression (ILWR), which is particularly suited

for use in our RL architecture. We then design, implement, and perform clinically relevant tests

using ANNs for the two mappings in the continuous actor-critic. During these trials, unexpected

behavior is observed and eventually used to create a hybrid controller (that switches among

different learning parameter sets) that can both adapt to changes in arm dynamics in 200 to 300

arm movements and remain stable in the long-term. A non-switching controller with similar

performance is achieved using ILWR in place of an ANN for the controller's critic mapping.

11

ACKNOWLEDGEMENTS

There are many people without whom this thesis would not have come to fruition. To my

family, thank you for the emotional support and guidance you have given me throughout my life.

I cannot sufficiently express my gratitude for the continual support that you have provided.

I have also been lucky to have had, since high school, the continuous guidance of my

advisers. In high school, David Kosbie introduced me to the wonders of computer science. As an

undergraduate student at CWRU, Professor Michael Branicky introduced me to the field of

artificial intelligence and reinforcement learning, and eventually recruited me for the research

project on which this thesis is founded. As my thesis adviser, he has not only taught me how to

perform research, but also assisted me throughout the entire process.

The initial idea of applying reinforcement learning to functional electrical stimulation

was developed by Dr. Antonie van den Bogert, who also advised me throughout this research

effort, and whose understanding of the underlying biomechanical systems has been

indispensible. I have also consulted with many others who have provided valuable insight,

notably Kathleen Jagonik and Professor Soumya Ray.

I would also like to thank the National Institute of Health for funding this research via

NIH Grant R21HD049662. Finally, I would like to thank my friends who have supported me

throughout the writing of this thesis by keeping me on task by asking how it was progressing,

and who also provided emotional support as well as a reprieve from work.

12

CHAPTER 1:

INTRODUCTION

1.1 Functional Electrical Stimulation (FES)

An estimated 255,702 people in the United States suffer from spinal cord injuries (SCI),

with approximately 12,000 new cases each year, 42% of which result from motor vehicle crashes

(NSCISC, 2008). People with SCI frequently suffer from paralysis, rendering them unable to

move their limbs, though most of their nerves and muscles may be intact. Functional Electrical

Stimulation (FES) can activate these muscles to restore movement by activating motor neurons

with electrical currents, which are applied via subcutaneous probes. Figure 1.1 depicts a typical

FES setup. By intelligently selecting the current applied to the motor neurons associated with

each muscle, individual muscles can be stimulated by various amounts, allowing researchers to

control a subject's muscles. For background information on FES, refer to (Sujith, 2008;

Ragnarsson, 2008; Sheffler and Chae, 2007; Peckham and Knutson, 2005).

For the purpose of this thesis, it is sufficient to view FES from a control perspective in

which the muscles to be stimulated are a system or plant whose state is determined by joint

angles, joint angle velocities, and several hidden states, as depicted in Figure 1.2. The plant

inputs are electrical stimulation levels for each muscle, ranging from 0% to 100%, which result

in muscle forces that change the state. The controller is given the current and target states, and

generates the stimulations required to reach the target state.

13

Figure 1.1: Typical FES setup in which the control unit communicates with implanted electrodes
and sensors via coils that transmit, receive, and provide power to the internal system.
Reproduced from Peckham and Knutson (2005).

Figure 1.2: Block diagram of FES as a control task in which the controller receives the current
state and target state, and generates muscle stimulations, which in turn affect the plant, which
updates the state given to the controller.

Open-loop FES control has been successfully applied to basic systems such as hand grasp

(Peckham et al., 2001), rowing (Wheeler et al., 2002) and gait (Kobetic and Marsolais, 1994;

Braz et al., 2007). In order to produce accurate movements, open-loop control requires detailed

14

information about the system properties, which is often not available for more complex tasks that

have not been accurately modeled, or whose dynamics change over time (Crago et al., 1996).

Closed-loop FES control does not have these drawbacks, and has therefore been used

successfully on more complicated tasks such as hand grasp (Crago et al., 1991), knee joint

position control (Chang et al., 1997), and standing up (Ferrarin et al., 2002). However,

challenges related to using the required sensors have prevented feedback control from being

applied in a clinical setting (Jaeger, 1992). Complex controllers that require detailed state

information have been tested only in simulation (Stroeve, 1996; Abbas and Triolo, 1997).

Jagodnik and van den Bogert (2007) designed a Proportional Derivative controller (PD

controller; see Section 2.1) for planar control of a paralyzed subject's arm. The gains for the PD

controller were tuned to minimize joint angle error and muscle forces for a two-dimensional arm

simulation using a Hill-based muscle model (Schultz et al., 1991). During human trials, Jagodnik

and van den Bogert (2007) found that the PD controller's gain matrix often required retuning to

account for variations in the dynamics of the subject's arm both from day to day, as well as

within one FES session. The subject's arm also differed from the ideal arm used in simulation

because it had unpredictable biceps stimulation due to spasticity. Results from simulation, which

are provided in Section 2.1, support the claim that PD controllers do not perform well with such

unmodelled or changing dynamics.

In practice, basic closed-loop controllers, such as the Proportional Integral Derivative

controller (PID controller; see Section 2.1), must be manually tuned to each subject to account

for differing dynamics between simulation, real-world application, and each individual arm.

Additionally, these controllers require retuning during consecutive trials on the same subject.

15

The dynamics between two subjects may vary as a result of different physical dimensions,

muscle strengths, muscle atrophy, and muscle spasticity, while the dynamics of each subject's

arm changes primarily due to muscle fatigue, which is exacerbated by FES's high stimulation

frequency compared to a healthy central nervous system (Lynch and Popovic, 2008).

Reinforcement learning (RL) techniques (Sutton and Barto, 1998) can be used to create

controllers that adapt to these changes in system dynamics, finding non-obvious and efficient

strategies. Within FES, RL has been tested in simulation to control a standing up movement

(Davoodi and Andrews, 1998), but this did not require generalization and did not include varying

target states. RL has also been shown to control arm movements (Izawa et al., 2004), however,

learning required too many training movements for clinical applications (between 2,000 and

5,000).

1.2 Problem Statement (Adaptive RL FES Controller Task)

In this thesis, which is an extension of prior research by Thomas et al. (2008a; 2009a), we

show the feasibility of using RL for FES control of a human arm as an improvement over

previous closed-loop controllers for upper extremities that are unable to adapt to changing

system dynamics. Specifically, we control horizontal planar movement of the right arm of a

subject with complete paralysis in a simulated environment without friction.

The arm model we use, called the Dynamic Arm Simulator 1 (DAS1), described and

utilized in (Blana, Kirsch, and Chadwick, 2009), has two joints (shoulder and elbow) and is

driven by six muscles; see Figure 1.3. Two of the six muscles act across both joints. Each muscle

is modele

equations

muscle f

states (ac

The biom

(2007).

Figure 1.
as follow
posterior
biarticula

T

where (θ

ed by a thre

s, one for a

force is not d

ctive state an

mechanics a

.3: Two-join
ws, listed as
r deltoid); m
ar muscles (e

The state at ti

()t is a vect

ee-element H

activation an

directly cont

nd contractil

and dynamic

nt, six-muscl
(flexor, ext

monoarticular
e: biceps bra

ime t, ()s t ∈

or of the sho

Hill model (c

nd one for

trolled but i

le element le

cs are identi

le biomechan
tensor): mon
r elbow mu
achii, f: trice

6, is defin

() ()s t tθ⎡= ⎣

oulder and el

()tθ θ= ⎡⎣

16

cf. Section 1

contraction

ndirectly via

ength) are hi

cal to those

nical arm m
noarticular s
scles (c: bra

eps brachii (l

ned as

) () (Goal, ,tθ θ

lbow joint an

() ()1 2,t tθ θ ⎤⎦

1.1) and sim

n (McLean e

a muscle dy

idden and no

e used by Ja

model used. A
shoulder mu
achialis, d: t
long head)).

() ,
T

t ⎤⎦

ngles,

,
T
⎤⎦

mulated using

et al., 2003

ynamics. The

ot available

agodnik and

Antagonistic
uscles (a: an
triceps brach

g two differe

). Conseque

e internal m

to the contr

d van den B

 muscle pair
nterior deltoi
hii (short he

(1

(1

ential

ently,

muscle

roller.

ogert

rs are
id, b:
ead));

.1)

.2)

17

()tθ is a vector of joint angular velocities, ()Goal tθ is a vector of target joint angles, and T

denotes matrix transpose.

The goal of this thesis is to create a RL controller that begins with a policy similar to that

of the PD controller of Jagodnik and van den Bogert (2007), but that is also stable, robust to

sensor noise, and capable of adapting to realistic changes in arm dynamics within 200 to 300

movements. The task of creating such a controller will be referred to as the Adaptive RL FES

Controller Task. Because the RL controller must be able to adapt to continuously changing

dynamics, learning rates and exploration should not be decayed.

1.3 Thesis Contribution

As far as we know, this research is the first successful effort to tackle the Adaptive RL

FES Controller Task, defined previously in Section 1.2. This thesis both demonstrates that RL

control is feasible and deserves future research, and also serves as a guide for the implementation

of such a system in human trials. In creating the necessary RL controller, we utilize function

approximators to represent the mapping of states to both actions and other values. To improve

performance of the controller, we create a novel function approximator, Incremental Locally

Weighted Regression (ILWR), described in Chapter 3. The benefits of using ILWR over the

more common Artificial Neural Networks (ANNs), described in Section 2.3.1, are discussed in

Chapters 3 and 7.

Further contribution to the RL literature is summarized in Section 8.1. The work leading

to this thesis has also been published in two conference papers (Thomas et al., 2008a; Thomas et

18

al., 2009a) and several research posters (Thomas et al., 2008b; Thomas et al., 2008c; Jagodnik et

al., 2008; Thomas et al., 2009b).

1.4 Thesis Outline

This thesis is separated into eight chapters and six appendices as follows.

Chapter 1 defines the problem of FES control, provides an overview of prior research, and

presents information about the purpose and layout of this document.

Chapter 2 covers background information used in subsequent chapters. The first section, 2.1,

covers PD and PID controllers and demonstrates why they are insufficient for the

Adaptive RL FES Controller Task, defined in Section 1.2. Section 2.2 covers the basics

of reinforcement learning and introduces the continuous actor-critic architecture, which is

the foundation for all reinforcement learning trials performed in the subsequent chapters.

Section 2.3 introduces the function approximators used throughout this thesis in the

continuous actor-critic architecture. Section 2.4 concludes the chapter with a case study

of the continuous actor-critic.

Chapter 3 introduces the Incremental Locally Weighted Regression (ILWR) algorithm that

we devised for use in the actor-critic as a local function approximator. It is then tested on

simple problems.

Chapter 4 contains a summary of the tests devised to evaluate the actor-critic's ability to

adapt to realistic and clinically relevant changes in arm dynamics, as required in the

Adaptive RL FES Controller Task.

19

Chapter 5 presents the results from the tests described in Chapter 4, using ANNs to

represent the actor and critic. Different parameter settings achieve either rapid initial

learning or long-term stability, but not both. Chapter 5 concludes with discussion of an

unexplained phenomenon.

Chapter 6 provides several attempts to achieve rapid initial learning as well as long-term

stability, and concludes with the creation of a hybrid controller that combines the best

attributes of the different results from Chapter 5.

Chapter 7 provides the results from the tests described in Chapter 4, using ILWR to

represent the critic. The resulting controller achieves both rapid initial learning as well as

long-term stability—without the need to switch between various parameter settings.

Chapter 8 concludes with a summary of the results and recommendations for future work.

Appendix A presents a derivation of the derivative of the ILWR function approximator's

output with respect to the outputs of its knowledge points.

Appendix B presents a derivation of the derivative of the ILWR function approximator's

output with respect to the inputs of its knowledge points.

Appendix C provides an algorithm for efficiently computing the derivative derived in

Appendix B.

Appendix D provides a derivation of equations relating to the gradient descent algorithm.

Appendix E provides the setup files for DAS1, the arm simulation model used.

Appendix F provides a summary of all parameter sets used in the continuous actor-critic.

20

1.5 Implementation

All implementation in this thesis was done in Microsoft Visual C++ 2008 Professional using

the Microsoft Windows Vista Ultimate 64-bit operating system, running on a computer with

6GB of RAM, and an Intel Q6600 Quad Core 2.4GHz CPU, unless otherwise specified.

21

CHAPTER 2:

BACKGROUND

2.1 Proportional Derivative (PD) and

Proportional Integral Derivative (PID) Controllers

Two of the simplest linear closed-loop controllers, which are commonly used in real-

world control problems, are Proportional Derivative (PD) and Proportional Integral Derivative

(PID) controllers (Franklin, Powell, and Workman, 1997). In this section, we first discuss the

prior application of a PD controller to FES control of a human arm (Jagodnik and van den

Bogert, 2007) and its limitations. Next, we introduce the PID controller and present experiments

that illustrate why it is insufficient for our adaptive control task.

 Jagodnik and van den Bogert (2007) trained a PD controller to move a subject's arm

from an initial configuration, 0 ,s to a goal configuration, Goal.s Configurations consist of the two

joint angles, []1 2, ,Tθ θ θ= two target joint angles,
1 2Goal Goal Goal, ,

T
θ θ θ⎡ ⎤= ⎣ ⎦ and the time derivative

of the joint angle, .θ To achieve realistic results, shoulder and elbow joint angles were both

restricted to 20 to 80 degrees. The four-dimensional state was represented as

 () () () ()Goal , .
T

s t t t tθ θ θ⎡ ⎤= −⎣ ⎦ (2.1)

22

The first two terms correspond to the error in the joint angles, while the latter two terms are the

error in the joint angle time derivative (velocity) when the desired velocity at the target state is

zero. Equation 2.1 is often referred to as the error vector.

Jagodnik and van den Bogert (2007) define the PD controller as Equation 2.2, where u is

the vector of six muscle stimulation values, G is the six (muscles) by four (state) gain matrix, and

s is a column vector of the current state, as defined in Equation 2.1.

 .u Gs= (2.2)

Jagodnik and van den Bogert (2007) applied a simulated annealing minimization

algorithm to the DAS1 model to derive the gain matrix provided in Table 2.1. During human

trials using these gains, an actual subject's arm moved toward its goal configuration smoothly.

Upon reaching the goal configuration, it oscillated around the target, but usually stabilized within

one second (Jagodnik and van den Bogert, 2007). At this point, the muscle stimulations are all

small (less than .02). The weights were optimized for initial configurations and goal

configurations between 20 and 80 degrees at each joint.

Label in
Figure 1.3

11 Goalθ θ−

22 Goalθ θ− 1θ 2θ

a 1u –1.01787396 0.33212884 –0.15703080 –0.01493472

b 2u 1.13413540 0.15551148 0.17941533 0.05653848

c 3u –0.00686023 –1.18587656 –0.03227234 –0.10250393

d 4u –0.17434505 1.03188031 0.01106836 0.07647948

e 5u 0.49111238 0.97548825 0.11836239 0.08897244

f 6u –0.43426468 –0.72186559 –0.09872529 –0.07017570

Table 2.1: PD Controller gains derived by Jagodnik and van den Bogert (2007).

23

 The PID controller has the same output equation as the PD, Equation 2.2, though the state

is augmented to include the integral of the error:

 () () () () () ()GoalGoal
0

, , .
T

t

s t t t t dθ θ θ θ τ θ τ τ
⎡ ⎤

= − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫ (2.3)

When implemented, the integral error term was approximated using a backward rectangular

approximation.

 We implemented a PID controller to determine whether a more sophisticated closed-loop

architecture could better cope with the changing dynamics of the arm. The gains were tuned

using a variant of the First-Choice Random-Restart Hill Climbing minimization algorithm

(Russell and Norvig, 1995) in which the gradient is sampled in fifty random directions, the best

of which is followed. Each random direction involves random changes in up to 10 of the 36

dimensions. These changes were steps of 5% of each current gain value, with sign changes

allowed as each weight approached 0. For the random restarts, the proportional and derivative

gains were taken from the PD controller (Table 2.1), and the integral gains were chosen

randomly between 1− and 1. We used the same evaluation criteria as Jagodnik and van den

Bogert (2007).

 To test the PID's ability to adapt to changing dynamics in simulation, the arm model was

modified to include a baseline biceps stimulation. The biceps muscle (e in Figure 1.3) was given

the PID's instructed stimulation plus an additional 20% (not to exceed 100%). This simulated the

spasticity that was observed during human trials of the PD controller. When using the PID

controller during a two-second episode with an initial state of shoulder joint angle

1 .349 (20),θ = ° elbow joint angle 2 1.571 (90)θ = ° and a goal of
1Goal 1.571 (90),θ = °

2Goal .349 (20),θ = ° the arm overshot the goal state by .216 radians (12.4)° for the shoulder

24

angle, and .231 radians (13.2)° on the elbow angle, which equates to an overshoot of 23cm,

assuming the upper and lower arms are both .3m long. Over time, the integral term built up, and

the arm settled to the correct steady state. Unlike the PD and PID controllers, the RL controller

described in the next section learns to avoid steady state error and overshoot given this

unexpected muscle spasticity.

 Retuning of static linear controllers could restore performance but would require

extensive trial-and-error experimentation to find the optimal controller for each subject. Such a

design process would not scale well to systems with more muscles and more joints, especially

considering that this trial-and-error must be performed on a human. Unlike the PD and PID

controllers, an RL controller, as described in the next section, does not require manual retuning;

it learns on its own to avoid overshooting the goal position when presented with unexpected

muscle spasticity.

2.2 Reinforcement Learning (RL)

The purpose of this section is to provide necessary background knowledge in

reinforcement learning (RL), and to explain the reasons for choosing the continuous actor-critic

architecture. This section is divided further into ten subsections. Subsection 2.2.1 contains an

overview of the history of RL techniques. Subsection 2.2.2 outlines the problem that defines RL.

Subsection 2.2.3 defines the value function, which is used in Subsection 2.2.4 to define the

optimal policy. Subsection 2.2.5 introduces the Q-function, which does not explicitly store the

value function, and which can be updated using temporal-difference (TD) methods, discussed in

Subsection 2.2.6. Subsection 2.2.7 introduces the discrete actor-critic architecture, which is

another TD method, and presents results on a simple problem. Subsection 2.2.8 introduces a

25

version of the actor-critic architecture created for problems where both state and time are

continuous. Subsection 2.2.9 provides the Stochastic Real-Valued Unit Algorithm, which is used

when analyzing the continuous actor-critic architecture in Subsection 2.2.10.

2.2.1 History

The setup for RL originated as far back as 1950, when Shannon proposed using an

action-value function similar to that of modern Q-learning (Shannon, 1950). Markov decision

processes (MDPs) were presented in the late 1950s (Bellman, 1957) as a mathematical

framework that would later be applied to RL. The RL problem was studied in its current form in

the early 1970s as researchers such as Witten and Corbin (1973) began experimenting with

MDPs. This research, later analyzed by Witten (1977), was actually a form of actor-critic

learning, as was the paper published soon thereafter (Barto, Sutton, and Anderson, 1983). Actor-

critic architectures stepped out of the limelight with the introduction of the Q-learning algorithm

(Watkins, 1989). For background information and a more detailed history of RL, see (Kaelbling,

1996) and (Sutton and Barto, 1998).

Gullapalli (1990) introduced the Stochastic Real-Valued (SRV) Unit algorithm, reviewed

in Subsection 2.2.9, as well as proofs of its convergence under certain strong assumptions. This

algorithm was a type of actor-critic which was adapted by Doya (2000) for problems with

continuous time and space.

26

2.2.2 Problem Statement

RL involves a program or robot, called an agent, learning which actions will maximize

the rewards provided by the environment. The state of the environment at time t, () nx t X∈ ⊆

changes as a function of the agent's action, () .mu t U∈ ⊆ The exact way the environment

changes as a function of the agent's actions is described by either the stochastic transition

function,

 () [], , : 0,1 ,T x u x' X U X× × → (2.4)

which represents the probability of progressing to state x' if the agent takes action u in state x, or

the deterministic transition function,

 (), : ,T x u X U X× → (2.5)

which returns the state x' that results from taking action u in state x. Though our arm model,

DAS1, is deterministic, the stochastic transition function is typically used in literature.

These definitions of the transition function satisfy the Markov property because the

distribution of the next state can be determined using only the current state and action. The

practical example of FES control of a human arm (both human trials and DAS1), does not satisfy

this constraint due to hidden state variables of the plant, such as the lengths of the parallel elastic,

series elastic, and contractile elements (McLean, Su, and van den Bogert, 2003), which cannot

presently be directly measured using sensors nor practically imputed from observable variables.

However, these internal states have fast decay times, resulting in little history dependence. The

agent is therefore able to glean enough information about the environment from the observable

27

states to learn a reasonable policy, as observed in the results of this thesis. We therefore treat the

environment as though the hidden states were not present, knowing that this may hinder results

and remove convergence guarantees. We will thus assume that the Markov property is satisfied

for the remainder of this thesis.

The agent has a policy (which may change over time) that specifies what action should be

taken for any state, () : .x X Uπ → After the agent takes action u in state x, the environment

returns a reward signal,

 (), : .R x u X U× → (2.6)

In other sources, the reward function is independent of the agent's actions, mapping each state to

a reward,

 () : .R x X → (2.7)

We will use the latter formulation. This reward signal defines the problem, in which the agent

seeks the policy that maximizes the reward signal over time. A block diagram of the agent's

interaction with the environment is provided in Figure 2.1.

Figure 2.1: RL problem, figure adapted from (Sutton and Barto, 1998, Figure 3.1).

28

At time t, the agent should not necessarily take the action that maximizes only the reward

received from the current action, because such an action may result in low rewards in the future.

Rather, the agent should maximize the time-decayed sum of expected future rewards,

 ()() () , ,k t

k t

E R x k x tγ π
∞

−

=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ (2.8)

where 0 1γ< < is a time decay constant (also known as the discount rate), the current time is t,

and the state and actions follow the transition function and the current policy, ,π from the

current state, ().x t The decay of the reward signal over time is necessary because the infinite

sum of the reward signal without decay may diverge.

2.2.3 Value Function

The agent will often keep an approximation of the value function, sometimes called the

utility function, which represents the time-decayed sum of expected future reward, when carrying

out the policy π starting in state x.

 () ()() ()
0

0 , .t

t

V x E R x t x xπ γ π
∞

=

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
∑ (2.9)

The value function for the optimal policy is known as the optimal value function, which

can be represented by

 () ()* max .V x V xπ

π
= (2.10)

The Bellman Equation (Russell and Norvig, 1995) states that

29

 () () ()() (), , ,
x'

V x R x T x x x' V x'π πγ π= + ∑ (2.11)

in the stochastic case, and

 () () () ,V x R x V x'π πγ= + (2.12)

in the deterministic case, where

 ()(), .x' T x xπ= (2.13)

Similarly, for the optimal value function,

 () () () ()* max , , * ,
u x'

V x R x T x u x' V x'γ= + ∑ (2.14)

for the stochastic case, and

 () () ()* * ,V x R x V x'γ= + (2.15)

for the deterministic case, where

 ()()(),arg max * , .
u

x' T x V T x u= (2.16)

The value function can be iteratively approximated using the Bellman update, derived

from Equations 2.11 and 2.12 as

 () () ()()1 max , ,i iu
V x R x V T x uγ+ ← + (2.17)

in the deterministic case, or

30

 () () () ()1 max , , ,i iu x'
V x R x T x u x' V x'γ+ ← + ∑ (2.18)

in the stochastic case. The continual application of these equations has been shown to converge

to a unique optimal solution, ()* ,V x if the agent chooses its actions greedily with respect to the

value function as in Equation 2.19 for the deterministic case or Equation 2.20 for the stochastic

case (Russell and Norvig, 1995):

 () ()()()arg max ,
u

u t V T x t u= (2.19)

 () ()() ()arg max , , .
u x'

u t T x t u x' V x'= ∑ (2.20)

2.2.4 Optimal Policy

The agent's goal is to learn a policy as similar as possible to the optimal policy,

() ()* arg max *

u
x V xπ = , (2.21)

which maximizes the expected future reward. If the transition function is known, then the

optimal policy can be determined by solving the Bellman equation to find the optimal value

function, and then selecting actions by

() () ()* arg max , , *

u x'

x T x u x' V x'π ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ , (2.22)

in the stochastic case, and

31

() ()()* arg max * ,

u
x V T x uπ = , (2.23)

in the deterministic case.

2.2.5 Q-Functions

Rather than explicitly storing the value function, some agents may keep an approximation

of the Q-function for policy ,π (), ,Q x uπ which represents the expected sum of future rewards if

the agent takes action u starting in state x. This function, also known as the action-value function,

can be written as

 () ()() () ()
0

, 0 , 0 , .t

t

Q x u E R x t x x u uπ γ π
∞

=

⎧ ⎫
= = =⎨ ⎬

⎩ ⎭
∑ (2.24)

If an agent can find the optimal Q-function,

 () ()* , max , ,Q x u Q s aπ

π
= (2.25)

then it can derive the optimal policy as

 () ()* arg max * , .
u U

x Q x uπ
∈

= (2.26)

Q-learning is more appropriate to our problem because, unlike using only a value

function via the Bellman update, a model of the environment, T, is not required if the agent has

access to the Q-function. Though use of the Q-function does not require the agent to explicitly

represent the transition function, the dimensionality of the problem has increased from learning

32

: ,nV → to learning : ,n mQ + → where n is the dimension of the state space, and m is the

dimension of the action space.

2.2.6 Temporal Difference (TD) Methods

In order to learn the optimal value and Q-functions, agents often utilize the temporal-

difference (TD) error or simply TD-error,

 ()() ()() ()()1 ,R x t V x t V x tπ πδ γ= + + − (2.27)

which represents the difference between the observed reward plus the resulting next state's value

and the expected future reward that was predicted. Notice that Equation 2.12, the definition of V,

is satisfied when the TD-error is zero. If the observed reward and resulting state value is larger

than the prediction, the TD-error is positive, whereas if the observed reward and resulting state

value are smaller than the prediction, the TD-error is negative. The TD-error update for the value

function is

 ()() ()() ,V x t V x tπ π αδ← + (2.28)

where 0α > is a learning rate. Similarly, the TD update for learning the Q-function is,

 () ()() () ()() ()() ()() () ()(), , max 1 , , .
u'

Q x t u t Q x t u t R x t Q x t u' Q x t u tπ π π πα γ⎡ ⎤← + + + −⎣ ⎦

 (2.29)

In summary, if the transition function, T, is available, the value function, V, can be

learned using the direct application of the Bellman equation. If T is not available, then the Q-

33

function can be learned using its TD update. Though the Q-function has the benefit of being

model-free, its dimension is ,n m+ compared to the value function's dimension of n.

The actor-critic architecture, described in Subsections 2.2.7 and 2.2.8, is a model-free

TD-learning method, which, in an attempt to sidestep the curse of dimensionality, splits the

learning problem into two lower-dimensional problems relative to Q-learning. Also, Equations

2.18 through 2.26, in general, are impractical in a continuous environment because the maximum

over u cannot necessarily be computed efficiently. Some work has been done to generate cases

where this maximum can be efficiently computed (Hagen, 2000), though these methods have not

gained popularity. The actor-critic architecture is better suited for adaptation to continuous time

and space, as shown in Subsection 2.2.8.

2.2.7 Discrete Actor-Critic

Actor-critic methods are typically TD methods, which learn the policy in parallel with the

value function, without the need for a model of the environment and without computing the full

action-value function. The actor-critic consists of two components, shown in Figure 2.2. The

actor represents the current policy, mapping states to actions, : .A X U→ The critic represents

the value function for the current actor, : .C X →

The actor-critic is designed to reduce dimensionality compared to a Q-learning style

algorithm, as described further in Subsection 2.2.8. Overall, the agents will perform a type of

gradient descent in policy space. From its current policy, the actor-critic will make minor

changes to its policy. If the changes are beneficial (positive TD-error), they will be kept; if not

(negative TD-error), they will be discouraged. This is akin to sampling the gradient in policy

34

space in one direction and either stepping in that direction or the opposite direction. However,

the utility of each policy is approximated by the critic, which is itself only an approximation.

Thus, only approximations of the points in policy space are available for computing the gradient,

which can result in divergence.

Figure 2.2: Actor-critic architecture diagram, recreated from (Sutton and Barto, 1998, Figure
6.15).

This approach is a minimization routine like any other, and is susceptible to the same

problems, primarily local minima. Changes to the policy are implemented by adding exploration,

in the form of noise, to the actions. The larger the noise, the greater the deviation from the

current policy will be. It is common for exploration to be decayed as the policy improves, much

like the temperature in a simulated annealing minimization routine.

The actor-critic architecture for discrete space and time is described in Chapters 6.6

(Actor-Critic Methods) and 7.7 (Eligibility Traces for Actor-Critic Methods) of (Sutton and

Barto, 1998). Chapter 7 of (Sutton and Barto, 1998) also provides an introduction to eligibility

35

traces, which represent how much the value function at each visited state should be changed if a

TD-error is observed at the current time, t. Equations 2.34 and 2.35 provide equations for

exponentially decaying eligibility traces for the discrete actor-critic.

They can be added to most temporal-difference methods to increase learning efficiency.

Without eligibility traces, a distant future reward will slowly propagate back to the states

resulting in it. Using eligibility traces, the first time a reward is seen, the previously visited states

resulting in the reward can be immediately updated.

[…] an eligibility trace is a temporary record of the

occurrence of an event, such as the visiting of a state or the taking

of an action. The trace marks the memory parameters associated

with the event as eligible for undergoing learning changes. When a

TD error occurs, only the eligible states or actions are assigned

credit or blame for the error. Thus, eligibility traces help bridge

the gap between events and training information. Like TD methods

themselves, eligibility traces are a basic mechanism for temporal

credit assignment. – (Sutton and Barto, 1998)

The actor, defined in Equation 2.30, is stochastic to allow for exploration (which can be

tapered over time or as the policy approaches the optimal policy). For the discrete

implementation, both the actor and the critic are typically implemented using tables instead of

36

function approximators. The actor is represented by a table of probability values, (), ,p x u where

the stochastic policy is computed using the Gibbs Softmax method provided in Equation 2.30

(Sutton and Barto, 1998),

(,)

(,)(,) Pr{ | } .
p x u

t t t p x b

b

ex u u u x x
e

π = = = =
∑

 (2.30)

The critic is represented by a real-valued table representing the value of each state, ().V x

The actor-critic works by generating an action using Equation 2.30, applying the action to

the environment, generating a TD-error using the critic, and finally using the TD-error to update

both the actor and the critic. The critic remains on-policy, meaning it approximates the value

function for the current policy of the actor (Sutton and Barto, 1998). Equation 2.31 defines the

TD-error, where tr is the reward from progressing from state 1tx − to tx , and γ is the discount

rate of the utility,

 () ()1 1 .t t t tr V x V xδ γ+ += + − (2.31)

Equation 2.32 provides the TD update equation for the critic, where α is the learning

rate, and ()V xπ is the approximated utility of state x given the current policy, :π

 () () .t t tV x V xπ π αδ← + (2.32)

 Equation 2.33 is the TD update equation for the actor, where β is the learning rate:

 () (), , .t t t t tp x u p x u βδ← + (2.33)

37

Once the eligibility traces are defined, they can be readily added to these equations as a linear

scaling factor on the TD-error for each state. The more difficult part is deciding how best to

define the eligibilities. Variations of the definitions of Sutton and Barto (1998) were used and are

provided in Equation 2.34 for the actor, and Equation 2.35 for the critic, where λ is a decay

constant:

() ()()

()
1

1

, 1 , if , and ,
,

, , otherwise,
t t t

t
t

e x u x x u u
e x u

e x u

γλ

γλ
−

−

⎧ + = =⎪= ⎨
⎪⎩

(2.34)

 () ()()
()
1

1

1 , if ,

, otherwise.
t t

t
t

e x x x
e x

e x

γλ

γλ
−

−

⎧ + =⎪= ⎨
⎪⎩

 (2.35)

The eligibility traces can be added to the update equations as previously described,

resulting in Equation 2.36 for the critic and Equation 2.37 for the actor:

 () () () ,t t t t tV x V x e xπ π αδ← + (2.36)

 () () (), , , .t t t t t t t tp x u p x u e x uβδ← + (2.37)

These Equations (2.30, 2.31, 2.34, 2.35, 2.36, and 2.37) were used to implement a simple

discrete problem. An agent was placed randomly on a 10 10× grid and allowed to move up,

down, left, or right. If it tried to move off the grid, it stayed in the same position for that iteration.

Episodes were terminated when the agent reached the terminal state. Rewards were all zero

except when the agent moved to the terminal state, where the reward was one. The utilities

learned by the actor-critic are displayed in Table 2.2, with .9.γ = Eligibilities were cleared at the

start of each episode.

38

0.14358 0.163716 0.190235 0.213739 0.240321 0.268046 0.297888 0.331051 0.370866 0.412367
0.164114 0.190959 0.217898 0.244666 0.272905 0.305 0.340462 0.377249 0.420366 0.46828
0.187638 0.217985 0.245377 0.275355 0.306591 0.342318 0.380683 0.423436 0.46984 0.523183
0.211337 0.244625 0.27606 0.309058 0.344233 0.382565 0.425359 0.473855 0.526008 0.583735
0.237658 0.272447 0.307345 0.343995 0.384081 0.427922 0.475969 0.527296 0.585228 0.65193
0.267387 0.304041 0.342326 0.382065 0.426934 0.475675 0.530004 0.588924 0.651768 0.726157
0.297307 0.340978 0.381293 0.426311 0.475233 0.52991 0.589838 0.655925 0.726743 0.807879
0.333444 0.37896 0.425197 0.47491 0.529278 0.5894 0.655785 0.728876 0.807826 0.898406
0.370964 0.421787 0.470426 0.528127 0.587141 0.655189 0.728628 0.80993 0.899958 0.999766
0.412948 0.467835 0.522984 0.58428 0.651165 0.724479 0.806889 0.898681 0.999989 N/A

Table 2.2: Critic (value function) generated using discrete actor-critic for the 10 10× gridworld
described in the text, with 0.9.γ = The terminal state (10, 10) is the lower right.

 Sutton and Barto (2007) assert that this is only one example of an actor-critic method,

and that other variations may select actions in ways other than that provided in Equation 2.30.

This variant does not reduce the dimensionality of the problem since the dimension of the actor

is the same as that of the Q-function. The dimension reducing properties of the actor-critic are

shown in the following section, which introduces the continuous actor-critic. The discrete and

continuous cases must be differentiated because function approximators must be used to

represent the continuous policy and value function, whereas the discrete system in this section

can be implemented using tables. Similarly, minor changes to the TD-error equation must be

made to account for the switch to continuous time.

2.2.8 Continuous Actor-Critic

Doya's continuous actor-critic (Doya, 2000) extends the discrete actor-critic to

continuous time and space using function approximators and modified update equations. While

most of the setup remains the same as with the discrete actor-critic, the function the actor

39

computes must be modified because the Gibbs Softmax method (Equation 2.30) does not work

for continuous actions. It is therefore changed to : ,A X U→ which maps states directly to

actions. While Doya's update equation for the actor is derived from the SRV algorithm

(Gullapalli, 1990), this new actor is not stochastic. Because exploration is no longer inherent to

the actor, explorational noise must be artificially injected into the actions.

Doya provides the continuous counterpart of the TD error as

 () () ()() ()1 ,t r t V x t V tδ
τ

= − + (2.38)

where τ is a constant that determines the discount rate of rewards. Using a backward Euler

approximation for the derivative of the value function, he finds

 () () ()() ()()1 1 .tt r t V x t V x t t
t

δ
τ

⎡ Δ ⎤⎛ ⎞= + − − −Δ⎜ ⎟⎢ ⎥Δ ⎝ ⎠⎣ ⎦
 (2.39)

The critic, a function approximator ()(); : ,V x t w X → with parameter vector w, can be

updated using exponential eligibility traces as

 () () ()();
,i i

i

V x t w
e t e t

w
κ

∂
= − +

∂
 (2.40)

and

 () () ,i C iw t e tη δ= (2.41)

where Cη is the critic's learning rate, κ scales the decay of the eligibility traces over time, and

0 κ τ< ≤ (Doya, 2000).

He then proposes that the actor be updated using the SRV algorithm, citing (Gullapalli,

1990). The update for the actor, ()(); ,AA x t w which has its own parameter vector, ,Aw is

40

 () ()
()();

,
A

A
i A A

i

A x t w
w t n t

w
η δ

∂
= ⋅

∂
 (2.42)

where Aη is the actor's learning rate. The actions of the actor are selected as

 () ()() ()(); ,Au t S A x t w n tσ= + (2.43)

where σ is a constant, and S is a monotonically increasing function. For the remainder of this

thesis, the sigmoid function, provided in Equation 2.62, is used for S. The term () ,n t which is

the same dimension as the action space, defines the explorational noise that is injected into the

policy. In his examples, Doya used

 () () () ,nn t n t N tτ = − + (2.44)

where ()N t is normal Gaussian noise of the same dimension as the action space.

This thesis focuses on the application of the continuous actor-critic to the Adaptive RL

FES Controller Task.

2.2.9 Stochastic Real-Valued Unit Algorithm (SRV Algorithm)

When the continuous actor-critic's update equation for the actor (Equation 2.42) is

presented in (Doya, 2000), the Stochastic Real-Valued Unit algorithm (SRV algorithm;

Gullapalli, 1990) is cited as the source and justification. Subsection 2.2.10 discusses convergence

of the continuous actor-critic, for which a background on the SRV algorithm will be useful. It is

therefore presented in this subsection.

In this system, the states are real-valued vectors in the state space ,n⊆X and the

actions are real numbers .⊆U The rewards have fixed range () []0,1 .r t ∈ The reward function

41

is defined by the distribution []: 0,1 ,G × × →R X U where

() () () (){ }, , Pr , .G r x u r t r x t x u t u= ≤ = = The optimal action can then be defined as

 (){ }* arg max , .
u

u E r x u
∈

=
U

 (2.45)

The actor is represented by a parameter vector, ,θ while the critic is represented by a

parameter vector, .φ For a given time step, the state ()x t is selected randomly, though the

system obeys the transition function. The agent's action is generated stochastically via the

Gaussian distribution

 () () ()()()ˆ~ , ,Tu t N x t S r tμ σ= =θ (2.46)

where () ()ˆ Tr t x tφ= is the estimation of the reward to be received and S is a monotonically

decreasing non-negative function, such that ()1 0.S = The variance of the action distribution

decreases as the reward increases, which equates to decaying exploration as performance

improves.

After generating the current action, the agent receives a reward for its action,

() ()(), .r u t x t Recall that this signal is a random variable. The actor parameter array is then

updated as follows.

 () () () () ()() ()() () ()() ()ˆ1 , ,t t t r u t x t r t u t t x tσ μ+ = + − −θ θ (2.47)

where

 () () ,Tt x tμ = θ (2.48)

 () ()()ˆ ,t S r tσ = (2.49)

 () ()ˆ ,Tr t x tφ= (2.50)

42

and

 () () ()()~ , .u t N t tμ σ (2.51)

The critic parameter array is updated such that

 () () () ()() ()() ()ˆ1 , ,t t r u t x t r t x tφ φ ρ+ = + − (2.52)

where ρ is a learning rate.

Gullapalli (1990) shows that, under certain strong assumptions, this system will converge

to the optimal actor.

2.2.10 Continuous Actor-Critic Analysis

The relation between Doya's update equation (Equation 2.42) for the actor and

Gullapalli's SRV update (Equation 2.47) is not obvious. If one substitutes

() () ()() ()ˆ, ,t r u t x t r tδ = − which is not strictly true—though the two terms are related—the

SRV update for the actor becomes

 () () () () ()() ()1 .t t t t u t x tσ δ μ+ = + −θ θ (2.53)

Further substituting ,Aw = θ and () () ()() ,n t t u tσ μ= − which again is not true, though the two

terms are related, yields

 () () () () ()1 .A Aw t w t n t t x tδ+ = + (2.54)

This equation is identical to Doya's update because in the SRV algorithm,

 ()
()();

.
A

A
i

A x t w
x t

w
∂

=
∂

 (2.55)

43

This adaptation of the SRV algorithm is not perfect, so all convergence guarantees no

longer apply, though Gullapalli's intuitive justification carries over. This justification is

reproduced below.

 If this noise has caused the unit to receive a [reward] that

is more than the expected evaluation, then it is desirable [that]

the [actor] should [...] be changed in the direction of the noise.

That is, if the noise is positive, the unit should update its

parameters so that the mean value increases. Conversely, if the

noise is negative, the parameters should be updated so that the

mean value decreases. On the other hand, if the evaluation

received is less than the expected evaluation, then the [actor

should be updated] in the direction opposite to that of the noise.

– (Gullapalli, 1990)

Though this justification is still sound, the adaptation to the continuous actor-critic is still only an

approximation.

To the best of our knowledge, there are no convergence proofs for the continuous actor-

critic. This is likely due to mathematical complications introduced by the addition of function

approximators. We must therefore rely on Gullapalli's intuition to understand why the continuous

actor-critic learns. This intuition relies on the critic being accurate, which can become

problematic, as shown in Section 2.4.

44

However, we can use Gullapalli's intuition to make informed decisions about parameter

settings. With a positive TD-error, the actor ought to reinforce the explorational noise used. The

actor's surface should be warped so the output at the current state approaches the output plus the

current noise. Thus, the locality of the update to the actor should be such that the states close

enough to benefit from similar exploration will be updated, but states further away (where the

same exploration may not be beneficial) will not be updated.

In order to achieve an accurate critic, so that Gullapalli's intuition applies, the updates to

the critic should eventually be local. However, global updates may initially be beneficial to allow

the critic to take on the general shape of the value function. We therefore recommend increasing

the locality of critic updates over time. This will be left to future work because the Adaptive RL

FES Controller Task does not allow for decaying learning rates (which is akin to increasing the

locality of updates).

2.3 Function Approximators

In order to implement the continuous actor-critic, function approximators are used to

represent V and π (also known as A and C). These function approximators are then updated via a

form of gradient descent during training. Function approximators can be split into two classes,

local and global. When changes are made to a local approximator, the value of the function will

only change within some neighborhood, while an update to a global approximator changes the

value of the function over the entire domain.

Initial tests, described below, were performed with two global approximators, Artificial

Neural Networks (ANNs) and Functional Link Networks (FLNs), and three local approximators,

45

k-Nearest Neighbor (k-NN), Locally Weighted Regression (LWR), and Radial Basis Functions

(RBFs), all of which are defined in the following subsections. Though an approximator

consisting of a linear combination of the inputs could exactly represent the PD controller, it was

not included in tests because it is equivalent to a one-layer ANN with a linear activation

function. In these trials, the approximators used a supervised learning technique, gradient

descent, to approximate the value of states when using the PD controller as the policy for FES

control of the simulated arm. In this chapter, these preliminary results are reviewed. Although

these results are for supervised learning, they give insight into the learning speed of each

method, which was then used to decide which approximators to implement in the actor-critic

architecture.

For this task, called the Utility Approximation Task (UAT), 720,000 state-utility points

were generated. These points consist of states of the form

 () () () ()Goal, , ,
T

x t t t tθ θ θ⎡ ⎤= ⎣ ⎦ (2.56)

and their empirically calculated utility. The utility was computed as the integral of the reward

signal over a two-second episode:

() () ()

2 6
2

Goal Goal
10

MuscleForce ,T T
i

it

W dtζ θ θ θ θ θ θ
==

⎡ ⎤+ − − +⎢ ⎥⎣ ⎦
∑∫ (2.57)

where 164.14W = and ()2/180 .ζ π= − This reward signal is similar to that used by Jagodnik

and van den Bogert (2007) to create the PD controller discussed in Section 2.1, and also

resembles the reward signal used in the actor-critic tests in Chapters 5 through 8. The start and

46

goal states for each episode were both sampled randomly from

[] [] [] [].349,1.571 .349,1.571 20 ,90 20 ,90θ ∈ × = ° ° × ° ° and [] []0,1 0,1 .θ ∈ ×

 The 720,000 points were split into a training set of 550,000 points and a testing set of the

remaining 170,000 points. Performance was judged based on the number of training iterations

required for convergence, as well as the sum of the squared error (SSE) on the testing set, once

converged. The SSE is defined as

()2

1
,

n

i i
i

SSE x h
=

= −∑ (2.58)

where x is a scalar representing the desired result for the ith testing point, 170,000n = is the

number of testing points, and h is a scalar representing the output of the approximator. The

average SSE if all outputs were zero was 187,929.

 The remainder of this chapter describes ANNs, FLNs, k-NN, LWR, and RBFs, and

describes their performance on the task of learning the utility function. A summary of the

performance of each function approximator is provided in Subsection 2.3.6.

2.3.1 Artificial Neural Networks (ANNs)

Because ANNs have been successfully applied to many classification, function

approximation, and RL tasks (Baxt, 1990; Hutchinson, 1994; Le Cun et al, 1990; Leung et al.,

1990; Pomerleau, 1993; Sejnowski et al., 1990; Shea and Liu, 1990), they serve as an

experimental control for comparison to other methods. In this work, we use fully connected feed-

forward ANNs with one or two hidden layers. We use notation similar to that of Russell and

47

Norvig (1995). In this notation, the output of the lth node in the input layer is denoted ,la the

output of the kth node in the hidden layer following the inputs (called the second hidden layer in

this thesis) is denoted ,ka the output of the jth node in the first hidden layer is denoted ,ja and

the output of the ith output node is denoted .ia

The output for each node is defined as

 () ,i ia S in= (2.59)

where S is the activation function (also called a threshold function) for the ith node, and

 , ,i j i j
j

in w a=∑ (2.60)

where w is an array of weights, and ,j iw denotes the weight between the jth node of the first

hidden layer and the ith node of the output layer. An additional node with a fixed output of 1− is

added to each layer, other than the output layer, to serve as a threshold for neurons in the

subsequent layer (Russell and Norvig, 1995). Equations 2.59 and 2.60 apply to all layers, with

the sum in Equation 2.60 being over the neurons in the previous layer. For further description of

the notation, see (Russell and Norvig, 1995).

Neurons in the output layer use a linear activation function,

 () ,L x x= (2.61)

while all other neurons used the sigmoid activation function,

() 1 .

1 xS x
e−=

+
 (2.62)

48

The derivatives of Equations 2.61 and 2.62 are required for gradient descent updates such as

error backpropagation, and are provided in Equations 2.63 and 2.64, respectively:

 () () 1,L x L' x
x
∂

= =
∂

 (2.63)

 () () ()() ()1 .S x S' x S x S x
x
∂

= = −
∂

 (2.64)

For future reference, the derivatives of the ANN output with respect to the weights in

each layer are provided below. These are required for actor-critic updates. Equations 2.65, 2.66,

and 2.67 provide the derivatives of an ANNs output with respect to a weight in the output layer,

second hidden layer, and first hidden layer respectively.

 ()
,

, if ,
0, otherwise,

i j

j i

a L' in a y iy
w

∂ ⎧ =
= ⎨

∂ ⎩
 (2.65)

 () (),
,

,i
i j i j k

k j

a L' in w S' in a
w
∂

=
∂

 (2.66)

 () () ()(), ,
,

.i
l i j i j k j k

jl k

a a L' in w S' in w S' in
w
∂

=
∂ ∑ (2.67)

For training on the UAT, the backpropagation algorithm was used (Russell and Norvig,

1995). The computational cost of this algorithm resembles that of the actor-critic updates, and

was therefore computed for various network sizes. Training and testing for one point using

ANNs was efficient, requiring 23.4 microseconds to train a network with 20 neurons in its only

hidden layer on one point, and 2.68 microseconds to run the same network on a query point.

These values were determined using a 1.6 GHz AMD Turion 64 processor running 32-bit

49

Windows XP. Table 2.3 shows the training and testing times for various network sizes as well as

their performance on the UAT. Each training epoch consisted of training on 550,000 points, and

each testing epoch consisted of running the network on 170,000 points, as discussed at the top of

Section 2.3.

First
Hidden

Layer Size

Second
Hidden
Layer
Size

Training
Time Per

Epoch
(Seconds)

Testing
Time Per

Epoch
(Seconds)

Learning
Rate

Epochs to
Convergence

SSE

5 0 3.1148 .3476 .000001 121 20,000
10 0 6.912 .8 .00001 31 15,000
20 0 12.88 1.479 .000001 500 2,913
5 5 6.1188 .6844 .0001 1 11,088
10 5 9.4092 1.0564 .000001 100 5,000
10 10 12.875 1.422 .0000001 500 3,080

Table 2.3: Training and testing times for ANNs of various sizes on the UAT. Each size was
tested with learning rates varying from .001 to .0000001, training for up to 500 epochs. The
setups resulting in the smallest SSE for each network size are reported above.

The smallest SSE achieved by an ANN was 2,913 when using 20 neurons in its single

hidden layer, with a learning rate of 61 10α −= × after training for 500 epochs over the training set

of 550,000 points. Overall, learning with backpropagation was remarkably slow with respect to

the number of updates required for convergence. With larger learning rates, the function failed to

converge to an accurate value, while smaller learning rates require hundreds of epochs (on the

order of 50 million updates) to converge.

50

2.3.2 Functional Link Networks (FLNs)

 Functional Link Networks (FLNs) attempt to increase the learning speed and stability of

ANNs during training by predetermining interesting features of the current state to use as

additional inputs to the ANN (Klassen, Pao, and Chen, 1988). The features chosen were varied

throughout these tests. The best found are provided in Table 2.4.

1θ 2θ
1θ 2θ

1Goal 1θ θ−
2Goal 2θ θ− ()1 1sinθ θ ()2 2sinθ θ

()1 2 2sinθ θ θ ()1sin θ ()2sin θ ()1

2

Goal 1θ θ−

()2

2

Goal 2θ θ− ()1 2 2sinθ θ θ () ()
2

2 2sinθ θ () ()
2

1 2sinθ θ

Table 2.4: 16 features found to work well for FLNs.

These features were chosen after manually inspecting the equations for the dynamics of

the simulated arm. An SSE on the UAT of 4,893 was achieved using all 16 parameters in Table

2.4, after training for only 60 epochs with 13 neurons in the first hidden layer and no second

hidden layer, 6
.1 10α −= × Though this error is worse than that of the best ANN, learning

occurred faster.

 In conclusion, the improvement over the standard ANN was not significant enough to

warrant further investigation.

51

2.3.3 k-Nearest Neighbors (k-NN)

 k-Nearest Neighbors (k-NN) served mainly as a stepping stone to the implementation of

Locally Weighted Regression (LWR), discussed below. A KD-Tree was implemented to store all

the training instances for both k-NN and LWR. It was found that finding the k-nearest neighbors

using the KD-Tree was not the computational choke point, so further consideration of nearest

neighbor runtimes was not necessary.

For the remainder of this subsection, k is the number of nearest neighbor points used in

the approximation of query point q. These are the k points with the smallest (usually Euclidean)

distance to the query point. For a given definition of ,iw the approximation function is defined

by Equation 2.68,

() ()
1

,
k

i i

i j
j

w U x
h x

w=

⋅
=∑ ∑

 (2.68)

where ()iU x is the known output for the input ,ix which in the UAT is the numerically

determined utility of the state .ix In order to improve performance, the state was changed from

Equation 2.56 to

 () () () () ()Goal, , .
T

x t t t t tθ θ θ θ⎡ ⎤= −⎣ ⎦ (2.69)

k-NN can be implemented using different weighting schemes. Tests were performed

using no weighting, inverse weighting, and exponential weighting. The approximation function

()h x is the same for each of these weighting schemes. Equation 2.70 defines the weights if

52

using no weighting, while Equation 2.71 defines the weights when using inverse-distance

weighting, and Equation 2.72 defines the weights when using exponential distance:

 1,iw = (2.70)

 ()2

1 ,
,i

i

w
d x q

= (2.71)

(),2 .id x q

iw −= (2.72)

In Equations 2.71 and 2.72, d is the Euclidean distance and q is the query point.

Unlike ANN-based algorithms, there is no training phase for k-NN, so it is more difficult

to judge training time. However, using all 550,000 training points on the UAT, k-NN achieved

much smaller errors than ANNs, as shown in Figure 2.3. The lowest error achieved was 1,286

using the inverse-distance weighting and k between 8 and 11.

Figure 2.3: Sum of the squared error on the UAT testing set when using k-NN with varying k and
weighting schemes.

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SS
E

k
Not Weighted Inverse Distance Exponential Distance

53

The ANNs and FLNs have the innate property that they can be used to approximate a

function that changes over time. Instance based methods like k-NN and LWR do not have this

property because they are not based on the same system of training. Thus, in order for k-NN to

be used in the actor-critic, it would have to be modified as with LWR in Chapter 3.

2.3.4 Locally Weighted Regression (LWR)

Like k-NN, Locally Weighted Regression (LWR) is a memory-based regression method,

however, rather than merely taking a weighted average of the outputs for the k-nearest neighbors,

LWR fits a linear model to the nearest neighbors, which it then uses to extrapolate the value at

the query point. The fit for the linear model is computed to minimize the squared error of each of

the k-nearest neighbors, weighted exponentially by the inverse of their distances from the query

point. The LWR Algorithm is provided as Algorithm 2.1.

 The parameter D is a diagonal matrix representing the weight of each dimension as well

as the size of the neighborhood to be considered. Defining

 []()1 2, ,..., ,nh diag n n n= ⋅D (2.73)

we split D into two components: h, which scales the neighborhood, and the array of ,in which

normalize the range of the input dimensions. Commonly, the values of n are fixed to

2

1 ,i
i

n
σ

= (2.74)

where iσ is the standard deviation of the ith dimension of the training points. The value for h on

the UAT can then be determined using leave-one-out cross validation, defined in Algorithm 2.2.

54

Algorithm 2.1: The LWR Algorithm, reproduced from (Schaal, Atkeson, and Vijayakumar,
2002).

A variation of leave-one-out cross validation was implemented to search for h, but it was

computationally intensive when the number of candidate values for h was large (H in

Algorithm 2.2). It was therefore only used with a small set of candidate values to obtain an initial

range for h, after which a manual search was done to find a near optimal h. This manual search

was similar to Algorithm 2.2, except that the consecutive values of rh were determined by the

author after studying the results of previous values.

The LWR Algorithm:
Given:
A query point qx and p training points { },i iyx in memory
Compute Prediction:

a) compute diagonal weight matrix W where

() ()1exp
2

T

ii i q i qw ⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

x x D x x

b) build matrix X and vector y such that

()1 2, ,...,
T

p=X x x x where () 1
TT

i i q
⎡ ⎤= −⎢ ⎥⎣ ⎦

x x x

()1 2, ,...,
T

py y y=y
c) compute locally linear model

() 1Tβ
−

= X WX Wy
d) the prediction for qx is thus

1ˆq ny β +=

55

Algorithm 2.2: The Leave-One-Out Cross Validation Algorithm, reproduced from Schaal et al.,
(2002), which can be used to determine the proper setting for h in Algorithm 2.1.

According to Schaal et al. (2002), the computational complexity of Algorithm 2.1 is

()2 ,O pn where p is the number of training points, and n is the dimension of the query point. In

order for the matrix inverse in LWR to be calculated (step c in Algorithm 2.1), the total number

of training points used must be greater than the dimension of the output. To store the training

points, the same KD-Tree used for k-NN was used. Because the Gaussian weighting kernel falls

off steeply, only the k (fixed) nearest training points were run through the LWR Algorithm to

generate an approximation. Figure 2.4 depicts the Gaussian weighting kernel for a sample point,

exemplifying how most points need not be included in each regression.

Leave-One-Out Cross Validation:

Given: A set H of reasonable values hr

Algorithm:

For all :rh H∈

0rsse =

For i=1:p

a) q ix x=
b) Temporarily exclude { , }i ix y from training

data
c) Compute LWR prediction ˆqy with reduced

data
d) ()2

ˆr r i qsse sse y y= + −

56

Figure 2.4: Locally Weighted Regression Point Weighting (query point (0.5, 0.5), marked by the
diamond). Close by points that have significant weights (greater than 0.05) are marked by filled
circles. Sample points on any given circle centered at the query point will have equal weights.
Because only a small number of the closest points have non-negligible weights, the LWR
algorithm can be run using only the k-nearest neighbors without significant loss of precision.
Reproduced from (Wedge, 2004, Figure 3.5).

When testing on the UAT, the state was once again modified to that in Equation 2.61, as

with k-NN. Table 2.5 shows the SSE on the testing set for various values of h and k. LWR's SSE

of 294 is the lowest of all the approximators tested. It achieved this SSE without requiring the

long training of ANNs and FLNs. As described for k-NN, this is also its drawback—it is not

natively a learning algorithm, so it will have to be modified.

57

h k SSE
0.0001 10 553.504
0.0001 15 303.006
0.0001 20 294.74
0.0001 25 304.421
0.0001 30 320.461
1e-005 10 461.128
1e-005 15 302.998
1e-005 20 294.758
1e-005 25 304.444
1e-005 30 320.487
1e-006 10 463.428
1e-006 15 303.015
1e-006 20 294.759
1e-006 25 304.446
1e-006 30 320.489
1e-007 10 594.221
1e-007 15 303.031
1e-007 20 294.758
1e-007 25 304.443
1e-007 30 320.486

Table 2.5: Performance of LWR on the UAT with various h and k. The lowest SSEs appear in
bold.

2.3.5 Radial Basis Functions (RBFs)

In order to mimic Doya’s work (Doya, 2000) in Section 2.4, Radial Basis Functions

(RBFs) were implemented in the continuous actor-critic. The benefit of RBFs is that they are

local approximators, which are made for iterative learning, unlike the memory-based k-NN and

LWR algorithms.

RBFs are the weighted sum of multiple kernel functions as shown in Equation 2.75:

()0

1
() , ,

N

i i
i

F q w w K q x
=

= +∑ (2.75)

58

where q is the query point, iw are tunable parameters, and N is the total number of kernel

functions used. Gaussian functions were used for the kernels in our implementation:

2

2
(,)

2(,) ,
id x x

iK x x e σ
−

= (2.76)

where σ is the standard deviation of the Gaussian, x is the query point, ix is the center of the ith

kernel, and (), id x x is a distance metric. Different distance metrics may be used to account for

different units.

 The distance metric, d, used was Euclidean distance. For dimensions of the state that are

in radians, the distance in radians was found to be the smallest distance, allowing for wraparound

from 0 to 2 .π Though each weight, ,iw can be changed, the centers of the kernel functions, ,ix

are fixed.

In this implementation, the kernel functions were evenly distributed in a grid covering the

volume of interest. The derivatives with respect to each weight are needed later for performing

gradient descent and are therefore provided in Equations 2.77 and 2.78:

 0

1,F
w
∂

=
∂

 (2.77)

()

1

, .i
i

F K q x
w ≥

∂
=

∂
 (2.78)

 RBFs appear to be more robust to large learning rates than ANNs, though the standard

deviation of the kernel functions must be well set. For a description of what happens with

improper standard deviations, see Figure 20.13 in (Russell and Norvig, 1995). RBFs are known

to scale poorly to higher dimensions because the number of kernels required grows exponentially

59

with the dimension. Thus, RBFs were not selected for implementation on the FES control

problem nor the UAT, but rather were only implemented in Section 2.4 when duplicating the

work of (Doya, 2000).

2.3.6 Function Approximator Performance Summary

 This subsection consolidates the performance descriptions of all the function

approximators and compares the results. Table 2.6 provides an overview of the performance of

ANNs, FLNs, k-NN, and LWR on the UAT. The memory-based methods, k-NN and LWR,

achieved the smallest SSE, and thus deserve further consideration for use in the continuous

actor-critic on the Adaptive RL FES Controller Task. However, these methods are not iterative,

and are therefore not suitable for use in their current form. Chapter 3 modifies LWR to create an

incremental algorithm for use in the continuous actor-critic.

 Best SSE Pros Cons
ANNs 2,913 Well researched and

understood
Slow training

FLNs 4,893 Learns much faster than ANN Higher error than ANN, possibly
due to more local minima

k-NN 1,286 Simple, low error Not incremental algorithm
LWR 295 Lowest error Many tunable parameters, not

incremental algorithm

Table 2.6: Summary of the performance of ANNs, FLNs, k-NN, and LWR on the UAT. RBFs
are not included because they were not implemented for the UAT (see Subsection 2.3.5).

60

 Also, notice that the analysis of the results from k-NN and LWR may not be indicative of

the results for incremental versions thereof because a training phase must be introduced. We

selected the number of known points for k-NN and LWR to be all of the training points, though

the relation of this selection to the training time of incremental variants of k-NN and LWR is

unknown.

2.4 Pendulum Swing-Up Case Study

In order to better understand the continuous actor-critic (Subsection 2.2.8), the pendulum

swing-up task (Doya, 2000) was implemented. The pendulum swing-up task was used by Doya

to showcase the continuous actor-critic's learning speed. The pendulum environment is depicted

in Figure 2.5.

Figure 2.5: Reproduced from (Doya, 2000). The pendulum model consists of an arm with a
weight on the end. A limited amount of torque, ,Max Maxu T u− ≤ ≤ can be applied to the
pendulum. The dynamics follow the equations θ ω= and 2 sin ,ml w w mgl uμ θ= − + + where

1,m = 9.8,g = 1,l = .01μ = (amount of damping of the pendulum’s motion), and 5.Maxu =
Though a time step of .02 seconds was used for updating the actor-critic, motion approximation
was done using a forward Euler approximation with a time step of .001 seconds.

61

The agent must learn to swing the pendulum up to 0.θ = To do this, the agent receives

an instantaneous reward of () cos .R x θ= Doya used the initial configuration () []0 00 , ,Tx θ ω=

where 0 0,ω = and the initial angle, 0 ,θ is selected randomly in [], .π π− For our tests, we used

0 0ω = and 0θ π= to simplify empirical evaluation of each policy.

The actor and critic were both represented using RBFs (Subsection 2.3.5), which are

reviewed here. The Gaussian kernels were distributed in a 15 15× grid across the domain

[]0, 2 ,θ π∈ 5 5, .
4 4

θ π π⎡ ⎤∈ −⎢ ⎥⎣ ⎦
 The kernels used

 ()
() ()22

22, ,
i i

iK e
θ θ θ θ

σθ θ
− + −

−
= (2.79)

where iθ is the center of the ith kernel, and .45.σ = The output for each function approximator

is

 () ()0
1

, , ,
n

i i
i

f w w Kθ θ θ θ
=

= +∑ (2.80)

where n is the total number of kernels, and the vector w, of length 1n + is the set of tunable

weights for the function approximator.

The agent's performance is evaluated as the integral of the rewards over a 20-second

episode starting with the pendulum hanging straight down. Though Doya terminated episodes

when the pendulum completed an entire revolution, our trials were terminated when the agent

reached 0θ = or after the full 20 seconds. For evaluations, explorational noise was not included.

The parameters 1,τ = 1,Nτ = 5,Aη = 1,Cη = and 1κ = were unchanged from (Doya, 2000).

Exploration was decayed differently from Doya's implementation. We set

62

1 .Episode Number1
10

σ =
+

 (2.81)

Each setup was run 100 times, and the evaluations were averaged to create Figure 2.6.

Figure 2.6: Mean performance (N=100) of the continuous actor-critic on the pendulum swing up
task. Standard deviation error bars are included.

 In a typical run after 1,000 episodes of training, the agent swings the pendulum up

clockwise to 4.3,θ = then back counterclockwise to 2.2,θ = after which it swings clockwise up

to 0.θ = This is a local minimum in policy space because initially swinging to 2.2θ = would

require less time. Additionally, on the final swing up to 0,θ = the pendulum moves slowly over

the final .2 radians. This is likely an artifact of our choice to terminate episodes when the

pendulum reaches 0θ = rather than after a full over-rotation.

To better understand learning, it is useful to view how accurate the critic is during

training. To quantify this, after each training episode a separate critic was trained on the actor-

63

critic’s policy for 1,000 episodes using the same parameters as the actor-critic, except with no

exploration. The squared difference between the two critics' values was summed over the

domain, evaluated every .1 radians from 0 to π for θ and every .2 radians per second from

5 4π− to 5 4π for .w Figure 2.7 shows the relation between this quantification of critic error

and the evaluation. These errors are over the entire state space, though the training episodes only

cover the subset of the domain encountered by the current policy.

Figure 2.7: Comparison of how accurate the critic is (bottom), to learning (top). Notice the
logarithmic scale of the vertical axis in the bottom plot. During the rapid initial learning phase,
the critic is less accurate than during the later stages. Some instability is observed both in the
critic and the policy after 800 episodes and after 900 episodes.

-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0

1 101 201 301 401 501 601 701 801 901

E
va

lu
at

io
n

Episodes

1

10

100

1,000

0 100 200 300 400 500 600 700 800 900 1,000

C
ri

tic
 E

rr
or

Episodes

64

 On the pendulum swing-up task, which utilizes shaping rewards in a manner similar to

that of the application of the continuous actor-critic to the DAS1 model in Chapters 5 and 7, the

actor-critic achieves rapid initial learning, which occurs even though the critic is not yet accurate.

When the critic becomes accurate, learning is slower but more stable. Gullapalli's intuition for

why the system learns (Subsection 2.2.10) only applies well when the critic is accurate. Future

work should be done to better explain why the system learns when the critic is inaccurate.

65

CHAPTER 3:

INCREMENTAL LOCALLY WEIGHTED REGRESSION

This chapter has been placed prior to Chapters 4, 5, and 6 in order to preserve the flow of

background, methods, and then results. Because the methods provided herein are not utilized

until Chapter 7, the reader may opt to skip this chapter and return to it after Chapter 6.

The Locally Weighted Regression (LWR) algorithm (Algorithm 2.1, presented in

Subsection 2.3.4), performed the best on the preliminary Utility Approximation Test (UAT) from

Chapter 2, approximating the desired function with the least error. It is a promising candidate for

use with the continuous actor-critic because it has the potential for local updates, unlike Artificial

Neural Networks (ANNs). However, unlike ANNs, which are updated incrementally, the LWR

algorithm is memory-based. This means that LWR takes a set of known input and output pairs,

which it uses to generate future approximations. For RL applications, the input and output pairs

are often not known, but rather it is known that the output should be larger or smaller.

In this chapter, we convert the LWR algorithm to an incremental version, dubbed

Incremental Locally Weighted Regression (ILWR). We then test its performance on simple tasks

and real-world tasks, which give a better understanding of how the different ILWR variants,

presented in the following sections, relate to each other.

Previous efforts have been made to create an incremental LWR algorithm (Schaal,

Atkeson, and Vijayakumar, 2002). These methods attempt to reproduce results if points were all

66

stored and then slowly forgotten over time. Unlike these prior incremental LWR algorithms,

which have required forgetting factors (Vijayakumar, D'Souza, and Schaal, 2005), ILWR does

not explicitly forget points. ILWR is also fundamentally different due its placement of regression

points off the surface to be approximated (cf. Figure 3.3).

Previous incremental LWR algorithms, sometimes called locally weighted learning

(LWL) methods, also tend to be kernel centric. Such methods, as well as Radial Basis Functions

(RBFs; Subsection 2.3.5) are known to scale poorly to high-dimensional problems. If the

Adaptive RL FES Controller Task is to be scaled up to include more muscles and degrees of

freedom, we desire a function approximator that scales well for our problem. LWR is known to

have several advantages over kernel based models (Atkeson, Moore, and Schaal, 1996),

including its ability to perfectly represent a planar function, such as the PD control law of

Equation 2.2. In our incremental adaptation of LWR presented in this chapter, we will preserve

this planar local model rather than switching to kernels, with the hope that it will scale better to

future problems.

The memory-based LWR algorithm can be converted to an incremental method using the

gradient descent rule provided in Equation 3.1. As with other function approximators, such as

ANNs, the equations for LWR are continuously differentiable with respect to its parameters,

making it suitable for use with the gradient descent rule. LWR will be given a fixed number of

points, initialized randomly or using prior knowledge (such as placing higher initial point

densities in areas with large 2 2/),y x∂ ∂ which will be incrementally modified to better

approximate the desired function. At each step, a query point, q qx , y is observed. LWR generates

an approximation, ˆ ,qy then modifies the weights to decrease the error term.

67

The points stored initially and updated during training will be referred to as knowledge

points, while the points used to train the knowledge points will be called training points.

According to (Mitchell, 1997), the gradient descent rule, in terms of the parameters or

weights, w, for a function approximator, is

 ,w w w← +Δ (3.1)

 () ,w E wηΔ = − ∇ (3.2)

where η is a learning rate and the error term, ()E w is defined as

 () ()2

, ,
1

1 ˆ ,
2

od

q i q i
i

E w y y
=

≡ −∑ (3.3)

where do is the dimension of the output, ŷ is ILWR's approximation for the current query, and

yi,j is the jth output of the ith training point, yi. We will apply this to the LWR algorithm, with the

knowledge points treated as the weights, w. This choice of error term simplifies the expansion of

the gradient descent rule, defined for each weight as

 () ,
, ,

1

ˆ
ˆ .

od
q

i i q q
i

y
w w y y

w
α

α α
α

η
=

∂⎡ ⎤
← − ⋅ −⎢ ⎥∂⎣ ⎦

∑ (3.4)

A derivation of Equation 3.4 is provided in Appendix D. Because we wish to train after each

point, the error term in Equation 3.3 does not include a sum over all training points observed.

This form of gradient descent is often referred to as incremental gradient descent or stochastic

gradient descent. For further information on the differences between true gradient descent and its

stochastic approximation, see (Mitchell, 1997).

68

Next, we must consider what the weights, w, represent. One approach is to consider the

outputs of the knowledge points, yi, the weights. For approximating a function ()y f x= where

, ,x y∈ such as that depicted in Figure 3.1, this means fixing the x-coordinates of knowledge

points, but allowing the y-coordinates to vary. This will be referred to as Static Input Incremental

Locally Weighted Regression (SI-ILWR).

Figure 3.1: Example ILWR problem, where y denotes the initial knowledge points, and ()f x
denotes the desired function.

Another option is to vary both the inputs and the outputs. This allows gradient descent to

choose the density of knowledge points over the input space. In Figure 3.1 this means allowing

points to move along both the x- and y-axes. This method will be referred to as Dynamic Input

Incremental Locally Weighted Regression (DI-ILWR). One expects DI-ILWR to perform better

than SI-ILWR because it can move points to more interesting regions of the domain. In this

method, different learning rates are used in Equation 3.4 for updates of the inputs and outputs of

the knowledge points. SI-ILWR and SO-ILWR, described in the following paragraph, are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
x

y f(x)

69

specific cases of DI-ILWR, with one learning rate set to zero. In other chapters, references to

ILWR therefore refer to DI-ILWR.

The third option, fixing the outputs and allowing the inputs to vary, is not practical, but

serves as an interesting example. In the example provided in Figure 3.1, this means fixing the y-

values of each knowledge point, but moving them along the x-axis. This method will be referred

to as Static Output Incremental Locally Weighted Regression (SO-ILWR).

When implementing Equation 3.4, SI-ILWR requires only , ,ˆ / ,q k i jy y∂ ∂ SO-ILWR

requires only , ,ˆ / ,q k i jy x∂ ∂ and DI-ILWR requires both. Notice that , ,ˆ /q k i jy x∂ ∂ cannot be

extracted from ,ˆ /q ky∂ ∂X because it does not account for the change in the approximation due to

the change in W when xi,j changes.

The derivative of each output with respect to each training point's output is

 ()
1,

1

,
1,

0, when ,

, otherwise,
i

i

d k
T T

i j
d i

j k

y
+

−

+

≠⎧∂ ⎪= ⎨⎡ ⎤∂ ⎪⎢ ⎥⎣ ⎦⎩

β
X WX X W

 (3.5)

where di is the dimension of the inputs. A derivation of this equation is provided in Appendix A.

The derivative of each output with respect to each training point's input is

() () ()1 1 11,

, , , , , ,
1,

i

i

T T

d k T T T T T T

i j i j i j i j i j i j
d k

x x x x x x
− − −+

+

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦

β W X X W XX WX X y Wy X WX X W X WX X WX X Wy

 (3.6)

where ,/ i jx∂ ∂X is a 1ip d× + matrix with all entries zero except , 1,i j =X and where ,/ i jx∂ ∂W

is a p p× matrix with all entries zero except the entry at i,i, which is

70

 (), , , ,
, ,

.i i j j q j i j
i j i i

x x
x

⎡ ⎤∂
= −⎢ ⎥

∂⎢ ⎥⎣ ⎦

W W D (3.7)

Equation 3.7 assumes D is fixed, or not a function of xi,j. This assumption is discussed in the

following paragraph. Derivations of Equations 3.6 and 3.7 are provided in Appendix B.

Appendix C shows how to efficiently implement Equation 3.6 by taking advantage of the

structures of ,/ ,i jx∂ ∂X ,/ ,i jx∂ ∂W and W.

One key feature of these learning algorithms is that all changes are effectively local. As

the distance from the change increases, the influence of the change decreases exponentially. If D

were not fixed, then changes to a knowledge point's inputs would change the weighting of each

dimension, which is a global change. We desire local updates, so D is fixed. It is our untested

belief that the gradient descent algorithm will learn to work with the dimension weightings it is

provided as long as the values are reasonable. If one intends to implement these algorithms

without fixing D, the derivation of Equation 3.7 deviates at Equation B23.

3.1 Experiments

The following four subsections show results for ILWR learning on simple problems. The

results are useful for understanding the inner workings of ILWR, evaluating performance relative

to ANNs, as well as justifying further investigation of ILWR for FES control of a human arm.

71

3.1.1 Sigmoid Environment

In the first environment, dubbed the Sigmoid Environment, the agent must learn to

approximate the sigmoid function

 () 1 .
1 xS x

e−=
+

 (3.8)

This test is designed not to judge each method's learning speed, but instead to judge how

accurate of an approximation can eventually be achieved with small learning rates and as many

training points as are necessary for convergence. Only five knowledge points were used, each

initialized randomly throughout the domain, []10,10 ,x∈ − and the range, ()0,1 .y∈ Evaluations

were computed by taking the normalized (divided by 21) sum of the squared error over the

domain, sampled at every unit, as in Equation 3.9:

()

210

10

1 1 ˆEvaluation ,
21 1 x

x
y x

e−
=−

⎛ ⎞= −⎜ ⎟+⎝ ⎠
∑ (3.9)

where ()ŷ x is ILWR's approximation for the point x. The knowledge points are randomly

placed over the domain and range. A typical initial evaluation with this setup is .243.

All three ILWR variants were trained using 2,000,000 randomly generated training

points, far more than were necessary to achieve numerical convergence. In all tests, D was fixed

as ().05 .diag=D The best evaluation achieved by SI-ILWR was .004, with a learning rate of

.005. The best evaluation achieved by DI-ILWR was .0000875, with learning rates of .01 for

outputs, and .015 for inputs. The best evaluation achieved by SO-ILWR was .0075, with learning

rate .001. Figures 3.2, 3.3, and 3.4 present the results when using SI-ILWR, DI-ILWR, and SO-

ILWR, respectively.

72

Figure 3.2: Final function approximated by SI-ILWR after 2,000,000 random training points,
with a learning rate of .005. The final evaluation (Equation 3.9) is .004. The thick green line
represents what the weights would be for knowledge points with various x, if the query point was
at zero. This weighting, determined by D, is identical for the remainder of this subsection.

Figure 3.3: Final function approximated by DI-ILWR after 2,000,000 random training points,
with a learning rate of .01 for outputs and .015 for inputs. The plot for DI-ILWR's approximation
obscures the plot of the actual sigmoid over most of the domain. The final evaluation (Equation
3.9) is .0000875.

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -5 0 5 10
x

Actual

Approximation

Knowledge
Points After
Training

Knowledge
Points Before
Training

Weight

-3

-2

-1

0

1

2

3

-15 -10 -5 0 5 10 15
x

Actual

Approximation

Knowledge
Points After
Training

Knowledge
Points Before
Training

73

Figure 3.4: Final function approximated by SO-ILWR after 2,000,000 random training points,
with a learning rate of .001. The final evaluation (Equation 3.9) is .0075.

Notice that, unlike the LWR algorithm, the knowledge points are not necessarily

positioned on the target surface. Instead, they are positioned at the locations that result in the

most accurate approximation of the surface. As the density of knowledge points increases and

the locality of D increases, one would expect the points to converge to the actual surface.

As expected, DI-ILWR performs best, accurately approximating the sigmoid. SO-ILWR

performs the worst, though its performance is remarkably good considering that the y-values of

the points could not be changed, and none of the random initial outputs for the knowledge points

in Figure 3.4 are less than .4. Learning curves were not provided for this learning task because

we were interested in final error and gaining a basic understanding of the three variants of

ILWR, not learning speed. Learning curves will be provided for the problem in Subsection 3.1.2.

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

x

Actual

Approximation

Knowledge
Points After
Training

Knowledge
Points Before
Training

74

3.1.2 Double Environment

The second environment, dubbed the Double Environment, tests the speed of learning for

approximating a function with two inputs and two outputs. This is equivalent to approximating

two separate functions given only one set of knowledge points. Tests were run using ten, and

then 100 knowledge points. The desired function is defined as

 () () () () ()2 2 2 2
1 2 1 25 5 , 5 5 .f x x x x x⎡ ⎤= − + − + + +⎣ ⎦ (3.10)

This function was chosen because the two outputs have different points of maximal

2 2/ ,y x∂ ∂ which are expected to be areas where higher knowledge point densities are most

beneficial. The domain and range used were []1 2, 10,10x x ∈ − and []1 2, 0,450 .y y ∈ Evaluations

were done by taking the average squared error over the domain, sampled every square unit. A

typical initial evaluation is approximately 65,000. A smaller evaluation is better.

For the first tests, the knowledge base of ten points was initialized randomly over the

domain and range. D was fixed as ().05,.05 .diag=D Learning rates were manually optimized to

achieve evaluations less than 1,500 as rapidly as possible. Of all the learning rates tested, those

that achieved an evaluation less than 1,500 after the fewest training points are reported in Table

3.1. Results are compared in Table 3.1 to those of an ANN with ten neurons in its only hidden

layer, trained using the error backpropagation algorithm (Russell and Norvig, 1995). The choice

of ten neurons results in 52 tunable weights in the ANN, which is comparable to the 40 tunable

weights in DI-ILWR with ten knowledge points. SO-ILWR is not included in Table 3.1 because

the best evaluation it achieved was 50,000, and it has a tendency to diverge even with small

learning rates.

75

 Input
Learning

Rate

Output
Learning

Rate

Episodes to
Evaluation

<1,500

Minimum
Learning Rate
of Divergence

Tunable
Parameters

SI-ILWR NA .2 2,500 .6 20
DI-ILWR .00001 1 128 NA 40
ANN NA .0002 80,000 .15 52

Table 3.1: Relative learning speeds of each algorithm, optimal learning rates for rapidly
achieving an evaluation less than 1,500, and maximum learning rates before divergence occurs.
For the ANN, learning rates between .0002 and .15 converge to worse evaluations than 1,500.
DI-ILWR does not have a learning rate for divergence listed because its learning rate is two-
dimensional.

Figure 3.5 shows the learning curves for the SI-ILWR and DI-ILWR setups in Table 3.1.

DI-ILWR performs an order of magnitude better than SI-ILWR with this setup, suggesting that,

when using few knowledge points, DI-ILWR is capable of achieving significantly lower errors

than SI-ILWR.

These results suggest that SI-ILWR and DI-ILWR are capable of approximating this

function to higher accuracy than a small ANN of comparable size for a fixed, small number of

updates. However, a larger ANN can still represent the function with similar accuracy to ILWR,

though it requires more updates. Using a small learning rate for 7,000,000 updates, an ANN with

20 neurons in the first hidden layer and 20 neurons in the second hidden layer achieved an

evaluation of 50. Both SI-ILWR and DI-ILWR were found to be empirically stable in the long-

term for at least 200,000 training points.

76

Figure 3.5: Learning curves for SI-ILWR, DI-ILWR, and an ANN on the Double Environment
using the parameters from Table 3.1. SI-ILWR and DI-ILWR both used 10 randomly initialized
knowledge points. Notice the logarithmic vertical axis.

For the second set of tests, the knowledge base was increased to 100 points and was

initialized in a Sukharev Grid (Sukharev, 1971), covering the domain with a uniform density.

The largest learning rate for which SI-ILWR was stable was found, through manual search, to be

ten. With this learning rate, its evaluation breaks 1,500 after 39 training points. This same setup,

using randomly initialized knowledge points rather than the Sukharev Grid, requires 482 training

points. This suggests that initializing the points in a Sukharev Grid improves performance

significantly. For DI-ILWR, the largest stable input learning rate found was .001, and the largest

output learning rate was ten. DI-ILWR also required 39 training points before its evaluation

reached 1,500.

The larger learning rates are required because, with more points close to each query

point, the derivative of the output with respect to a single point is generally smaller. Figures 3.6

1

10

100

1,000

10,000

100,000

1,000,000

1 501 1,001 1,501 2,001

E
va

lu
at

io
n

Training Points
SI-ILWR DI-ILWR ANN

77

and 3.7 show the evaluations over time of these two methods. The learning curves are more

similar than those of Figure 3.5, suggesting that, as the number of knowledge points increases to

the point where the domain is well covered, the benefits of DI-ILWR over SI-ILWR are

marginal.

Figure 3.6: Evaluations over time for SI-ILWR, DI-ILWR, and an ANN in the Double
Environment. The LWR algorithms have 100 knowledge points, an input learning rate of .001,
and an output learning rate of 10. The ANN is the one found for Table 3.1, which has ten
neurons in its hidden layer and a backpropagation learning rate of .002. The graph spans 1,500
training points.

1

10

100

1,000

10,000

100,000

1 201 401 601 801 1,001 1,201 1,401

E
va

lu
at

io
n

Training Points
SI-ILWR DI-ILWR ANN

78

Figure 3.7: Long-term plot with same setup from Figure 3.6, except this graph spans 15,000
training points (notice that the horizontal axis is scaled by a factor of 100).

Figure 3.8 illustrates the initial and final knowledge point configurations of SI-ILWR and

DI-ILWR when using the parameters from Table 3.1 for 15,000 training points. Subsection 3.1.3

further investigates the movement of knowledge points when using DI-ILWR.

These results are encouraging not only because the learning speeds and converged errors

are superior to those of fully connected feed-forward ANNs with similar numbers of tunable

parameters, but also because the points seem to cluster around the most interesting parts of the

domain, though this is not completely clear when the domain is densely covered as in Figure 3.8.

Therefore, the following subsection will further investigate whether the knowledge points move

to the most interesting regions of the domain.

0

1

10

100

1,000

10,000

100,000

1 21 41 61 81 101 121 141

E
va

lu
at

io
n

Training Points (×100)
SI-ILWR DI-ILWR ANN

79

 SI-ILWR DI-ILWR

Initial
Distribution

Evaluation = 43,868.3 Evaluation = 43,868.3

After 100
Iterations

Evaluation = 309.976
Evaluation = 227.706

After 15,000
Iterations

Evaluation = .776443
Evaluation = .463469

Figure 3.8: Illustration of the movement of knowledge points during training using SI-ILWR and
DI-ILWR. In all images, the origin is in the center of the blue box, which spans from –10 to 10.
The more green a point is, the larger its value in the first output dimension. Similarly, the more
red a point is, the larger its value in the second output dimension. A point with little red and
green is displayed as being dark. Above each point are the input coordinates, and below are the
output coordinates. The white circle with a black outline denotes the location of the latest
training point.

80

3.1.3 FitzHugh-Nagumo Approximation (Accuracy)

This subsection is inspired by (Wedge, 2004), which focuses on using function

approximators to approximate the FitzHugh-Nagumo equations (Izhikevich, 2007) for modeling

a cell. V represents the electrical potential of a cell and W is a variable relating to sodium and

potassium gating. Figure 3.6 of (Wedge, 2004) shows the values of V and W after one time unit

of simulation with a small time step, given various initial V and W. We will focus on the values

of V. Figure 3.13 of (Wedge, 2004) shows that, when points are distributed with a higher density

around interesting regions, smaller errors can be achieved when using LWR. We wish to see

whether DI-ILWR will find such a distribution. The FitzHugh-Nagumo approximation problem

was chosen because of its real-world application and complexity.

The FitzHugh-Nagumo equations are, reproduced from (Wedge, 2004),

31 ,

3
V VV W
t ε

⎛ ⎞∂
= − −⎜ ⎟∂ ⎝ ⎠

 (3.11)

 () ,W V W
t

ε γ β∂
= − +

∂
 (3.12)

where .2,ε = .7,β = and .8.γ = For further description of these parameters, see (Wedge, 2004).

Simulations were performed with a forward Euler approximation, with time step .0001.tΔ = The

domain of initial conditions tested is []2.1,1.9V ∈ − and [].7,1.0 .W ∈ − The desired function is

shown in Figure 3.9.

81

Figure 3.9: Result of simulating FitzHugh-Nagumo equations for one time unit, starting with
initial conditions V, W. Image reproduced from (Wedge, 2004, Figure 3.6).

 The first test in this environment, dubbed the FitzHugh-Nagumo Accurate Approximation

Task, compares the final approximations of SI-ILWR and DI-ILWR after training with small

learning rates for as many training points as are needed for convergence. The goal of this test is

to show that DI-ILWR can reorganize the points in ways that result in smaller errors than is

possible with SI-ILWR. The expectation is that the points will be most dense around the areas of

the function with the largest second derivative. This test will also show whether, for this

problem, the two methods are empirically stable in the long-term.

 Learning rates were manually determined to achieve minimal converged error. For SI-

ILWR, the output learning rate was 1. For DI-ILWR the output learning rate was 1 and the input

learning rate .01. Both used a 10 10× grid of knowledge points, initialized randomly between –2

and 2. D was fixed as ()5,5diag=D for this subsection as well as the following, Subsection

3.1.4. Evaluations were computed as the normalized (divided by 10,000) sum of the squared

error. Evaluation points were sampled in a 100 100× grid over the domain. Because the

82

evaluation of points on the surface is computationally expensive, 500,000 random points were

pre-evaluated for training. Training points were then sampled randomly from these 500,000

points. Figure 3.10 shows the performance of both algorithms over 1,000,000 training iterations.

Figure 3.10: Performance of SI-ILWR and DI-ILWR on the FitzHugh-Nagumo Accurate
Approximation Task. Notice the logarithmic scale of the vertical axis.

 After 1,000,000 training points, DI-ILWR has reached a smaller error than SI-ILWR. Its

knowledge points have been moved about the domain to increase the point density in areas with

a high second derivative, as shown in Figure 3.11.

0.03125

0.0625

0.125

0.25

0.5

1

2

4

1 101 201 301 401 501 601 701 801 901

A
ve

ra
ge

 S
SE

Training Points (×1,000)

SI-ILWR DI-ILWR

83

Figure 3.11: DI-ILWR knowledge point locations after 1,000,000 training points. Notice the high
point density along the cliff from (), .5, .5V W = − − to (), 1,.8 ,V W = where the function has the
largest second derivative. The remaining points have moved farther away from the cliff, creating
a relatively flat surface away from the cliff. The “heat map” covers the domain over which the
approximation is evaluated: []2.1,1.9V ∈ − and [].7,1.0 .W ∈ −

Figure 3.12 depicts the final surfaces generated by SI-ILWR and DI-ILWR. Notice that

DI-ILWR has achieved better accuracy both at the cliff and over the relatively linear regions.

Figure 3.13 depicts the error in the DI-ILWR and SI-ILWR approximations.

84

Figure 3.12: The target surface (top), reproduced to mimic Figure 3.9; the surfaces approximated
by DI-ILWR (bottom left) and SI-ILWR (bottom right) after the run from Figure 3.10. Notice
that, around the cliff, as well as over the linear regions of the target function, DI-ILWR performs
significantly better than SI-ILWR.

85

Figure 3.13: The difference between the DI-ILWR approximation and the target function (left),
and the difference between the SI-ILWR approximation and the target function (right). Notice
that the W-axis has been flipped to provide a better view of the surface. A positive value denotes
that the target value was smaller than the approximation. Notice that the scales are same on both
plots, making the larger error in SI-ILWR clearly visible.

 From these results, we conclude that, on the FitzHugh-Nagumo Accurate Approximation

Task, DI-ILWR does move the points to more interesting regions, as desired. This results in

lower errors than SI-ILWR is capable of achieving.

3.1.4 FitzHugh-Nagumo Approximation (Learning Speed)

 The second test in the FitzHugh-Nagumo environment, dubbed the FitzHugh-Nagumo

Rapid Approximation Task, compares the speed of learning with DI-ILWR and ANNs with

optimized learning rates and architecture sizes. The goal will be to achieve the smallest sum of

squared error after 1,000 stochastic gradient descent training updates. For the ANN, this

corresponds to 1,000 updates with the backpropagation algorithm.

86

 Hidden layer sizes and learning rates for the ANN, as well as the number of knowledge

points and learning rates for DI-ILWR, were optimized manually and using grid searches. The

ANN sizes ranged from one neuron in one hidden layer to 20 neurons in two hidden layers (40

total hidden neurons). The learning rates ranged from .0001 to 110, growing by factors of two.

During optimization, DI-ILWR's knowledge base ranged from 1 to 100 points, with the input

learning rate ranging from 0 to 128, and output learning rate ranging from 1 to 50. A manual

search was performed around the best parameters found by the optimizations to narrow down the

granularity of the possible parameters. The best parameters found for the ANN and DI-ILWR are

shown in Table 3.2. Though the ANN in Table 3.2 has fewer tunable parameters, recall that its

morphology was optimized over sizes ranging from 5 to 501 tunable parameters.

Figure 3.14 shows the learning curves for these two parameter settings. DI-ILWR learns

both faster and more smoothly. Based on these results, we conclude that, on the FitzHugh-

Nagumo Rapid Approximation Task, DI-ILWR outperforms ANNs of all sizes, learning

significantly faster, while remaining more stable.

First Hidden
Layer Size

Second
Hidden

Layer Size

Learning
Rate

Evaluation after
1,000 Training

Points

Tunable
Parameters

17 6 .4096 .238563 166

Number of
Knowledge

Points

Input
Learning

Rate

Output
Learning

Rate

Evaluation after
1,000 Training

Points

Tunable
Parameters

100 .05 5 .136878 300

Table 3.2: Best parameters for ANN (top) and DI-ILWR (bottom) for the FitzHugh-Nagumo
Rapid Approximation Task. Evaluations were averaged over 10 trials.

87

Figure 3.14: An ANN and DI-ILWR run using parameters from Table 3.2, for 1,000 training
points on the FitzHugh-Nagumo Rapid Approximation Task. All points are averaged over three
trials. Notice the horizontal axis is scaled by a factor of ten.

3.1.5 Non-Stationary Function

In reinforcement learning architectures, a function approximator is often required to

approximate a non-stationary function (e.g. the critic in the actor-critic architecture). In this test,

we evaluate the abilities of DI-ILWR and ANNs to track a simple non-stationary function. The

function used is provided in Equation 3.13:

 () ()() ()()2 2
1

sin cos, , .x t y tf x y t e
−

− + −= (3.13)

The domain used was [], 2,2x y∈ − and [)0, ,t∈ ∞ giving a range of () (), , 0,1 .f x y t ∈

As t increases, this function rotates around the origin, with a period of 2 .π The following figures

(3.15, 3.16) show f over the domain considered.

0

1

2

3

4

5

6

7

8

1 11 21 31 41 51 61 71 81 91

E
va

lu
at

io
n

Training Points (×10)
ANN DI-ILWR

88

Figure 3.15: f shown for 0t = on the left and 4t π= on the right.

Figure 3.16: The difference between (), ,0f x y and (), ,.001f x y is shown on the left, and the

difference between (), ,0f x y and (), ,.01f x y is shown on the right. Notice the magnitude of
the difference with a time step of .01tΔ = is approximately ten times that with a time step of

.001.tΔ =

After each training point, t is increased by .001.tΔ = Thus, the function completes a full

revolution every 6,283.2 updates. The function approximators were allowed access only to x and

y, making the function non-stationary. A grid-search optimization was run for ANNs and DI-

ILWR to find the best sizes and learning rates, with ()1,1 .diag=D This optimization is identical

-2
-1

0
1

2

-2
-1

0

1
2
0

0.2

0.4

0.6

0.8

1

xy

f

-2
-1

0
1

2

-2
-1

0

1
2
0

0.2

0.4

0.6

0.8

1

xy

f

-2
-1

0
1

2

-2
-1

0

1
2

-0.01

-0.005

0

0.005

0.01

xy

f

-2
-1

0
1

2

-2
-1

0

1
2

-1

-0.5

0

0.5

1

x 10-3

xy

f

89

to that described in Subsection 3.1.4. Recall that this optimization allowed both to have similar

numbers of tunable parameters. Evaluations are computed as the normalized (divided by 225)

sum of the squared error between the approximation and the actual surface, over a 15 15×

Sukharev Grid over the domain.

Each algorithm was run 10 times for 5,000 training points, and the final evaluations were

averaged to create Table 3.3, which presents the best parameters found for each. Again, recall

that, though the ANN has fewer tunable weights, the size presented was the best found during an

optimization that allowed between 5 and 501 tunable parameters in the ANN. Figure 3.17 shows

the evaluations of the ANN and ILWR over time. Figure 3.18 shows the actual surface at the end

of the run that generated Figure 3.17, as well as the approximation thereof. Figure 3.19 shows the

difference between the actual and approximated surfaces.

Tunable
Parameters

First Hidden
Layer Size

Second
Hidden Layer

Size

Learning
Rate

Evaluation after
5,000 Training

Points
83 20 1 .8192 .006076

Tunable
Parameters

Number of
Knowledge

Points

Input
Learning

Rate

Output
Learning

Rate

Evaluation after
5,000 Training

Points
400 100 10 10 .000701

Table 3.3: Best parameters for ANN (top) and DI-ILWR (bottom) for approximating the non-
stationary function after 5,000 training points. Evaluations were averaged over 10 trials.

90

Figure 3.17: Evaluations of parameters from Table 3.3 in the non-stationary environment, over
100,000 training points (notice that the horizontal axis is scaled by a factor of 100). The average
evaluations of the ANN and ILWR over the last 90,000 training points are .005 and .0009
respectively.

Figure 3.18: After the 100,000 training points of Figure 3.17, 100.t = At this point, the actual
surface is shown on the left, and DI-ILWR's approximation is shown on the right.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 101 201 301 401 501 601 701 801 901 1,001

E
va

lu
at

io
n

Training Points (×100)
ANN ILWR

-2
-1

0
1

2

-2
-1

0

1
2
0

0.2

0.4

0.6

0.8

1

xy

f

-2
-1

0
1

2

-2
-1

0

1
2
0

0.2

0.4

0.6

0.8

1

xy

91

Figure 3.19: The difference (actual minus approximated) between the two plots in Figure 3.18,
provided with the same axes scales as the previous plots (left), and a zoomed view (right).

 Not only is DI-ILWR performing better than the ANN, but these figures show that it is

tracking the function quite well, visually matching the target shape. Next, we will consider the

effects of a more non-stationary function. To do this, the function will be accelerated to .01tΔ =

without re-optimizing learning rates. The resulting learning curves for the ANN and ILWR are

provided in Figure 3.20.

-2
-1

0
1

2

-2
-1

0

1
2
0

0.2

0.4

0.6

0.8

1

xy -2
-1

0
1

2

-2
-1

0

1
2

-0.1

-0.05

0

0.05

0.1

0.15

xy

92

Figure 3.20: Evaluations of ANN and ILWR in the non-stationary environment with .01.tΔ =
Notice that the horizontal axis is scaled by a factor of 100.

3.2 Conclusion

The Sigmoid Environment showed that DI-ILWR is capable of more closely

approximating functions than SI-ILWR because of its ability to move knowledge points freely in

space. It also showed that SO-ILWR is not capable of accurately approximating functions,

though moving knowledge point inputs may improve performance.

The Double Environment showed that DI-ILWR learns significantly faster than SI-ILWR

when there are few knowledge points. With more knowledge points, DI-ILWR and SI-ILWR

perform similarly. In architectures where a function approximator must be used to track a non-

stationary target function, such as the critic in the actor-critic architecture, rapid convergence is

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 101 201 301 401 501 601 701 801 901 1,001

E
va

lu
at

io
n

Training Points (×100)

ANN ILWR

93

required. Thus, having a small set of knowledge points is beneficial, highlighting the benefits of

DI-ILWR over SI-ILWR. Both outperform backpropagation on ANNs in all tests.

The FitzHugh-Nagumo Accurate and Rapid Approximation Tasks showed that DI-ILWR

tends to distribute knowledge points with a higher density in areas with a larger second

derivative. It also showed that DI-ILWR out-performs SI-ILWR, which is not surprising since

the global minimum of DI-ILWR is guaranteed to be at least as good, because SI-ILWR is a

special case of DI-ILWR where the input learning rate is zero. DI-ILWR also outperforms

ANNs, learning faster and more smoothly than the best ANN.

The non-stationary function showed that DI-ILWR is capable of tracking a simple non-

stationary function more accurately than an ANN. It also showed that DI-ILWR appears to be

stable in the long-term when tracking a non-stationary function. These tests are relevant because

the function the critic must approximate in the actor-critic architecture changes as the policy is

refined.

Unlike ANN algorithms, DI-ILWR has local updates, which may be beneficial in certain

reinforcement learning applications. This calls for further research into the performance of DI-

ILWR in machine learning applications such as Q-Learning, the actor-critic architecture, and

eligibility traces. We expect DI-ILWR to outperform ANNs when used with eligibility traces

because of its ability to increase the eligibility locally, whereas increases to eligibilities in an

ANN are global. This increased efficiency with eligibility traces may speed up the process of

current rewards propagating back to previous states.

Further research into the ability of DI-ILWR to adapt to different D matrices (see

Equation 2.73) is also warranted, though we expect that the choice of D does not have a

significant effect on learning. Finally, further research should be conducted regarding the

94

potential benefit of splitting a function with more than one output (such as the Double

Environment) into multiple sets of knowledge points, with one for each output.

95

CHAPTER 4:

DAS1 ARM SIMULATION EXPERIMENTS

The purpose of this chapter is to present the tests of the actor-critic's adaptive abilities on

the DAS1 arm model of Section 1.2, which will be used in the subsequent chapters. Section 4.1

describes pre-training and evaluation. Sections 4.2 through 4.4 present tests of the actor-critic's

adaptive abilities. Section 4.5 introduces a test to ensure that the system is robust to realistic

sensor noise. Section 4.6 introduces an adaptation task developed specifically for use in the test

described in Section 4.7.

Sections 4.8, 4.9, and 4.10 present tests that mimic complications that would arise if a

human were to provide the reward signal. Notice that these are only preliminary tests to give

researchers an idea of possible issues that may arise with humans giving rewards. Even though

the actor-critic performs well on these tests, it does not mean that it will necessarily perform well

when humans provide the rewards. There are several other complications that cannot be

simulated well. A human subject may not be consistent in providing rewards, and may not be

good at judging partial movements. Most significantly, the value function that the critic begins

with may be unrepresentative of the value function for the human's reward system. The effects of

these complications should be considered during human trials and the analysis of the subsequent

results.

96

4.1 Pre-Training and Evaluation

In preliminary tests in which the actor and critic were both randomly initialized, the

continuous actor-critic failed to converge to a desired solution, usually finding a policy that

achieved one of the desired joint angles, but not the other. These tests included various function

approximators and reward functions. These are likely two large local minima in policy space,

which most policies converge to. In order to overcome this, we used supervised learning to pre-

train the actor to mimic the PD controller discussed in Section 2.1. This corresponds to placing

the policy near a minimum expected to be the global minimum or of similar utility. When the

arm dynamics change, the policy will no longer be the optimal policy, but in many cases it will

be close enough that the actor-critic's gradient descent in policy space will converge to the

corresponding minimum.

This pre-training was executed differently when using ANNs and ILWR, so specifics for

each are provided in Sections 5.1 and 7.1 respectively. For the tests described in this chapter, the

actor-critic begins with an actor that is trained to mimic the PD controller.

In all tests, each episode lasts for two seconds and involves start and goal positions that

have a combined joint angle difference of at least .6 radians, which requires movements to be

significant. All initial states and target states have zero joint angle velocities. The reward signal

used was always

() () ()()2

Goal Goal, , , ,i
i

r t W u d x y x y= −∑ (4.1)

where .016,W = − u is a vector of the requested muscle stimulations, ,x y is the current position

of the hand if both arm segments are one unit long (Equation 4.2), and Goal Goal,x y is the target

position of the hand if both arm segments are one unit long (Equation 4.3):

97

 [] () () () ()1 1 2 1 1 2, cos cos , sin sin ,
TTx y θ θ θ θ θ θ= + + + +⎡ ⎤⎣ ⎦ (4.2)

 [] () () () ()1 1 1 2Goal Goal Goal Goal Goal Goal Goal Goal, cos cos , sin sin .
2 1

TTx y θ θ θ θ θ θ⎡ ⎤= + + + +⎣ ⎦ (4.3)

The value for W was computed such that the evaluation of the PD controller is identical

to the evaluation when using the reward signal in Equation 2.57. Also, critics trained using the

reward function in Equation 2.57 were found to be equally accurate when using the reward signal

in Equation 4.1. This suggests that the two reward signals are almost identical. The reason for the

switch in reward signals is that the muscle forces are not directly measurable in practice, though

the requested muscle stimulations are.

To evaluate the actor-critic's performance, we use the average total reward per episode,

computed over 256 fixed two-second episodes involving large motions over the state space. The

integral of the reward signal over time was approximated using a backward Euler approximation.

Recall that the larger the reward received, the better. The larger an evaluation is, the better it is.

All rewards are negative, so the average reward per episode must be negative. For comparison

throughout, the evaluation of the PD controller, from Chapter 2, is .18.− Visually, this policy

appears near optimal, and at no time has any controller, including the PD and PID, achieved an

evaluation above .17,− suggesting that this evaluation may be near that of the optimal policy.

4.2 Control Test (CT)

 The first test was the Control Test (CT), in which the dynamics of the DAS1 arm are

unchanged, allowing the actor-critic to further adapt to the standard arm model. Appendix E

contains the parameters used in the DAS1 model for the CT. The PD controller's evaluation on

this test is –.18. Because the PD controller is a linear controller and the actor is capable of

98

representing nonlinear functions using either an ANN or ILWR, the actor may be able to learn a

policy that is superior to that of the PD controller.

4.3 Baseline Biceps Test (BBT)

 The second test was inspired by PD controller human trials in which the subject had

spasticity of the biceps brachii, causing the biceps to exert a constant low level of torque on both

joints. This Baseline Biceps Test (BBT) involved adding 20% of the maximum stimulation

(100%) to the stimulation requested by the controller (clipped to 100%) in order to simulate

spasticity. In the BBT, when using the PD controller or the actor-critic trained on it, the steady

state of the arm is counterclockwise of the goal state at the point where the controller's requested

triceps stimulation balances out the baseline biceps stimulation. The PD controller's evaluation

on the BBT is .41.−

4.4 Fatigued Triceps Test (FTT)

 The third test, the Fatigued Triceps Test (FTT), simulates the effects of a muscle being

severely weakened. In this test, the triceps stimulation used is 20% of the requested triceps (long

head) stimulation. Thus, when a controller requests full triceps stimulation, only 20% will be

applied. Unlike the BBT, this does not change the steady state when using the PD controller,

though it does induce overshoot if the initial configuration is clockwise of the goal. This occurs

because the biceps is used to pull the arm towards the goal, and the triceps is used to stop it at the

99

goal configuration. With the triceps weakened, the PD controller does not exert enough torque to

overcome the arm's angular momentum.

 The PD controller's evaluation on the FTT is .19.− This evaluation is high compared to

the BBT because the FTT has no steady state error. The extra negative rewards accrued during

the brief overshoot of the target state when starting clockwise of the goal, and the slower motion

to the goal when starting counterclockwise of the goal result in only a small difference in the

integral of the reward signal used for evaluations. However, especially when starting clockwise

of the goal, there is a clear visual degradation of performance between the CT and FTT. When

evaluating the actor-critic's performance, rather than focusing on the numerical evaluation, it will

therefore be useful to visualize the magnitude of the overshoot as training progresses.

4.5 Noise Robustness Test (NRT)

 In practice, the exact joint angles and their velocities are not known. Sensors can directly

measure joint angles, though there is always minor error, which can be simulated as noise. The

joint angle velocities are approximated using the difference between successive joint angle

measurements, run through a low pass filter. Thus, the error in joint angle approximations can

result in even larger error in the velocity calculations. The fourth test, the Noise Robustness Test

(NRT), attempts to model this noise and test the robustness of the controller on the BBT in a

noisy environment. Normal Gaussian noise was added to both the joint angle measurements,

() ,tθ and the joint angle velocity measurements, () ,tθ scaled by the constants θσ and θσ

respectively. Realistic values for these two parameters are .1θσ < and .3.θσ < The PD

controller's evaluation on this test combined with the BBT with .1θσ = and .3θσ = is .45.−

100

 Another version of the NRT involves adding a bias to the sensor readings. This

corresponds to a sensor not being properly calibrated and having a constant level of error in it.

This bias need only be added to the joint angle measurements, as it will factor out during velocity

computations. The scale and direction of the bias to each joint angle measurement is static and

defined as .Bμ

4.6 Fatigued Biceps Test (FBT)

 The fifth test, the Fatigued Biceps Test (FBT) was developed for use in the Toggling

Test, which is described in the next section. The FBT was developed for the TT because the BBT

and FBT require different policies for improved performance. The FBT is identical to the FTT,

except that rather than modifying the triceps, the biceps is weakened. Thus, the biceps

stimulation used is 20% of the requested biceps stimulation. When a controller requests full

biceps stimulation, only 20% will be applied. The PD controller's evaluation on this test is .19.−

4.7 Toggling Test (TT)

 In the Toggling Test (TT), the environment switches cyclically between various other

tests (e.g., BBT and FTT) after a fixed number of episodes. The agent must continuously adapt to

changing dynamics. However, the BBT and FTT require similar policies for improved

performance. In both, increased triceps stimulation and decreased biceps stimulation will

improve performance. The FBT was created so that policies that performed well on the BBT

would be expected to perform poorly on the FBT. In the remainder of this thesis, whenever the

TT is run, it will toggle between the BBT and FBT. The exact details of when toggling will occur

101

will be provided prior to discussing the results of the TT. These details are not presented in this

section because the necessary results to justify these decisions have not yet been revealed.

4.8 Delayed Reward Test (DRT)

 Dr. Antonie van den Bogert and Kathleen Jagodnik, two researchers at the Cleveland

Clinic Lerner Research Institute (LRI), are interested in trials using the reinforcement learning

controller derived from this thesis for human trials. Trials are scheduled to begin during Summer

2009 in which able-bodied human subjects will provide the reward signal. Researchers are

interested in whether humans will give rewards in such a way that the agent is encouraged to

learn more natural strategies. Having humans provide the rewards presents two challenges not

inherent to the model. These are simulated in the Delayed Reward Test and the Discrete Reward

Test (Section 4.9).

In the standard setup, the agent is given the reward signal and state after every .02

seconds. During trials in which a human provides the reward, the state can still be measured

every .02 seconds, but a human may not be capable of accurately providing rewards at a rate of

50Hz. This would be especially difficult for a patient suffering from SCI (Section 1.1), who may

be using an unnatural sensor, such as a sip-and-puff sensor (e.g. the Breeze™ sip/puff switch that

is in use at the LRI and is made by Origin Instruments of Grand Prairie, Texas), to provide input

to the computer system.

In the Delayed Reward Test (DRT), the reward signal is only provided once every .02kτ

seconds, where kτ is an integral time scaling constant. This can be simulated two ways. First, the

reward at time t could be presented at all subsequent .02 second updates until the reward is

102

updated after .02kτ seconds. Second, the sum of the rewards over the .02kτ interval could be

given every .02kτ seconds, with the actor-critic only updating eligibility traces during the other

.02 second state updates. We decided to use the latter method because it better approximates how

we expect a human to present rewards. The DRT is combined with the BBT to judge adaptive

ability with delayed rewards. Any controller's evaluation on the combination of the BBT and the

DRT is initially the same as the BBT because the DRT affects learning, not initial performance.

4.9 Discrete Reward Test (DiRT)

 A human subject using a sip-and-puff sensor would have trouble representing a real-

valued reward signal accurately while simultaneously providing values rapidly enough for the

system to learn. To simplify the task, researchers at the LRI decided to discretize the reward

signal. We performed trials with various granularities of discretization, and discretization into

five values was found to still allow for accurate learning. SCI patients can be expected to achieve

five different values quite easily with a sip-and-puff. Thus, the results for discretization into five

values will be presented for this test. This test is called the Discrete Reward Test (DiRT).

 When discretizing the reward signal, we wish to do so into sections representative of

various regions. For example, if there are 3 possible discrete rewards to which the real-valued

reward signal will be mapped, one of the three discrete rewards should not correspond to a rare

real-valued reward interval. Rather, we prefer that all three rewards occur frequently and

preserve as much information from the real-valued reward as possible. In order to determine how

best to discretize the reward signal, consider Figure 4.1, which depicts the reward signal plotted

over 10 random episodes on the CT. From this plot, the discretization into the 5 values provided

in Table 4.1 was derived.

103

Figure 4.1: Reward signal plotted over 10 random episodes using the PD controller on the BBT,
with the reward evaluated every .02 seconds. Each episode lasts two seconds, resulting in 1,000
points. Transparency was used to show the density of points.

Reward
Range:

Reward
.25≥ −

.25 Reward .5− > ≥ −

.5 Reward 1− > ≥ −

1 Reward 2− > ≥ −

2 Reward− >

Meaning: At the
target
state

Very near the target
state

Approaching the
target state

Not near the
target state

Far from the
target state

Discrete
Mapping:

–.25 –.5 –1 –2 –5

Table 4.1: Reward discretization into 5 values.

 Similar discretizations with seven values and three values were also tested. Performance

with seven values was similar to that of five values. The system still learned when using only

three values, though there was enough of a difference to warrant the use of five values.

104

4.10 Continuous Learning Modification (CLM)

 When applied to an actual subject with SCI, individual episodes will not be entirely

independent: each subsequent movement will begin where the previous episode ended. In all

other tests, each episode began at a random initial state with zero joint angle velocity. With the

Continuous Learning Modification (CLM), the initial state of each episode is the same as the

terminal state of the previous episode. Though it would appear that this would not significantly

impact performance, it reduces the amount of the state space that is explored over a fixed amount

of time, which may slow learning. The CLM is run in conjunction with the BBT, testing the

actor-critic's adaptive abilities when the episodes are relatively continuous. The word

"continuous" in the CLM is a slight misnomer, as the state of the environment is not quite

continuous over episodes. If the arm does not terminate at the target position, it will still begin

the next episode at the target position. However, this can be viewed as being relatively

continuous when compared to non-CLM trials in which subsequent episodes have random initial

states.

105

CHAPTER 5:

DAS1 ANN ACTOR-CRITIC RESULTS

 This chapter is broken into 11 sections. In Section 5.1, the actor and critic are pre-trained

to mimic the PD controller and its corresponding value function, respectively. In Section 5.2, the

parameters of the continuous actor-critic architecture are optimized and four parameter sets are

selected for further study. Parameter sets A and B both learn rapidly, though A has excessive

exploration and B has little exploration. The Fast and Slow parameter sets both have a practical

amount of exploration, between those of parameter sets A and B. The Fast parameters learn

quickly, though they are unstable. The Slow parameters learn slowly, but remain stable.

 Sections 5.3 through 5.10 present the results for the tests described in Chapter 4. Plots of

joint angle trajectories are provided for the CT, BBT, and FTT to provide a better understanding

of different evaluations on each test. Chapter 5 concludes with Chapter 5.11, which describes an

unexplained phenomenon that was discovered during trials of the continuous actor-critic on the

BBT.

5.1 Pre-Training

As described in Section 4.1, supervised learning was used to train the actor ANN, with

ten neurons in its only hidden layer, to mimic the PD controller. To do this, the actions for

550,000 training points and 170,000 testing points, each consisting of the state and

corresponding action generated by the PD controller, were run through the inverse sigmoid,

106

generating training pairs for the actor ANN, ()(); AA x t w from Subsection 2.2.8. The actor ANN

was then trained using the error backpropagation algorithm with a learning rate of .001 (Russell

and Norvig, 1995). After 2,000 epochs of simulation, each of which consisted of training once on

each of the 550,000 training points, the actor converged to a policy qualitatively similar to the

PD controller's policy. This policy has an evaluation of .21− on the standard arm model (CT),

which can be compared to the PD controller's evaluation of .18.− The performance of this pre-

trained ANN actor on the CT, BBT, and FTT are depicted in Figure 5.1.

Trials with as few as 5 hidden units and as many as 100 hidden units in two hidden layers

did not result in significant improvements in learning speed nor long-term stability. The policy

that the ANN must represent is nonlinear due to the inverse sigmoid function applied to the PD

controller's policy. Achieving significantly improved accuracy would require adding many

neurons, which would in turn result in more weights. This increase in tunable parameters

increases the dimension of the policy space in which the actor-critic performs gradient descent,

resulting in slower learning. We therefore desire a small number of neurons to allow for more

rapid learning, while keeping enough neurons that the inductive bias (Mitchell, 1997) does not

result in poor policies.

The critic ANN was then trained using the actor-critic architecture with the previously

trained actor. The actor's policy was fixed while the critic was trained. Two critics were created,

the first with 20 neurons in its hidden layer, and the second with ten. Both achieve average TD-

error magnitudes of .1 on the unmodified arm (CT) when using the ANN actor. These two ANNs

will be referred to as ANN critic-20 and ANN critic-10, respectively. ANN critic-20 was initially

created and used with parameter sets A and B, defined in Table 5.1. It was then observed that 10

neurons were sufficient for the hidden layer, and ANN critic-10 was used for subsequent tests

107

with the Fast and Slow parameter sets, defined in Table 5.2. ANN critic-20 was trained to be

accurate for the actor ANN without exploratory noise. ANN critic-10 was trained to be accurate

for the actor ANN with exploratory noise.

 Control Test Baseline Biceps Test Fatigued Triceps Test

Figure 5.1: Initial actor ANN's performance on a particular motion for the three adaptation tests.
The black state is the goal state (90°, 20°), the medium grey state is the final state after two
seconds of simulation, and the light grey states are snapshots of the arm location taken every
20ms. The initial condition is the clockwise-most trace (20°, 90°). In the BBT, the final state is
the counterclockwise-most trace, while in the control test and FTT the final state partially
obscures the goal state.

When both were trained, it was found that adding a cap on the magnitude of the TD-error,

,δ from Equation 2.39, can improve stability. Therefore, the TD-error magnitude was capped at

.5 during training and for all subsequent trials, unless otherwise specified. Trials were performed

with critics of sizes ranging from 5 hidden units in one hidden layer, to 100 across two hidden

layers. None performed better, with respect to learning speed and stability, than the 10 hidden

neuron ANN critic-10. The remainder of this thesis therefore focuses on ANN critic-10.

 For each two-second episode, when training the critic, the start and goal were randomly

selected with the sum of the difference in joint angles (in radians) between the initial and goal

configurations being greater than .6. This constraint removed episodes in which the arm did not

have to make a significant motion. After each episode, the eligibility traces were all set to zero.

All further training was performed with the same episode duration and constraints.

108

The actor-critic thus begins all of the following tests with an actor ANN that is a close

approximation of the PD controller, and an accurate critic for the CT. When the arm dynamics

change, the critic will not be accurate, but must reconverge.

5.2 Parameter Optimization

 The parameters for the actor-critic model, ,Aη ,Cη ,Nτ ,κ and ,σ defined in Equations

2.42, 2.41, 2.44, 2.40, and 2.43 respectively, were initially optimized using Random Restart Hill

Climbing Search (RRHCS), defined in (Russell and Norvig, 1995). This optimization was

performed using the pre-trained ANNs described in Section 5.1. The parameters tΔ and τ were

fixed to .02tΔ = and 1.τ = The optimization was run for learning on the BBT, with the gradient

sampled at 90% and 110% of the current value for each learning parameter. The ANN actor's

initial evaluation (Section 4.1) on the BBT is .65.− Each parameter set's learning ability was

measured as the average evaluation after training for 100, 200, 500, and 1000 random episodes.

Random restarts used a "logarithmic distribution" half the time, and a linear distribution the other

half of the time in order to better explore the extremes and full range of the parameter space.

Points for the logarithmic distribution were sampled as

 () ()()random ln ,ln ,min maxe (5.1)

where random returns a random number with uniform distribution over the range [], .min max

 In this section (5.2), references to the evaluations of parameter sets refer to this

evaluation scheme, while all other sections only refer to the evaluation of a specific policy

(Section 4.1). Values for these two evaluation schemes should not be confused. For example, a

109

policy with an evaluation of .28− would be poor, while a parameter set with an evaluation of

.28− could be quite good.

 This optimization could lead to overfitting of the learning parameters for the task of

learning on the BBT, so generalizability is evaluated later via the FTT.

 Of the 4,460 learning parameter sets examined by RRHCS, 1,363 had evaluations greater

than .3.− However, many of the best learning parameter sets found by the optimization did not

have stable evaluations because the training episodes and exploration are stochastic. For

example, the best parameter set received an evaluation of –.22 during the optimization, though

further tests found its average evaluation was –.33 with a standard deviation of .15 (N=100).

Parameter set A and parameter set B, defined in Table 5.1, were selected for further inspection

due to their consistently good evaluations, as well as their different characteristics with respect to

exploratory noise.

Parameters Aη Cη Nτ κ σ τ Mean Evaluation Std. Dev.

A .001 .0001 .55 .55 74.5 1 –.267 .01
B 99.5 34.4 2500 71.5 7991 1 –.286 .09

Table 5.1: Two of the best parameter sets found from optimization. Means and standard
deviations of the evaluations were calculated with a sample size of N=30 evaluations.

These two parameter sets both learn well on the BBT and FTT, though they use

significantly different exploration. Parameter set A uses a massive amount of exploratory noise,

allowing it to fully explore the state and action spaces, while Parameter set B exploits the current

knowledge, with subtle exploration injected into the policy. In a typical episode on the control

test, the average sum of the squared joint angle noise injected into the policy for parameter set A

110

was four orders of magnitude larger than that of parameter set B. Figure 5.2 depicts the

difference between the exploration of the two parameter sets. For further discussion of these

parameters and the effects of varying exploratory noise magnitude, see Section 5.6 and (Thomas

et al., 2008a).

 It was later realized that parameter set A does not conform to the constraint 0 .κ τ< ≤

Experiments in which Nτ was changed in parameter set A to 1Nτ = led to results that were

almost identical to those when .55.Nτ =

Figure 5.2: Plot of the hand position when using learning parameter set A or B without noise
(top), A with noise (bottom left), and B with noise (bottom right). All are attempting the same
motion to the grey goal state. Dots, starting white and fading to black, map the hand position
every 20ms.

B with

 noise

A with

 noise

Without

 noise

111

Though parameter set B exhibits little exploration and parameter set A exhibits excessive

exploration, human trials would require exploration between the two. Current research by

Kathleen Jagodnik and Dr. Antonie van den Bogert at the Lerner Research Institute involves the

application of the controller developed herein to human trials in which the subject gives the

rewards. For such a test to succeed, the explorational noise must be large enough for a human

subject to discern the difference between a motion with and without exploration, and small

enough that it does not largely obscure the motion of the current policy.

 The explorational noise is defined by the parameters σ and .Nτ The values 9,000σ =

and 2,400Nτ = were found to produce exploration as desired. In order to ensure conformity with

the constraint 0 ,κ τ< ≤ the values .1τ = and .1κ = were selected. The remaining parameter sets

were found to fit into two categories: parameters that result in fast initial learning but an unstable

system that diverges in the long-term; and parameters that learn slowly but remain stable in the

long-term. Two prototypical examples of such parameters, the Fast parameters and the Slow

parameters, are provided in Table 5.2. These parameters are analyzed in the following sections

as well as in (Thomas et al., 2009a). Notice that the critic's learning rate for the Fast parameters

is zero. The Fast parameters likely utilize the shape of the reward function and pre-trained critic

for initial learning, though future work should be done to determine why the continuous actor-

critic learns with a fixed critic.

112

Parameters ηA ηC σ
Nτ τ κ

Slow 10 .344 9,000 2,400 .1 .1
Fast 70 0 9,000 2,400 .1 .1

Table 5.2: One of the best parameter sets found from optimization with manual tuning, the Fast
parameters, and a derivation thereof, the Slow parameters.

 Because these parameters have a more practical magnitude of exploration than

parameters A and B, parameters A and B will only be considered in Section 5.6, and not included

in results for the other tests.

5.3 Control Test (CT)

Using the Fast parameters on the CT, the system improves its evaluation before becoming

unstable. Qualitatively, the arm movements begin to oscillate around the goal state within the

first 1,000 episodes. Using the Slow parameters, learning is significantly slower, though stable.

Figure 5.3 shows the short and long-term performance of both parameter sets on the control test.

Notice the logarithmic scale of the horizontal axis, representing training time in terms of

episodes. We desire rapid initial learning over the first few hundred episodes, as well as stability

in the long-term, represented by the evaluation out to 10,000 episodes. This logarithmic scale of

the horizontal axis will be utilized in all of the learning curves shown, except where emphasis is

placed on the short-term performance. The initial evaluation is .21.−

Figure 5.4 compares the joint angle trajectories on the CT for one movement before

training and after training, which will be useful for comparison to other tests.

113

Figure 5.3: The actor-critic's mean evaluation (N=10) on the control test using both the Fast and
Slow parameters with standard deviation error bars. Evaluations represent those just prior to the
episode number marked on the horizontal axis.

Figure 5.4: Joint angle trajectories before training (dotted) and after 500 training episodes (solid).
The target movement is from ().35,1.57θ = to ()Goal 1.57,.35 .θ = The horizontal axis spans one
episode.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Time (×20ms)

Shoulder
Angle
(500)

Elbow
Angle
(500)

Shoulder
Angle (0)

Elbow
Angle (0)

114

5.4 Baseline Biceps Test (BBT)

Because the learning parameter sets were optimized using the BBT, the Fast parameters

perform well on the BBT, quickly removing overshoot of the goal when the initial configuration

is clockwise of the goal configuration, and generating a steady state close to the goal state. Once

again, the Fast parameters are unstable in the long-term, though the Slow parameters remain

stable, as shown in Figure 5.5. Trials using the Slow parameters for several million episodes

confirmed empirically that the Slow parameters are stable in the long-term.

Figure 5.5: The actor-critic's mean evaluation (N=10) on the BBT with standard deviation error
bars. Evaluations represent those just prior to the episode number marked on the horizontal axis.

115

Figure 5.6 compares the joint angle trajectories on the BBT for the same movement

before training and after training. The desired movement is identical to that of Figure 5.4. Notice

the significant improvement in the elbow joint angle trajectory after training.

Figure 5.6: Joint angle trajectories before training (dotted) and after 500 training episodes (solid)
on the BBT. The target shoulder and elbow angles are provided as the thick blue and red lines
near .35 and 1.57, respectively. The horizontal axis spans one episode.

5.5 Fatigued Triceps Test (FTT)

The learning parameter sets' ability to adapt to changing dynamics was then tested using

the FTT. Because the parameters were optimized using the BBT, the FTT serves as a test of their

generalizability to other changes in dynamics. The Fast parameters remove the overshoot within

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Time (×20ms)

Target
Shoulder
Angle
Target
Elbow
Angle
Shoulder
Angle
(500)
Elbow
Angle
(500)
Shoulder
Angle (0)

Elbow
Angle (0)

116

200 episodes. Performance is consistent with the previous tests, with the Fast parameters initially

learning rapidly, then diverging, while the Slow parameters learn more slowly, but remain stable

as shown in Figure 5.7. Trials using the Slow parameters have empirically shown that the system

remains stable after 1 million training episodes (not shown).

Figure 5.7: The actor-critic's mean evaluation (N=10) on the FTT with standard deviation error
bars provided. Evaluations represent those just prior to the episode number marked on the
horizontal axis. As with Figure 5.3, notice the logarithmic horizontal axis.

Figure 5.8 compares the joint angle trajectories on the FTT for the same movement

before training and after training. The desired movement is identical to those of Figures 5.4 and

5.6. Notice that, after training, the overshoot of the elbow joint angle has been significantly

reduced.

117

Figure 5.8: Joint angle trajectories before training (dotted) and after 500 training episodes (solid)
on the FTT. The horizontal axis spans one episode.

5.6 Effects of Exploration

This section discusses the results on the CT, BBT, and FTT when using parameter sets A

and B, defined in Table 5.1. As discussed in Section 5.2, parameter set A includes significant

exploration, while parameter set B has minor exploration. Both were found to perform similarly

to the Fast parameters of Table 5.2 on the CT, BBT, and FTT. Neither is stable in the long-term.

Though long-term plots are not provided, this instability will be evident in the following short-

term plots. Figure 5.9 shows performance on the CT, Figure 5.10 shows performance on the

FTT, and Figure 5.11 shows performance on the BBT.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Time (×20ms)

Shoulder
Angle
(500)

Elbow
Angle
(500)

Shoulder
Angle (0)

Elbow
Angle (0)

118

Figure 5.9: Mean performance (N=16) of parameter sets A and B on the CT with standard
deviation error bars. Evaluations represent those just prior to the episode number marked on the
horizontal axis.

Figure 5.10: Mean performance (N=16) on the FTT with standard deviation error bars.
Evaluations represent those just prior to the episode number marked on the horizontal axis.

119

Figure 5.11: Mean performance (N=16) on the BBT with standard deviation error bars.
Evaluations represent those just prior to the episode number marked on the horizontal axis.

Notice that parameter set B performs similarly to A on the BBT, but worse on the CT and

FBT. This is likely because the optimization of the parameter sets judged parameter utility based

on performance on the BBT. Parameter set B may have over fit the problem of learning on the

BBT.

The ability of the actor-critic to learn well with various amounts of exploration on the

simulated arm is encouraging and potentially useful in clinical application. When used with a

human arm, there will be unintentional noise introduced to the system by sensors, as in the NRT.

Parameters for exploration ought to be chosen to have just enough exploration that the agent can

distinguish between the intended exploratory noise and the unpredictable noise inherent to real-

world experiments. In the NRT, we only hypothesize about what such experimental noise will

120

be, while these tests show that parameter sets with more exploration, which may be required in a

noisy environment, are also able to adapt rapidly to changing dynamics.

5.7 Noise Robustness Test (NRT)

The system performs well on the NRT using the Fast parameters, without significant

changes to learning speed with noise in the inputs representative of those expected in real-world

experiments. As with the Fast parameters on the BBT without sensor noise, the system is not

stable in the long-term. Figure 5.12 shows the rapid initial learning of the Fast parameters on the

NRT without bias, combined with the BBT.

Adding a bias of size .05Bμ = to both joint angle measurements improves the initial

evaluation on the BBT, but does not have a significant impact on learning, as shown in Figure

5.13. Tests (not shown) have suggested that larger biases will often cause the system to

immediately diverge. Researchers should therefore carefuly calibrate sensors prior to use.

121

Figure 5.12: The actor-critic's mean evaluation (N=16) on the NRT with .1,θσ = .3,θσ = and

0,Bμ = with standard deviation error bars provided. Evaluations represent those just prior to the
episode number marked on the horizontal axis. Notice the logarithmic scale of the horizontal
axis.

Figure 5.13: The Fast parameters' mean performance (N=16) on the BBT combined with the
NRT including a bias, with standard deviation error bars provided. Evaluations represent those
just prior to the episode number marked on the horizontal axis. Notice the logarithmic scale of
the horizontal axis.

122

5.8 Delayed Reward Test (DRT)

 Running the DRT with 20τκ = simulates a setting in which the user is only able to give

rewards once every .4 seconds. For some amount of time, t, in seconds, the actor and critic would

usually be updated t
t

⎢ ⎥
⎢ ⎥Δ⎣ ⎦

 times, however, on the DRT there would only be
t

tκτ

⎢ ⎥
⎢ ⎥Δ⎣ ⎦

 updates, so

it is expected that learning will be slower on the DRT. To some extent, this can be combated

using larger learning rates in the actor, as shown in Figure 5.14.

Figure 5.14: Typical runs of the Fast parameters on the DRT combined with the BBT using
20.τκ = Notice that the horizontal axis is episodes times ten, giving the plot a duration of 500

episodes. Evaluations represent those just prior to the episode marked on the horizontal axis. The
red (dotted) line is the actual Fast parameters (70),Aη = the black (solid) line is the Fast
parameters with 140,Aη = and the blue (dashed) line is the Fast parameters with 1,400.Aη = The
latter reaches a minimum at 1.3− after 80 episodes (not shown).

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 11 21 31 41 51

E
va

lu
at

io
n

Episodes (×10)

123

 In conclusion, we expected and observed slower learning when using delayed rewards,

though this can be partially avoided by increasing the learning rates in the actor. During trials in

which a human subject provides the rewards to the system, either the rewards must be provided

frequently, or learning will be slow. One possibility for achieving rapid learning while

maintaining human influence in the reward signal would be to allow the human to augment the

computer signal, which is still provided every .02 seconds.

5.9 Discrete Reward Test (DiRT)

 The actor-critic performs well on the DiRT combined with the BBT, described in Section

4.9. Figure 5.15 shows how learning is quite similar to that of the BBT alone when using the Fast

parameters, though in the long-term the system diverges to an even lower evaluation on the

DiRT.

124

Figure 5.15: Mean performance (N=16) of the Fast parameters on the BBT combined with the
DiRT for 100,000 episodes, with standard deviation error bars. Evaluations represent those just
prior to the episode number marked on the horizontal axis. Notice the logarithmic scale of the
horizontal axis.

5.10 Continuous Learning Modification (CLM)

When training on the CLM, the eligibility traces in the critic were reset after each

movement. This was done because the values of subsequent states are independent of the actions

taken and states crossed during the previous movement. Figure 5.16 shows performance on the

CLM combined with the BBT. Though the system is still learning, it is not as reliable as with the

Fast parameters. Visualizing the policies after 500 episodes of training, they are not as smooth as

those found without the CLM, and also include more oscillation about the target state. Though

the actor-critic has accomplished its goal of increasing the accumulation of reward, the resulting

policies would likely be considered worse by a human observer.

125

Figure 5.16: Mean performance (N=16) of the Fast parameters on the BBT with the CLM over
100,000 episodes, with standard deviation error bars. Evaluations represent those just prior to the
episode number marked on the horizontal axis. Notice the logarithmic scale of the horizontal
axis. The maximum evaluation of .23− occurs after approximately 500 episodes.

5.11 An Unexplained and Unexpected Phenomenon

 It was accidentally observed during trials using the Fast parameters on the BBT (Section

5.4) that the system learned on the BBT and FTT whenever the TD-error (δ from Equation

2.39) is negative, though learning is less stable than when δ is computed using Equation 2.39.

To exemplify this, consider Figures 5.17 and 5.18, in which the Fast parameters were run on the

BBT (Section 4.3). In Figure 5.17 the TD-error was selected randomly over the interval

[].5,0 ,δ ∈ − while Figure 5.18 is the unmodified actor-critic (similar to Figure 5.5, except using

16 new trials and a different horizontal scale).

126

Figure 5.17: Mean performance (N=16) of the continuous actor-critic on the BBT using the Fast
parameters with random negative TD-error. Standard deviation error bars are provided.

Figure 5.18: Mean performance (N=16) of the continuous actor-critic on the BBT using the Fast
parameters with TD-errors computed as described in Subsection 2.2.8. Standard deviation error
bars are provided.

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 100 200 300 400 500

E
va

lu
at

io
n

Episodes

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 100 200 300 400 500

E
va

lu
at

io
n

Episodes

127

 Figure 5.19 shows that the TD-error initially has a negative bias during a typical run of

the unmodified actor-critic using Fast parameters on the BBT (e.g., a run from Figure 5.5 or

Figure 5.18). Over time, the bias decreases. Figure 5.19 spans 10,000 TD-error computations,

which equates to 100 episodes.

Figure 5.19: TD-errors from a typical run of the unmodified actor-critic using Fast parameters on
the BBT.

 Trials in which the TD-error was random with no bias or had a positive bias all diverged

rapidly. We observed that the exploration has a slight positive bias because the requested

stimulation of each muscle is near zero for most of each episode. When these small values are

combined with the zero-bias exploration and put through the Sigmoid function to obtain the

action (Equation 2.43), the result is a slightly positive bias in the exploration applied to the

128

muscle stimulations. One would expect this positive bias, combined with negative TD-errors, to

result in a general decrease in muscle stimulation, which may improve performance on the BBT

and FTT by reducing overshoot. However, empirical tests revealed that the sum of the muscle

stimulations from each episode increased for all muscles but the triceps (short and long head) on

the BBT when using the unmodified Fast parameters.

It remains unknown why the system learns when the TD-error is negative and randomly

selected.

129

CHAPTER 6:

LONG-TERM STABILITY

In all of the previous tests from Chapter 5, parameters were found to either be fast and

unstable or slow and stable. This chapter presents several techniques applied in an attempt to

achieve both in one controller. It begins in Sections 6.1 through 6.4 with simple modifications to

the actor-critic architecture and implementation. Section 6.5 presents a system that achieves both

rapid initial learning and long-term stability. Section 6.6 concludes the chapter with a summary

of the results.

6.1 TD-Error Cap

In the previous tests, the magnitude of the TD-error was capped to .5 during training

because larger TD-errors, though uncommon, could cause the critic to become unstable. This

occurs because the magnitude of the TD-error scales the learning rate for the actor and critic

linearly (see Equations 2.41 and 2.42). By lowering this cap, the system is forced to make

smaller updates. This improves stability, but slows learning.

Figure 6.1 shows that the tradeoff between stability and learning speed was not

significantly improved by changes to the TD-error cap. Notice that the horizontal axis is scaled

by 1,000, showing 100,000 episodes.

130

Figure 6.1: Evaluation on the BBT for 10,000 episodes using the Fast parameters with various
TD-error magnitude caps. After 100,000 episodes, the curve for Cap=.01 reaches .3.− The
horizontal axis is scaled by 1,000.

 A cap small enough to ensure stability would have to be lower than .01, which already

adapts too slowly for practical applications. There is not a significant difference between a cap of

1 and .5 because TD-errors were rarely larger than .5 in our trials.

6.2 Muscle Force Weight

When the system is diverging, it first begins to oscillate at high frequency around the goal

state. A possible cause is an improper weighting of the squared muscle activation, which relates

to muscle forces, in Equation 4.1. The constant W was changed to ' ,W kW= with

{ }.8,1,1.2,1.5,1.75,2,3,4,5,10 .k∈ The larger values result in a higher weighting on muscle

forces, which encourages slower motions that require less muscle force, which may reduce the

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

1 11 21 31 41 51 61 71 81 91 101

E
va

lu
at

io
n

Episodes (×1,000)
Cap=1 Cap=.5 Cap=.1 Cap=.01

131

jitter that precedes divergence. Figure 6.2 presents the performance with these k. Notice that

none of the systems are stable in the long-term.

Figure 6.2: Performance on the BBT with Fast parameters and with various muscle weight
constants in the reward function. Notice that the line colors are graduated with respect to k, with
darker lines corresponding to larger k. The horizontal axis is scaled by a factor of 1,000.

If the constant, k, is made too much smaller, the evaluation may increase, but

performance may not, as the controller will become more like a PD controller with excessive

gains. Also, notice that the evaluation metric in Figure 6.2 differs for each curve. With a larger

constant multiplying the muscle forces, the rewards are all more negative. Because the

evaluation is based on the integral of the reward signal, this results in a worse evaluation for an

identical policy. Initially all of the curves start with the same policy, so the difference in their

evaluations is due to this discrepancy in evaluation.

-0.4

-0.35

-0.3

-0.25

-0.2

1 11 21 31 41 51

E
va

lu
at

io
n

Episodes (×1,000)

k=.8

k=1

k=1.2

k=1.5

k=1.75

k=2

k=3

k=4

k=5

k=10

132

In conclusion, changes to this constant were found to visually influence the magnitude

and frequency of the jitter, though its onset was relatively constant and divergence properties

remained unchanged, as seen in Figure 6.2. The critic was not pre-trained again for each k, which

could be adversely affecting performance.

6.3 Monitor Critic

Assuming that divergence occurs because of error in the value function, a possible

solution is to only update the actor only when the TD-error over the previous k updates has been

less than a manually tuned constant, .Δ Tests showed the standard system to be relatively stable

on the BBT when TD-errors had magnitude less than .1, suggesting .1.Δ ≈ The trade-off

between stability and learning speed was again not significantly changed. For small Δ and large

k, the system was more stable, though learning was slow, while larger Δ and smaller k learned

faster but were more unstable.

The learning curves in Figure 6.3 use a combination of the Fast and Slow parameters, in

which 70Aη = and .344,Cη = when run on the BBT with varying Δ and 20.k = Though the

smallest sΔ are more stable, they require over 2,000 training episodes for initial adaptation, far

more than the target 200 episodes. In addition, they too are unstable in the long-term. This is

only a small sample of the trials run, which included various k and ANN sizes.

133

Figure 6.3: Performance of the merged Fast and Slow parameters on the BBT with various TD-
error caps and 20.k = Notice the color gradient follows the value of ,Δ and the horizontal axis
is scaled by a factor of 1,000. The line with the best evaluation over most episodes corresponds
to .01.Δ =

A possible reason for the failure of this approach is the variance in TD-errors depending

on arm motions and positions in the state space. A small average TD-error over an entire episode

could either mean that the critic is accurate over the entire state space or that the critic is accurate

only for the motion in the previous episode (e.g. a relatively small movement). However, a small

TD-error over a duration less than an episode could mean that the critic is accurate only for

certain regions of the state space (e.g., when the arm is near the goal, giving expected future

reward near zero). To overcome these hurdles would require values of k that average TD-errors

over more than one episode.

Figure 6.4 shows results with 200,k = which equates to 4 seconds, or two arm

movements. As with the smaller value of k, the system remains unstable in the long-term.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 11 21 31 41 51 61 71 81 91 101

E
va

lu
at

io
n

Episodes (×1,000)

∆=.01

∆=.02

∆=.05

∆=.1

∆=.2

∆=.3

∆=.5

∆=1

134

Figure 6.4: Performance of the merged Fast and Slow parameters on the BBT with various TD-
error caps and 200.k = Notice the color gradient follows the value of Δ and the horizontal axis
is scaled by a factor of 1,000.

6.4 Weight Decay Term

It is common to add a weight decay parameter to the objective function when training

function approximators in order to improve generalization (Mitchell, 1997). This can be

approximated for the continuous actor-critic by augmenting the actor and critic update equations

(2.42 and 2.41 respectively) to

 () () 2 ,i C i C iw t e t k wη δ= − (6.1)

and

() ()

()() () ()2;
,

A
A A
i A A iA

i

A x t w
w t n t k n t w

w
η δ

∂
= ⋅ −

∂
 (6.2)

-1.00

-0.90

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

1 11 21 31 41 51 61 71 81 91 101

E
va

lu
at

io
n

Episodes (×1,000)

∆=.01

∆=.02

∆=.05

∆=.1

∆=.2

∆=.3

∆=.5

∆=1

135

respectively, where Ck and Ak are weighting constants. In some implementations, the expected

magnitude of the vectors ()n t and ()N t are decayed over time. If the magnitude of the

explorational noise term were not included in the weight decay term of Equation 6.2, it would

dominate the equation as the magnitude of the exploration goes to zero, taking all weights to

zero.

Previous tests can be thought of as having Ck and Ak both set to zero, resulting in no

weight decay term. The General parameters are defined in Table 6.1 as a combination of the Fast

and Slow parameters, with the addition of .0000002Ak = and .000002.Ck = These values were

found through experimentation to result in weight magnitudes several orders smaller than those

derived from training without a weight decay parameter, while the overall performance was not

significantly changed on the control test.

Aη Cη Ak Ck
70 .344 2E 7− 2E 6−

Table 6.1: General parameters. Those not listed are identical to the Fast parameters, provided in
Table 5.2.

A new actor and critic were pre-trained using these parameters on the Control Test for

10,000 episodes. The resulting actor and critic were then used as a starting point for the CT,

BBT, and FTT. The General Parameters were given their name because the resulting policy of

the newly pre-trained actor generalizes well to different arm dynamics. The pre-trained ANN's

performance is provided in Table 6.2.

136

Test CT BBT FTT
Evaluation –.192 –.22 –.197

Table 6.2: General parameters' evaluations immediately after pre-training.

 This result is expected, as weight decay terms are known in machine learning to improve

generalization. These parameters use larger muscle forces, similar to a PD controller with larger

gains, which improves initial performance on the BBT and FTT. Though these are mostly

desirable traits, the long-term stability of the system remains unchanged.

 Figure 6.5 depicts the General parameters' evaluation on the CT. Notice that the initial

evaluation is .19,− which is similar to that of the PD controller on the CT (.18).− Figure 6.6

depicts the General parameters' performance on the FTT. Notice that the initial evaluation of the

General parameters on the FTT (.197)− is better than that of the original pre-trained ANN of

Chapter 5 for the Fast and Slow parameters on the CT (.21).− Figure 6.7 depicts the General

parameters' performance on the BBT. Once again, notice that the initial evaluation of the General

parameters (.22)− is only slightly worse than that of the pre-trained ANN for the Fast and Slow

parameters on the CT (.21).−

 The good initial evaluations in Figures 6.5, 6.6, and 6.7 support the notion that the

General parameters generalize well to variations in arm dynamics, though all figures display

divergent properties after approximately 1,000 episodes. Due to the lack of improvement in

stability, the General parameters were not investigated further.

137

Figure 6.5: General parameters' mean performance (N=16) on the CT with standard deviation
error bars provided. The dotted lines represent the minimum and maximum values over all 16
trials. Notice the logarithmic scale of the horizontal axis.

Figure 6.6: General parameters' mean performance (N=16) on the FTT with standard deviation
error bars provided. The dotted lines represent the minimum and maximum values over all 16
trials. Notice the logarithmic scale of the horizontal axis. Also, notice the similarity of the line to
that in Figure 6.5, and the differences in standard deviation.

138

Figure 6.7: General parameters' mean performance (N=16) on the BBT with standard deviation
error bars provided. The dotted lines represent the minimum and maximum values over all 16
trials. Notice the logarithmic scale of the horizontal axis.

6.5 Hybrid Controller Achieving Fast Learning and Long-Term Stability

For the FES control task, the agent must continuously adapt to changes in its

environment, so decaying learning rates is not a viable option. However, the rapid initial learning

with an inaccurate critic can be combined with the slower accurate-critic learning using a hybrid

controller that toggles between learning styles. The Fast parameters (Table 5.2) can be used for

rapid initial learning. Once learning has reached a plateau, or if performance begins to decrease,

the agent can switch to the Slow parameters (Table 5.2). During this phase, the critic corrects

errors in the value function, again becoming accurate. Whenever performance deteriorates

beyond some performance threshold, the system can again switch to the Fast parameters for

another burst of rapid learning.

139

 We are primarily interested in determining whether or not the Slow parameters will

remain stable after beginning training with the Fast parameters, which results in an inaccurate

critic. Also, in order to continuously adapt to changing dynamics, the system must be able to

switch back to the Fast parameters and continue to learn when performance degrades. This

toggling system will be referred to as the Hybrid Controller.

In practical applications, the Fast parameters can be used for initial adaptation when the

agent is first used on a subject, after which the Slow parameters can be used to maintain stability

(e.g. Figures 6.8, 6.9, and 6.10). At any point, if a subject notices deteriorated performance of his

or her arm due to muscle fatigue or other changes, the subject could activate a short-term switch

to the Fast parameters to improve performance via shape-greedy learning.

Figure 6.8 shows that this hybrid controller can learn quickly and remain stable in the

long-term on the CT and FTT. The results of these two tests were combined into one figure

because of their similar evaluation magnitudes. Notice that, on the FTT, the actor-critic's final

evaluations are better than those of the pre-trained ANN on the CT.

Figure 6.9 shows that the Hybrid Controller also performs well on the BBT with rapid

initial learning and long-term stability. The slight decrease in performance around 10,000

episodes is consistent throughout the tests, as shown by the error bars, but remains unexplained.

Figure 6.10 shows the performance of the Hybrid Controller on the NRT (.05).Bμ = The

rapid initial learning is identical to that of the Fast parameters, however, unlike Figures 6.8 and

6.9, the system is not completely stable in the long-term, though it remains stable for nearly

10,000 episodes. For real-world FES applications, instabilities that arise after 10,000 episodes

140

are irrelevant. However, the instability beyond 10,000 episodes is interesting from an academic

standpoint, evincing that the system is not completely stable.

Figure 6.8: The actor-critic's mean evaluation (N=16) over 50,000 episodes on the CT and FTT
using the Fast parameters for the first 300 episodes and the modified Slow parameters thereafter,
with standard deviation error bars provided. Evaluations represent those just prior to the episode
number marked on the horizontal axis. Notice the logarithmic scale of the horizontal axis.

For the Toggling Test (TT, Section 4.7), the parameters were switched to the Fast

parameters whenever the environment switched dynamics between the BBT and the FBT. Figure

6.11 shows how the system can rapidly converge to a policy with a reasonable evaluation on

both the BBT and FBT while remaining stable. Before the switch to the Slow parameters, the

learning curve for the Hybrid Controller is identical to that of the Fast parameters. For a better

view of initial learning than is provided, refer to Figure 5.5, which presents the results of the Fast

parameters on the BBT.

141

Figure 6.9: The actor-critic's mean evaluation (N=16) over 50,000 episodes on the BBT using the
Fast parameters for the first 300 episodes, and the modified Slow parameters thereafter, with
standard deviation error bars provided. Evaluations represent those just prior to the episode
number marked on the horizontal axis. Notice the logarithmic scale of the horizontal axis.

Figure 6.10: The actor-critic's mean evaluation (N=16) over 50,000 episodes on the NRT
combined with the BBT, with standard deviation error bars. It used the Fast parameters for the
first 300 episodes, and the modified Slow parameters thereafter. Evaluations represent those just
prior to the episode number marked on the horizontal axis. Notice the logarithmic scale of the
horizontal axis.

142

Figure 6.11: The hybrid controller's evaluation, where the environment starts as the BBT, then
switches to the FBT after 1,100 episodes, then back to the BBT after 2,200 episodes, etc. The
parameters also switch from the Fast parameters for the first 100 episodes on each test to the
modified Slow parameters for the remaining 1,000 episodes on each test. The top plot shows
long-term performance while the bottom shows short-term performance.

6.6 Conclusion

 The initial attempts in Sections 6.1 (TD-Error Cap), 6.2 (Muscle Force Weight), 6.3

(Monitor Critic), and 6.4 (Weight Decay Term) all failed to improve long-term stability, though

the addition of the weight decay term did result in improved generalizability of the policy to

environments with variations in dynamics. In Section 6.5, we devised the Hybrid Controller,

-0.65
-0.6

-0.55
-0.5

-0.45
-0.4

-0.35
-0.3

-0.25
-0.2

0 10,000 20,000 30,000 40,000 50,000

E
va

lu
at

io
n

Episodes

-0.65

-0.55

-0.45

-0.35

-0.25

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

E
va

lu
at

io
n

143

which takes advantage of both the rapid initial learning of the Fast parameters and the long-term

stability of the Slow parameters.

144

CHAPTER 7:

DAS1 ILWR-CRITIC RESULTS

 When using ANNs for both the actor and the critic, applied to the Adaptive RL FES

Controller Task (Section 1.2), the continuous actor-critic failed to accomplish the necessary

conditions for success. We require the controller to have both rapid initial learning, as well as

long-term stability. In Chapter 5, where we presented the results when using ANNs for both the

actor and the critic, only one of these two conditions could be satisfied at a time. In Section 6.5,

we accomplished both by modifying the continuous actor-critic to allow for well-timed switches

between two different parameter sets.

 The long-term instability of any one parameter set, when using ANNs for the actor and

critic, may stem from the critic's inability to remain accurate as the actor changes. The critic's

accuracy can be improved by changing the critic function approximator to one that is better able

to accurately track a non-stationary function. Results from Chapter 3 suggest that Incremental

Locally Weighted Regression (ILWR) would perform better than an ANN as the critic, allowing

for more rapid changes to the actor with the critic remaining accurate. This chapter therefore

focuses on implementing ILWR as the continuous actor-critic's critic, while using the same pre-

trained ANN actor from Chapter 5.

 Local actor updates may also improve the critic's ability to accurately represent the value

function because changes to the policy would better reflect the local exploration. Though tests

145

with an ILWR actor were out of the scope of this thesis, it would be an interesting topic for

future research.

7.1 Pre-Training

The ILWR critic was pre-trained to be accurate for the policy of the ANN actor from

Section 5.1, which was trained via supervised learning to mimic the PD controller. To train the

ILWR critic, the actor-critic was run using the ILWR-Pretrain parameters, provided in Table 7.1,

with the actor's learning rate set to zero for 100,000 episodes on the CT. SI-ILWR was used due

to constraints on computational time. Recall from Equation 2.56 that a typical state of the arm is

1 21 2 1 2 Goal Goal(, , , , ,),θ θ θ θ θ θ which resides in [2,4] [1,4] [5,5] [5,5] [2,4] [1,4].− × − × − × − × − × − The

initial knowledge points were distributed in a Sukharev Grid over this domain with 4 points

across each dimension, resulting in 64 4,096= total points. The initial output values for the

knowledge points were chosen with a uniform distribution over []10,0 .−

Aη Cη D σ Nτ τ κ
0 .1 ().5,.5,.3,.3,.5,.5diag 9,000 2,400 .1 .1

Table 7.1: ILWR-Pretrain parameters. The critic's learning rate is the output learning rate. The
input learning rate was zero.

 All points with a weight larger than .1 were included in the regression, so long as no

fewer than 10 points and no more than 1,000 points were included in each regression. The

146

average TD-error magnitude (Equation 2.39) over the second 50,000 episodes was .22, which is

larger than the ANN critic from Section 5.1's average of .1. Figure 7.1 depicts the average TD-

error magnitude over each of the first 32,000 of the 100,000 training episodes, and suggests that

the system was nearly converged well before 50,000 episodes.

Figure 7.1: Average TD-error magnitude over the first 32,000 episodes when pre-training the
ILWR critic. Notice the logarithmic scale of the vertical axis.

7.2 Parameter Optimization

 Parameter optimizations for ,Aη ,σ ,Nτ ,τ and κ were performed in Section 5.1, and

are relatively independent of the function approximator chosen for the critic. Their values were

147

therefore left unchanged, as in Table 7.1. The values for ,Cη D, and the number of knowledge

points were tuned manually. Unlike the optimizations of Chapter 5, here we are interested in

finding parameters that result in both rapid initial learning as well as long-term stability.

There is no clear heuristic to allow a minimization algorithm to optimize both short and

long-term performance because the tradeoff between the two is not yet known when using ILWR

for the critic. Therefore, the optimizations were done manually by initially selecting reasonable

parameter values and observing the system's behavior. Given the results of several tests, we

determined what parameter changes would most likely result in improved performance. The best

parameters found, called the ILWR parameters, are provided in Table 7.2.

Aη Cη D σ Nτ τ κ
70 .1 ().5,.5,.3,.3,.5,.5diag 9,000 2,400 .1 .1

Table 7.2: ILWR parameters. The critic's learning rate, ,Cη is the output learning rate. The input
learning rate was zero.

 Figure 7.2 gives some meaning to the values selected for D. If the relative weighting

between dimensions were significantly off, discrete steps would appear. If the overall magnitude

were too large, only a few points would have significant weights, and if it were too small, too

many points would have significant weights. In order for the matrix inversion in LWR to

succeed, at least 6 independent points must be included in each regression. In order to ensure that

the system maintains real-time, we desire less than 1,000 points be included in each linear

regression. As previously stated, points were included in the regression if their weights were

above .1, so we desire between 6 and 1,000 points have weight above .1.

148

Figure 7.2: The weight of each knowledge point in the ILWR critic for the state (.82, .52, –.25,
.78, .38, 1.5), which resides near the center of the query space. The knowledge points have been
sorted along the horizontal axis from largest weight to smallest.

7.3 Control Test (CT)

 The continuous actor-critic, when using the ANN-actor (Section 5.1) and ILWR-critic

(Section 7.1) with the parameters from Section 7.2, achieves rapid initial learning on the CT, as

well as improved long-term stability over the Fast parameters of Chapter 5. As mentioned in

Section 6.5, long-term stability for practical applications requires observing performance out to

10,000 episodes. Stability after this point is interesting only as a case study of the continuous

actor-critic. Figure 7.3 depicts performance on the CT. Notice that the system maintains

improved performance out to 10,000 episodes, after which the system continues to improve on

average, though some trials became unstable.

149

Figure 7.3: Mean performance (N=16) of the actor-critic with the ILWR-critic on the CT.
Standard deviation error bars are provided. The dotted lines represent the minimum and
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis.

7.4 Baseline Biceps Test (BBT)

 The actor-critic, when using the ANN-actor and ILWR-critic, excels on the BBT,

achieving both rapid initial learning and significantly improved stability relative to the Fast

parameters of Chapter 5. Performance is depicted in Figure 7.4. Although the system is not

entirely stable out to 50,000 episodes, it is a vast improvement over the Fast parameters (Figure

5.5). Further observation of the 16 trials to create Figure 7.4 revealed that the runs were split into

two classes: in one, the system remained completely stable with an evaluation around .2;− in the

other, the system diverged to a final evaluation no worse than .35.− The majority of runs

(11)N ≈ fell into the former category, with the remainder in the latter.

150

Figure 7.4: Mean performance (black solid line; N=16) of the actor-critic with the ILWR-critic
on the BBT. In order to emphasize that most trials remained stable, all 16 trials are displayed as
transparent red lines. Notice the dark red resulting from the majority of the trials maintaining an
evaluation around –.2 after 50,000 training episodes. Standard deviation error bars are not
provided. Notice the logarithmic scale of the horizontal axis.

7.5 Fatigued Triceps Test (FTT)

The actor-critic, when using the ANN-actor and ILWR-critic, excels on the FTT as well,

achieving both rapid initial learning and significantly improved stability relative to that of the

Fast parameters of Chapter 5. Performance is depicted in Figure 7.5. All 16 trials to create Figure

7.5 terminated with evaluations above .22.−

151

 Figure 7.5: Mean performance (N=16) of the actor-critic with the ILWR-critic on the FTT.
Standard deviation error bars are provided. The dotted lines represent the minimum and
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis.

7.6 Noise Robustness Test (NRT)

Performance of the actor-critic, when using the ANN-actor and ILWR-critic, is mediocre

on the NRT with bias (.05).Bμ = Though rapid initial learning is preserved, the maximum

evaluations achieved are significantly diminished compared to the BBT without the NRT. It is

possible that the noise added to sensor readings makes it impossible to perform better, though

this is not known. The learning curve, provided in Figure 7.6, is similar to that of the BBT, with

rapid initial learning and a significant improvement in long-term stability over the ANN-only

actor-critic of Chapter 5. This system is also more stable than the Hybrid Controller on the NRT

(cf. Figure 6.10). All 16 trials to create Figure 7.6 terminated with evaluations above .33.−

152

Figure 7.6: Mean performance (N=16) of the actor-critic with the ILWR-critic on the NRT.
Standard deviation error bars are provided. The dotted lines represent the minimum and
maximum values over all 16 trials. Notice the logarithmic scale of the horizontal axis.

7.7 Conclusion

Replacing the ANN-critic in Chapter 5 with an ILWR-critic drastically improved

performance. The resulting system achieved rapid initial learning on the CT, BBT, FTT, and

NRT, as well as improved long-term stability, without the need for toggling parameter sets as in

the Hybrid Controller (Section 6.5). We suspect the improvement in performance is primarily

due to the locality of ILWR updates. However, the system still remains unstable in the extremely

long-term, beyond the timeframe considered for practical applications to FES control. This

instability may be inherent to the continuous actor-critic itself, as discussed in Subsection 2.2.10.

153

In this chapter, the input learning rate of ILWR (see Chapter 3) was zero due to time

constraints. As higher dimension control tasks are tackled, the ability to switch from SI-ILWR to

DI-ILWR may be an effective means of combating the curse of dimensionality. Future research

should be done to test DI-ILWR as the critic in control tasks of higher dimension. Work should

also be done to determine the influence of using ILWR for the actor as well as the critic. Finally,

work should be done to compare the results of using ILWR to those of kernel based methods

such as RBFs. RBFs were not included in this work because preliminary tests failed to achieve

acceptable performance as the critic during pre-training. This is likely due to an insufficient

granularity of the search for optimal parameters.

154

CHAPTER 8:

CONCLUSION

 This chapter is divided into two parts. Section 8.1 reviews the results and contributions of

the previous chapters. Section 8.2 discusses possible future work.

8.1 Results and Contribution

This thesis, as a whole, serves as documentation of the application of the continuous

actor-critic to the real-world problem of FES control of a human arm, discussing difficulties and

the methods used to overcome them. The primary difficulties in FES control are that the

dynamics of each subject's arm differ and the dynamics can change during trials due to muscle

fatigue. The adaptive abilities of the controllers created herein were tested by requiring the

controllers to adapt to changes in the arm model, which were inspired by variations in arm

dynamics that were observed in actual human subjects.

We introduced the Adaptive RL FES Controller Task in Section 1.2, which requires a

controller for DAS1, the arm simulator, be created that achieves rapid initial learning and long-

term stability, while remaining robust to noise in sensor readings. In Section 2.1, we showed that

two basic closed-loop controllers, PDs and PIDs, are insufficient for this task. We then proposed

using RL methods to create an adaptive controller.

155

 After reviewing RL in the beginning of Section 2.2, we analyzed the continuous actor-

critic in Subsection 2.2.10, and showed its relation to the SRV algorithm (Subsection 2.2.9). We

also discussed the lack of convergence guarantees, and provided intuition about how local the

updates to the actor and critic should be. After reviewing function approximators in Section 2.3,

we reproduced Doya's implementation (Doya, 2000) of the continuous actor-critic on the

pendulum swing-up task in Section 2.4. We observed that the system learns even when the critic

is not yet accurate.

 In Chapter 3, we introduced ILWR and compared it to ANNs on several test problems,

ranging from a simple function with one input and output (Sigmoid Environment, Subsection

3.1.1) to the non-linear FitzHugh-Nagumo environment (Subsections 3.1.3 and 3.1.4). We also

compared ILWR and ANN's abilities to track a non-stationary function, which emulates the task

of representing the critic in the continuous actor-critic. In all of the tests in Chapter 3, ILWR

outperformed ANNs.

 In Chapter 4, we introduced a slew of different tests to evaluate a controller's ability to

adapt to clinically relevant changes in arm dynamics. These tests were dubbed the Control Test

(CT, Section 4.2), Baseline Biceps Test (BBT, Section 4.3), Fatigued Triceps Test (FTT, Section

4.4), Noise Robustness Test (NRT, Section 4.5), Fatigued Biceps Test (FBT, Section 4.6),

Toggling Test (TT, Section 4.7), Delayed Reward Test (DRT, Section 4.8), Discrete Reward

Test (DiRT, Section 4.9), and Continuous Learning Modification (CLM, Section 4.10). The CT

serves as a control, with the DAS1 arm model remaining unchanged. The BBT and FTT

introduce changes to the arm dynamics, which mimic those expected in some FES subjects. The

NRT tests the controller's ability to learn in the presence of sensor noise. The FBT is used in the

TT as a specific test for the Hybrid Controller of Section 6.5. The DRT, DiRT, and CLM provide

156

additional insight into the controller's performance if humans were to provide the reward signal

during actual trials.

In Chapter 5 we found that the continuous actor-critic, when using ANNs for both the

actor and the critic on the tests from Chapter 4, could achieve either rapid initial learning or long-

term stability, but not both. This was observed on the CT (Section 5.3), BBT (Section 5.4), and

FTT (Section 5.5). Rapid initial learning was also observed to be robust to various amounts of

exploration (Section 5.6), sensor noise (NRT, Section 5.7), a discretization of the reward signal

(DRT, Section 5.8), and a delay in the reward signal (DiRT, Section 5.9).

 We then attempted to improve long-term stability in the system devised in Chapter 5 by

tweaking the cap on the TD-error (Section 6.1), by altering the muscle activation weight in the

reward signal (Section 6.2), by only allowing updates to the actor when the critic is accurate

(Section 6.3), and by adding a weight decay term to the ANN updates (Section 6.4). None of

these improved long-term stability while preserving rapid initial learning, though the weight

decay term did result in policies that generalized better to variations in arm dynamics, which was

observed as improved initial performance on the BBT and FTT. Chapter 6 concludes by

combining unstable rapid initial learning and slow but stable learning to create the Hybrid

Controller of Section 6.5.

 In Chapter 7, we attempt to achieve rapid initial learning and long-term stability without

the need to toggle between various parameter settings as in the Hybrid Controller. After finding

the proper parameters for training, ILWR is used to pre-train a critic. This critic is then used to

replace the ANN-critic of Chapter 5. The remainder of Chapter 7 presents results on the CT

(Section 7.3), BBT (Section 7.4), FTT (Section 7.5), and NRT (Section 7.6). In all cases, rapid

157

initial learning is preserved, while long-term stability is improved relative to the ANN critic of

Chapter 5.

 Though both the continuous actor-critic with an ANN actor and ILWR critic and the less

elegant Hybrid Controller have achieved all the requirements of the Adaptive RL FES Controller

Task, neither is completely stable. The instability, which presents beyond 10,000 arm

movements, remains unexplained. It may be due to the gradient descent steps of the actor-critic

being too large, or it may arise from the use of function approximators.

 We have successfully completed the Adaptive RL FES Controller Task (Section 1.2) in

two ways. The Hybrid Controller uses ANNs for both the actor and critic, though it requires

changes to the parameters of the actor-critic, which may be either automated or manual. The

second solution uses ILWR for the critic and an ANN for the actor. It achieves both rapid initial

learning as well as long-term stability without the need for dynamic parameters.

 Other than contributing to the FES literature by presenting an argument for the feasibility

of RL for use in FES control, as discussed in Section 1.3, this thesis also contributes novel

methods and theory to the RL literature. In Chapter 3, we introduced a novel function

approximator, Incremental Locally Weighted Regression (ILWR), which outperforms ANNs in

all tests executed in Chapters 3 and 7. In Section 6.4 we introduced a weight decay term to the

continuous actor-critic, which resulted in policies that performed better when faced with minor

variations to the environment. In Section 2.4, Chapter 5, and Chapter 6, we observed two

different types of learning by the actor-critic: unstable rapid initial learning, and slow but stable

learning.

158

8.2 Future Work

Because this work is among the first of its kind, applying RL to FES control, there is still

significant room for further research. For example, research should be done to compare the

performance of policy gradient methods to that of the continuous actor-critic, with a focus on

stability and ability to scale to problems of higher dimension.

In Section 5.11, the continuous actor-critic with the pre-trained ANN actor and critic

from Section 5.1, using the Fast parameters, learned on the BBT when the TD-error was replaced

with a random negative signal. This remains unexplained. Further research should be performed

to determine the reason for this learning, and whether it is common when using RL to adapt to a

changing environment.

In Section 6.4, we introduced a weight decay term to the update equations for the

continuous actor-critic (Subsection 2.2.8). For the task of FES control using the DAS1 model,

this resulted in the actor-critic learning policies that performed better when the environment

changed. In machine learning (e.g., classification), weight decay terms are known to improve the

generalizability of results. Similarly, in RL, the weight decay term has increased the

generalizability of a policy to similar environments. Further research should be done to

determine whether this is a fluke of our particular system, or a trend throughout RL.

 We observed, in Section 2.4, Chapter 5, and Chapter 6, that the actor-critic had two

different types of learning. In the first type, the critic is accurate, and learning is slow but stable

in the long-term, and Gullapalli's intuition (Subsection 2.2.10) applies. In the second, the critic is

not yet accurate, so Gullapalli's intuition does not apply, and yet rapid initial learning occurs.

159

Future work should be done to develop an intuition for why the actor-critic learns under these

conditions.

 In Subsection 2.2.10, we suggested increasing the locality of updates to the critic as

learning progresses in the continuous actor-critic architecture. Though our analysis suggested

that this may improve performance, its application fell outside the scope of this work because the

Adaptive RL FES Controller Task requires that learning parameters not be decayed.

 In Chapter 3, we presented Incremental Locally Weighted Regression (ILWR), and

compared it to other function approximators. In all of our tests, it outperformed Artificial Neural

Networks (ANNs), especially when tracking a non-stationary function. In Chapter 7, we used it

as the critic in the continuous actor-critic on a real-world problem, resulting in a significant

improvement in stability over ANNs. Implementing ILWR for the actor as well as the critic

could also lead to an additional improvement. Further research should be done into the

performance of ILWR, with additional comparisons to ANNs and RBFs. An analysis should be

performed of the differences between ILWR and RBFs with moving kernel centers. Most

importantly, ILWR should be considered by researchers for use as an incremental function

approximator. Additionally, an approximation or randomized algorithm for DI-ILWR updates

(Chapter 3 and Appendix C) could improve runtimes for ILWR.

 Throughout this thesis, the continuous actor-critic was found to be sensitive to its

parameter settings, primarily the learning rates, the eligibility decay rate, exploration magnitude

and time scale, reward decay rate, and the function approximators selected to represent the actor

and the critic. A comparison of the sensitivity of different RL methods with respect to their

160

parameter settings would have been useful, providing additional information for consideration

when initially selecting a learning algorithm.

 The policies learned by the continuous actor-critic in Chapters 5 through 7 have unnatural

muscle stimulations, as depicted in Figure 8.1. Because muscles and inertia act as a low-pass

filter, movement is not sensitive to high frequencies in muscle stimulation. This, combined with

the negative reward for muscle forces, ought to result in smooth muscle activations such as the

PD's. Future work should be done including constraints on the derivatives of muscle stimulations

requested by the controller. This may help to remove the high-frequency fluctuations that are not

present in natural movements nor the PD controller's policy.

Figure 8.1: Requested biceps stimulation over an episode on the BBT before training and after
500 training episodes with the Fast parameters (Table 5.2).

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

R
eq

ue
st

ed
 B

ic
ep

s S
tim

ul
at

io
n

Time (×20ms)

After 500
Episodes

After 0
Episodes

161

 Lastly, future research should be done into the application of RL controllers to FES, both

in simulation and on human subjects. As this is one of the first attempts to apply RL techniques

to FES, the research area is still open for significant development. The encouraging results from

this thesis have inspired further work in the application of RL to FES control. At the Lerner

Research Institute (LRI) of the Cleveland Clinic Foundation, researchers Kathleen Jagodnik and

Dr. Antonie van den Bogert are preparing for human trials of this controller for planar arm

movement, in which able-bodied subjects provide the reward signal. They will investigate how

the learned policies will differ when the reward signal is provided by a human rather than

generated automatically via Equation 4.1. If these tests are successful, the controller may be used

for human trials using FES on a patient with spinal cord injury.

 Researchers at the LRI have also created a detailed three-dimensional musculoskeletal

model of a human arm (Chadwick et al., 2009). Pending successful results from the real-world

application of RL for planar control, the RL controllers from Section 6.5 and Chapter 7 could be

applied to the three-dimensional model, and eventually three-dimensional human trials. The

primary difficulty in the switch will be the increase in the dimension of the action space, as the

three-dimensional model includes over 100 muscles, though this can be overcome by clustering

similar muscles into groups that are all given equal stimulation. Additionally, the ability of

ILWR to cluster knowledge points around interesting areas of the domain, combined with its

planar local model, may help combat the increases in state and action space dimensions.

 This thesis has shown that RL is a viable approach for adaptive control tasks, specifically

FES control of a human arm, and will hopefully open up a vein of further research in the area,

with the long-term goal of restoring natural motor function to people with spinal cord injury.

162

APPENDIX A

This appendix contains a derivation of Equation 3.5, which states

 ()
1,

1

,
1,

0, when ,

, otherwise.
i

i

d k
T T

i j
d i

j k

y
+

−

+

≠⎧∂ ⎪= ⎨⎡ ⎤∂ ⎪⎢ ⎥⎣ ⎦⎩

β
X WX X W

 (3.5)

Recall from (Schaal, Atkeson, and Vijayakumar, 2002) that

 () 1
.T T−

=β X WX X Wy (A1)

Therefore,

 () 11,
,

1,1, ,

,i

i

p
d k T T

k
di j i jy y α

αα

−+

+=

∂ ∂ ⎛ ⎞⎡ ⎤= ⎜ ⎟⎢ ⎥⎣ ⎦∂ ∂ ⎝ ⎠
∑

β
X WX X W y (A2)

by the definition of matrix multiplication. The summation is from one to p because

() 1T T−⎡ ⎤
⎢ ⎥⎣ ⎦

X WX X W has p columns and y has p rows. When ,j k≠ the right hand side is not a

function of yi,j, so

 1,

,

0id k

i jy
+∂

=
∂

β
 when ,j k≠ (A3)

and when ,j k=

 () 11,
,

1,1, ,

i

i

p
d j T T

j
di j i jy y α

αα

−+

+=

∂ ∂ ⎛ ⎞⎡ ⎤= ⎜ ⎟⎢ ⎥⎣ ⎦∂ ∂ ⎝ ⎠
∑

β
X WX X W y (A4)

163

 () 1 ,

1,1 ,i

p
jT T

d i jy
α

αα

−

+=

=
⎛ ⎞∂⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦ ∂⎝ ⎠

∑
y

X WX X W (A5)

 () 1

1,
.

i

T T

d i

−

+

⎡ ⎤= ⎢ ⎥⎣ ⎦
X WX X W (A6)

Together, Equations A3 and A6 imply Equation 3.5.

164

APPENDIX B

This appendix contains derivations of Equations 3.6 and 3.7, which state

 () () ()1 1 11,

, , , , , ,
1,

i

i

T T

d k T T T T T T

i j i j i j i j i j i j
d k

x x x x x x
− − −+

+

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦

β W X X W XX WX X y Wy X WX X W X WX X WX X Wy

 (3.6)

and

 (), , , ,
, ,

.i i j j q j i j
i j i i

x x
x

⎡ ⎤∂
= −⎢ ⎥

∂⎢ ⎥⎣ ⎦

W W D (3.7)

Recall from (Schaal, Atkeson, and Vijayakumar, 2002) that

 () 1
.T T−

=β X WX X Wy (B1)

Also recall the following rules from matrix calculus (Edwards and Penney, 2002):

 Inverse Rule: ()1 1 1− − −∂ = ∂A A A A (B2)

 Transpose Rule: () ()TT∂ = ∂A A (B3)

 Summation Rule: ()∂ + = ∂ + ∂A B A B (B4)

 Product Rule: () () ()∂ = ∂ + ∂AB A B A B (B5)

Also recall that matrix multiplication is associative, but not commutative. This appendix uses the

following notations: xi,j is the jth input of xi, the ith knowledge point; there are p knowledge

165

points; the inputs are of dimension di; and the outputs are of dimension do. Any other notation

not specified is consistent with that of Chapter 3.

First, we expand 1,id k+β to obtain

() 1

1, 1,

, ,

.i i

T T

d k d k

i j i jx x

−

+ +

⎡ ⎤∂ ⎢ ⎥∂ ⎣ ⎦
=

∂ ∂

X WX X Wyβ
 (B6)

By solving for

() 1

,

,
T T

i jx

−⎡ ⎤∂ ⎢ ⎥⎣ ⎦
∂

X WX X Wy
 (B7)

we can easily extract the element at 1,id k+ for each k. When performing gradient descent on

the error term, the results for 1 ok d≤ ≤ will be computed. We can expand Equation B7 using the

product and inverse rules to obtain

()
() ()

1 1
1

, , ,

.
T T TT

T T

i j i j i jx x x

− −
−

⎡ ⎤∂ ∂∂⎢ ⎥⎣ ⎦ = +
∂ ∂ ∂

X WX X Wy X WXX WyX WX X Wy (B8)

 () () 1
1

, , ,

.
TT

T T T

i j i j i jx x x

−
− ∂⎡ ⎤∂ ∂

= + +⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

X WXWy XX WX X Wy X Wy (B9)

 () () () ()1 1 1

, , ,

TT
T T T T T

i j i j i jx x x
− − −∂⎡ ⎤∂ ∂

= + −⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

X WXWy XX WX X Wy X WX X WX X Wy .

 (B10)

166

For simplicity, we will let () 1
.T −

=θ X WX This value was computed during the approximation

stage in the LWR algorithm, and can be stored so it need not be recomputed during the weight

update stage. Substituting and applying the transpose rule, Equation B10 may be written as

()

, , ,

.
T T

T T

i j i j i jx x x

⎡ ⎤ ∂⎛ ⎞∂ ∂⎢ ⎥+ −⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

X WXWy Xθ X Wy θ θX Wy (B11)

Applying the product rule twice results in

 () ()
, , , , ,

.
T T

T T T

i j i j i j i j i jx x x x x

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞ ∂∂ ∂ ∂⎢ ⎥ ⎢ ⎥+ + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

XWXy W Xθ X W y Wy θ X WX θX Wy (B12)

Applying the transpose rule, product rule, and removing the term

,

0,
i jx

∂
=

∂
y (B13)

we obtain the simplification,

, , , , ,

.
T T

T T T

i j i j i j i j i jx x x x x

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥+ − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

W X X W Xθ X y Wy θ X W X WX θX Wy (B14)

Notice that ,/ i jx∂ ∂X is a matrix with all zeros except , 1.i j =X If using an unweighted

version of LWR where W is not a function of xi,j, then ,/ .i jx∂ ∂ =W 0 If using LWR with

weights, as is normal, ,/ ,i jx∂ ∂ =W 0 except for

() ()1

2

, ,,

.
T

i q i q

i j i ji i

e
x x

− − −⎡ ⎤ ⎛ ⎞∂ ∂
=⎢ ⎥ ⎜ ⎟∂ ∂⎢ ⎥ ⎝ ⎠⎣ ⎦

x x D x xW (B15)

167

Converting out of vector notation, this becomes

()2, , ,

1

1
2

,

.

di

i qx x

i j

e
x

α α α α
α=

⎡ ⎤− −⎢ ⎥⎣ ⎦
⎛ ⎞∑∂ ⎜ ⎟=
⎜ ⎟∂
⎝ ⎠

D

 (B16)

Moving the derivative into the exponent, we obtain

() ()2

, , ,
1

2
1 , , ,
2 1

,

1
2

.

i

di

i q

d

i qx x

i j

x x
e

x
α α α α

α

α α α α
α=

⎡ ⎤− −⎢ ⎥⎣ ⎦ =

⎛ ⎞⎡ ⎤∂ − −⎜ ⎟⎢ ⎥∑ ⎣ ⎦⎝ ⎠=
∂

∑D
D

 (B17)

Substituting in

()2, , ,

1

1
2

, ,

di

i qx x

i i e
α α α α

α=

⎡ ⎤− −⎢ ⎥⎣ ⎦∑
=

D

W (B18)

we obtain

()2

, , ,
1

,
, ,,

1
2

.

id

i q

i i
i j i ji i

x x

x x

α α α α
α=

⎛ ⎞⎡ ⎤∂ − −⎜ ⎟⎢ ⎥⎣ ⎦⎡ ⎤∂ ⎝ ⎠=⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

∑ D
W W (B20)

Applying calculus, we obtain

()2

, , ,
, 1

,2

id

i q
i i

i j

x x

x

α α α α
α=

⎡ ⎤∂ −⎢ ⎥⎣ ⎦
= −

∂

∑ DW
 (B21)

()2

, , ,,

,2
i j q j j ji i

i j

x x
x

∂ −
= −

∂

DW
 (B22)

168

()2 2

, , , ,, ,

,

2
2

i j q j i j q ji i j j

i j

x x x x
x

∂ − +
= −

∂

W D
 (B23)

 (), ,
, ,2 2

2
i i j j

i j q jx x= − −
W D

 (B24)

 (), , , , ,i i j j q j i jx x= −W D (B25)

which is Equation 3.7. Note that this assumes D is independent of , .i jx

169

APPENDIX C

This appendix contains directions for efficiently computing , ,ˆ / .q k i jy x∂ ∂ Recall Equation

3.6, which may be rewritten as follows:

() () ()1 1 1

, , , , , ,

.
T T

T T T T T T

i j i j i j i j i j i jx x x x x x
− − −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥ ⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

β W X X W XX WX X y Wy X WX X W X WX X WX X Wy

 (C1)

First, recall that () 1T −
=θ X WX was already computed during the approximation step in the

incremental LWR algorithms. Substituting in ,θ we obtain

, , , , , ,

.
T T

T T T

i j i j i j i j i j i jx x x x x x

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎢ ⎥ ⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

β W X X W Xθ X y Wy θ X W X WX θX Wy (C2)

Also notice that the entire matrix need only be computed once for each i,j, not for each distinct k.

,/ i jx∂ ∂W and ,/ i jx∂ ∂X can be computed efficiently, as both have at most one non-zero entry.

 Next, we write ,/ i jx∂ ∂β in terms of r1 and r2, which are defined as

 1
, ,

T

T

i j i jx x

⎡ ⎤⎛ ⎞∂ ∂⎢ ⎥= + ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

W Xr θ X y Wy (C3)

and

 2
, , ,

.
T

T T

i j i j i jx x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

X W Xr θ X W X WX θX Wy (C4)

170

After computing r1 and r2, ,/ i jx∂ ∂β can be computed as

 1 2
,

.
i jx

∂
= −

∂
β r r (C5)

 Let ,i j denote a real-valued number in the ith row and jth column, while 1i,j denotes a 1

in the ith row and jth column. We begin by analyzing the computation of r1 by following the

matrix operations to compute it, simplifying using the known forms of ,/ i jx∂ ∂W (See Equation

3.6), ,/ ,i jx∂ ∂X and W:

()

,
,

0 0

,

0 0

i i
i jx

p p

⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ⎢ ⎥=

∂ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

×

W (C6)

,

,

0 0

,
1

0 0
1

i j
i j

i

x

p d⎛ ⎞⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥∂ ⎢ ⎥=

∂ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

× +

X (C7)

()

1,1

2,2

1, 1

,

0 0
0

.
0

0 0
p p

p p
p p

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

×

W
W

W
W

W

 (C8)

171

 The first step in computing r1 is computing
,

:T

i jx
∂
∂

WX

() () ()

, ,

1,1,1 1,

2,

,

,

1,1 1, 1,

0 0

,

0 0

1 1

i

i i i

T T

i j i j

ip

i

i i

d i

d d p d i

i i

x x

d p p p d p
+ + +

∂ ∂
∂ ∂

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

+ × × + ×

W WX X

0 0 (C9)

where 0 represents a submatrix with all entries equal to zero. The result can be expressed as

 1

,

, ,..., ,..., , ,T

i jx
∂ ⎡ ⎤= ⎣ ⎦∂
WX 0 0 v 0 0 (C10)

where 11, .id +∈0 v v1 can be written as

 1
,

, ,

for 1 1.T
i i

i j i i

d
xα α α

⎛ ⎞∂
= ≤ ≤ +⎜ ⎟⎜ ⎟∂⎝ ⎠

Wv X (C11)

The next step in computing r1 is computing
,

:T

i jx
∂
∂

WX y

172

 () () ()

, ,

1,1 1, 1,1 1,

1

,1 ,2 , 1 ,

,1 ,,1 ,

.

1 1

o o

o o

oo

T T

i j i j

d d

i i i d i d

p p dp p d

i o i o

x x

d p p d d d

−

∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
+ × × + ×

W WX y X y

0 v 0 (C12)

Note that the elements in (),
T

i jx∂ ∂X W y are a function of only v1 and the ith row of y. As such,

we can write an equation for each element in (), ,T
i jx∂ ∂X W y

 1
, , ,

, ,, ,

.T T
t i u t i i u

i j i jt u i i
x x

⎡ ⎤ ⎛ ⎞∂ ∂
= = ⎜ ⎟⎢ ⎥ ⎜ ⎟∂ ∂⎢ ⎥⎣ ⎦ ⎝ ⎠

W WX y v y X y (C13)

 Next we must solve for the second half of r1, (), .
T

i jx∂ ∂X Wy The first step of this is to

compute (), :
T

i jx∂ ∂X W

 () () ()

, ,

1,1

2,2

,

1, 1 ,

,

0 00 0 0 0
0

.1
0

0 00 0 0 0

1 1

T
T

i j i j

j i

p p j i

p p

i i

x x

d p p p d p

− −

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW W

W
W

W
W

 (C14)

The real number in the jth row and ith column of
,

T

i jx
∂
∂
X W can be expressed as

173

 ,
, ,

.
T

i i
i j j i

x
⎡ ⎤∂

=⎢ ⎥
∂⎢ ⎥⎣ ⎦

X W W (C15)

 The next step is to compute (), :
T

i jx∂ ∂X Wy

() () ()

, ,

1,1 1,

,1 ,2 , 1 ,,

,1 ,

0 00 0

.

0 0 0 0

1 1

o

o o

o

T T

i j i j

d

j j j d j dj i

p p d

i o i o

x x

d p p d d d

−

⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW y Wy

 (C16)

The jth row of (),

T

i jx∂ ∂X Wy can be written as a row vector, v2, each element of which can be

expressed as

 2
, , for 1 1.i i i odα α α= ≤ ≤ +v W y (C17)

Combining this with Equation C13, we can compute r1, by first building 1̂r as a ()1i od d+ ×

matrix with

[]
, ,

, ,
1 ,

, , , ,
, ,

, ,

ˆ

, ,

T
t i i u

i j i i

t u
T
t i i u i i i u

i j i i

t j
x

W y t j
x

⎧ ⎛ ⎞∂
≠⎪ ⎜ ⎟⎜ ⎟∂⎪ ⎝ ⎠⎪= ⎨

⎛ ⎞∂⎪
+ =⎜ ⎟⎪ ⎜ ⎟∂⎝ ⎠⎪⎩

WX y

r
WX y

 (C18)

and then multiplying 1̂r by θ (1 1)i id d+ × + on the left-hand side, giving the 1i od d+ × result:

174

 1 1̂.=r θr (C19)

The time to compute r1 is ()2 .i o o iO d d d d+ The 2
i od d term comes from the cost of the final

multiplication by .θ

 Next, we compute r2, defined in Equation C4, using the same method. We first simplify

the end by computing the 1i od d+ × matrix .T=φ X Wy This term is independent of i, j, and k

and need not be computed more than once for each query. Substituting in ,φ we obtain

2

, , ,

.
T

T

i j i j i jx x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

X W Xr θ X W X WX θφ (C19)

Next we compute the (),i jx∂ ∂W X term:

() () ()

, ,

1,1

2,2

1, 1 , ,

,

0 0 0 0 0 0
0

.
0 1

0 0 0 0 0 0

1 1

i j i j

p p i j i j

p p

i i

x x

p p p d p d

− −

∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

× × + × +

X XW W

W
W

W
W

 (C20)

The ,i j term is Wi,i. Next we compute the (),i jx∂ ∂W X term:

175

() () ()

, ,

1,1 1, 1, 1

,

,1 ,2 , , 1

,1 , , 1

1 0 00 0

.

0 0 1 0 0

1 1

i i

i i

i i

i j i j

d d

i i

i i i d i d

p p d p d

i i

x x

x x

x x

p p p d p d

+

+

+

∂ ∂
∂ ∂

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

× × + × +

W WX X

 (C21)

The ith row of (),i jx∂ ∂W X can be expressed as a row vector, 13 ,id +∈v which can be

described as

 3
,

, ,

.i
i j i i

x
xα α

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

Wv (C22)

 Using Equations C20 and C22, () (), ,i j i jx x∂ ∂ + ∂ ∂W X W X can now be computed as

()

,1 ,2 , , 1, ,

0 0

,

0 0
1

i ii i i d i di j i j

i

x x

p d

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂

+ = ⎢ ⎥
∂ ∂ ⎢ ⎥

⎢ ⎥⎣ ⎦
× +

X WW X (C23)

where the ith row can be expressed as row vector v3 (Equation C22) plus Wi,i in the ith row and jth

column. We will call this row vector v4, defined as

176

,
, ,4

, ,
, ,

, when ,

, otherwise.

i
i j i i

i i i
i j i i

x j
x

x
x

α

α

α

α
⎧⎛ ⎞∂

≠⎪⎜ ⎟⎜ ⎟∂⎪⎝ ⎠⎪= ⎨
⎛ ⎞∂⎪

+⎜ ⎟⎪⎜ ⎟∂⎝ ⎠⎪⎩

W

v
W W

 (C24)

We can now compute () (), , :T
i j i jx x⎡ ⎤∂ ∂ + ∂ ∂⎣ ⎦X W X W X

() () ()

, , , ,

1,1 1, 11,1 1,

4

1,1 1, 1,1 1, 1

.

1 1 1 1

i

i i i i i

T T

i j i j i j i j

dp

i

d d p d d d

i i i i

x x x x

d p p d d d

+

+ + + + +

⎛ ⎞∂ ∂ ∂ ∂
+ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

+ × × + + × +

X W X WX W X X W X

0

v

0

 (C25)

Each element in () (), ,
T

i j i jx x⎡ ⎤∂ ∂ + ∂ ∂⎣ ⎦X W X W X can be expressed as

4

.,
, , ,

T T
t i u

i j i j t u
x x

⎡ ⎤⎛ ⎞∂ ∂
+ =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

X WX W X X v (C26)

 Next, we must compute (), ,
T

i jx∂ ∂X W as described in Equation C14, reproduced below

for convenience:

177

() () ()

, ,

1,1

2,2

,

1, 1 ,

,

0 00 0 0 0
0

,1
0

0 00 0 0 0

1 1

T
T

i j i j

j i

p p j i

p p

i i

x x

d p p p d p

− −

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + ×

X XW W

W
W

W
W

 (C14)

where , , .j i i i= W Next, we must multiply by X:

() () ()

, ,

1,1 1, 1, 1

,1 ,2 , , 1,

,1 , , 1

1 0 00 0

.

0 0 1 0 0

1 1 1 1

i i

i i

i i

T T

i j i j

d d

j j j d j dj i

p p d p d

i i i i

x x

x x

x x

d p p d d d

+

+

+

⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

+ × × + + × +

X XW X WX

 (C27)

The jth row of the result can be expressed as a row vector, 15 ,id +∈v which can be computed as

 5
, , .i i ixα α=v W (C28)

 We can now compute M, defined as

, , ,

.
T

T

i j i j i jx x x
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

X W XM X W X WX (C29)

178

The left side of the summation is provided in Equation C26, and the right side is provided in

Equations C27 and C28. The algorithm for computing M is defined in Algorithm C1.

Algorithm C1: Algorithm for computing M.

 We can now compute r2, as

 2 .=r θMθφ (C30)

This step takes ()3 2
i i o i o o i oO d d d d d d d pd+ + + + time, most of which is accrued during the

calculation of Equation C30. Using r1, provided in Equation C18 and r2, provided in Equation

C30, we can compute the final result,

 1 2
,

.
i jx

∂
= −

∂
β r r (C31)

Algorithm for Computing M = ()1 1 :i id d+ × +

1. For all ,t u∈ where 1 , 1it u d≤ ≤ +

 If u j≠
Then

Set , , ,
, ,

T
t u t i i u

i j i i

X x
x

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

WM

Else

 Set , , , ,
, ,

T
t u t i i u i i

i j i i

X x
x

⎛ ⎞⎛ ⎞∂⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

WM W

2. For 1α = to 1id +

Do , , , ,j j i i ixα α α= +M M W

179

Computing r1 took ()2 ,i o o iO d d d d+ which is dwarfed by the ()3 2 2
i i o i i oO d d d d p d pd+ + + time

to compute r2, making the time to compute the final result ()3 2 2
i i o i i oO d d d d p d pd+ + + which is

polynomial with respect to the dimension of the inputs, outputs, and the number of knowledge

points included in the regression.

 Recall that only the bottom row of ,i jx∂ ∂β is needed, so a slight performance increase

can be achieved by only computing the bottom rows of r1 and r2. When computing r1, this means

only computing the bottom row in the last step of multiplying by θ on the left-hand side (step 3

in Algorithm C2). When computing r2, (step 5 in Algorithm C2) this means that only the bottom

rows of θM and ()()θM θφ must be computed. The complete algorithm for computing ,i jx∂ ∂β

is provided as Algorithm C2.

180

Algorithm C2: Algorithm for computing
,

,
i jx
∂

∂

β which is required for DI-ILWR (Chapter 3).

Algorithm C2 for computing :
,i jx

∂
∂
β

Given: i, j, ,X ,W id (input dimension), od (output dimension)

1. [] [] []
, ,

, ,
1 ,

, , , ,
, ,

, ,

ˆ1, 1 , 1, ,

, .

T
t i i u

i j i i
i o t u

T
t i i u i i i u

i j i i

t j
x

t d u d

W y t j
x

⎧ ⎛ ⎞∂
≠⎪ ⎜ ⎟⎜ ⎟∂⎪ ⎝ ⎠⎪∀ ∈ + ∀ ∈ = ⎨

⎛ ⎞∂⎪
+ =⎜ ⎟⎪ ⎜ ⎟∂⎝ ⎠⎪⎩

WX y

r
WX y

2. () 1T −

=θ X WX

3. 1 1̂←r θr
4. Execute Algorithm C1, to compute M
5. Compute T=φ X Wy
6. 2 =r θMθφ

7. 1 2
,i jx

∂
= −

∂
β r r

181

APPENDIX D

 This appendix contains the derivation of Equation 3.4, from Equations 3.2 and 3.3:

 ()w E wηΔ = − ∇ (3.2)

 () ()2

, ,
1

1 ˆ
2

od

q i q i
i

E w y y
=

≡ −∑ (3.3)

() ,

, ,
1

ˆ
ˆ .

od
q

i i q q
i

y
w w y y

w
α

α α
α

η
=

∂⎡ ⎤
← − ⋅ −⎢ ⎥∂⎣ ⎦

∑
 (3.4)

We start by writing Equation 3.2 as an update for each individual weight,

 ().i iw E wηΔ = − ⋅∇ (D1)

Next we compute the gradient of () :iE w

 () ()2

, ,
1

1 ˆ
2

od

i q q
i

E w y y
w α α

α=

⎛ ⎞∂
∇ = −⎜ ⎟∂ ⎝ ⎠

∑ (D2)

()2

, ,

1

ˆ1
2

od
q q

i

y y
w

α α

α=

∂ −
=

∂∑ (D3)

 () (), ,
, ,

1

ˆ1 ˆ2
2

od
q q

q q
i

y y
y y

w
α α

α α
α =

⎡ ⎤∂ −
= −⎢ ⎥

∂⎢ ⎥⎣ ⎦
∑ (D4)

 ()() ,
, ,

1

ˆ
ˆ 1

od
q

q q
i

y
y y

w
α

α α
α=

∂⎡ ⎤
= − −⎢ ⎥∂⎣ ⎦
∑ (D5)

182

 () ,
, ,

1

ˆ
ˆ .

od
q

q q
i

y
y y

w
α

α α
α=

∂⎡ ⎤
= −⎢ ⎥∂⎣ ⎦
∑ (D6)

Substituting Equation D6 into Equation 3.2, we obtain Equation 3.4.

183

APPENDIX E

The parameters used by the DAS1 simulations are provided in the following setup files.

First, arm.bio reads:

arm.bio
muscles

six muscles for the planar arm model
Fmax and moment arms from Bhushan & Shadmehr, Biol Cybern 1999

verbose_level 0

joint SHOULDER
 distal_body upperarm
 limits -90 180
 end

joint ELBOW
 distal_body forearm
 limits 0 180
 end

muscle default
 a 0.25
 vmrel 10
 umax 0.04
 fecmax 1.5
 krel 0.0
 slopfac 2.0
 PEEslack 1.0
 time_constants 0.040 0.060
 end

note: the following values of lceopt and lslack were
taken from
Garner, B.A., Pandy, M.G. "Estimation of Musculotendon
Properties in the Human Upper Limb." Annals of
Biomedical Engineering, February 2003, vol. 31,
no. 2, pp. 207 - 220.
Specifically, the values were taken from the
"model" column of Table 3 (p. 216).

muscle ANT_DELTOID
 fmax 800
 lceopt 0.1280 lslack 0.0538 width 1.0

184

 geometry pulley 0.1840 SHOULDER 0.05 end
 end

muscle POST_DELTOID
 fmax 800
 lceopt 0.1280 lslack 0.0538 width 1.0
 geometry pulley 0.1840 SHOULDER -0.05 end
 end

muscle BRACHIALIS
 fmax 700
 lceopt 0.1028 lslack 0.0175 width 1.0
 geometry pulley 0.1210 ELBOW 0.03 end
 end

muscle TRICEPS_SH
 fmax 700
 lceopt 0.0877 lslack 0.1905 width 1.0
 geometry pulley 0.2858 ELBOW -0.03 end
 end

muscle TRICEPS_LH
 fmax 1000
 lceopt 0.0877 lslack 0.1905 width 1.0
 geometry pulley 0.2858 SHOULDER -0.03 ELBOW -0.03 end
 end

muscle BICEPS
 fmax 1000
 lceopt 0.1422 lslack 0.2298 width 1.0
 geometry pulley 0.3812 SHOULDER 0.03 ELBOW 0.03 end
 end

end

Next, arm.torques.bio reads:

arm.bio
torques // this line necessary for reinforcement learning
program, and it must be the 2nd line!

six muscles for the planar arm model
Fmax and moment arms from Bhushan & Shadmehr, Biol Cybern 1999

verbose_level 0

joint SHOULDER
 distal_body upperarm
 limits -90 180
 end

185

joint ELBOW
 distal_body forearm
 limits 0 180
 end

muscle default
 a 0.25
 vmrel 10
 umax 0.04
 fecmax 1.5
 krel 0.0
 slopfac 2.0
 PEEslack 1.0
 time_constants 0.040 0.060
 end

note: the following values of lceopt and lslack were
taken from
Garner, B.A., Pandy, M.G. "Estimation of Musculotendon
Properties in the Human Upper Limb." Annals of
Biomedical Engineering, February 2003, vol. 31,
no. 2, pp. 207 - 220.
Specifically, the values were taken from the
"model" column of Table 3 (p. 216).

end

Finally, arm_info reads:

SD/FAST Information File: arm.sd
Generated 30-May-2004 12:33:04 by SD/FAST, Kane's formulation
(sdfast B.2.8 #30123) on machine ID unknown

ROADMAP (arm.sd)

Bodies Inb
No Name body Joint type Coords q
--- --------- ---- ----------- ----------------
 -1 $ground
 0 upperarm -1 Pin 0
 1 forearm 0 Pin 1

STATE INDEX TO JOINT/AXIS MAP (arm.sd)

186

 Index
 q|u Joint Axis Joint type Axis type Joint Name
 ----- ----- ---- ----------- ---------- ----------
 0|2 0 0 Pin rotate
 1|3 1 0 Pin rotate

SYSTEM PARAMETERS (arm.sd)

Parameter Value Description

nbod 2 no. bodies (also, no. of tree joints)
njnt 2 total number of joints (tree+loop)
ndof 2 no. degrees of freedom allowed by tree joints
nloop 0 no. loop joints
nldof 0 no. degrees of freedom allowed by loop joints

nq 2 no. position coordinates in state (tree
joints)
nu 2 no. rate coordinates in state (tree joints)
nlq 0 no. position coordinates describing loop
joints
nlu 0 no. rate coordinates describing loop joints

nc 0 total no. constraints defined
nlc 0 no. loop joint constraints
npresc 0 no. prescribed motion constraints
nuserc 0 no. user constraints

187

APPENDIX F

Table F1 provides a complete listing of the parameter sets utilized by the continuous

actor-critic throughout this thesis. Table F2 provides comments on each parameter set.

 Fast Slow A B ILWR ILWR-
Pretrain

General Pendulum
Swing-Up

Aη 70 10 0.001 99.5 70 0 70 5

Cη 0 0.344 0.0001 34.4 0.1 0.1 0.344 1

σ 9,000 9,000 74.5 7991 9,000 9,000 9,000 N/A

Nτ 2,400 2,400 0.55 2,500 2,400 2,400 2,400 1

τ 0.1 0.1 1 1 0.1 0.1 0.1 1
κ 0.1 0.1 0.55 71.5 0.1 0.1 0.1 1

Ak 0 0 0 0 0 0 0.0000002 0

Ck 0 0 0 0 0 0 0.000002 0

D N/A N/A N/A N/A (.5, .5 , .3, .3, .5 , .5)diag (.5 , .5 , .3, .3, .5 , .5)diag N/A N/A

Table F1: A complete listing of parameter sets for the continuous actor-critic implementations in
this thesis.

Fast Uses pre-trained ANN actor and ANN critic-10
Slow Uses pre-trained ANN actor and ANN critic-10
A Uses pre-trained ANN actor and ANN critic-20
B Uses pre-trained ANN actor and ANN critic-20
ILWR Uses pre-trained ANN actor and ILWR critic
ILWR-
Pretrain

Uses pre-trained ANN actor and random initial ILWR critic

General Uses pre-trained ANN actor and ANN critic-10
Pendulum
Swing-Up

Uses random initial ANNs for the actor and critic

Table F2: Comments on the usage of each parameter set from Table F1.

188

REFERENCES
[1] Abbas, J.J., and Triolo, R.J. (1997). Experimental Evaluation of an Adaptive

Feedforward Controller for use in Functional Neuromuscular Stimulation Systems.

IEEE Transactions on Rehabilitation Engineering, 5(1): 12–22.

[2] Atkeson, C.G., Moore, A.W., Schaal, S. (1997). Locally Weighted Learning.

Artificial Intelligence Review. 11–73.

[3] Barto, A.G., Sutton, R.S., and Anderson, C.W. (1988). Neuronlike Elements that can

Solve Difficult Learning Control Problems. IEEE Transactions on Systems, Man, and

Cybernetics, 13:835-846, 1983. Reprinted in J. A. Anderson and E. Rosenfeld,

Neurocomputing: Foundations of Research, MIT Press, Cambridge, Massachusetts.

[4] Baxt, W.G. (1990). Use of an Artificial Neural Network for Data Analysis in Clinical

Decision-Making: The Diagnosis of Acute Coronary Occlusion. Neural Computation,

2: 480–489.

[5] Bellman, R. (1957). A Markovian Decision Process. Journal of Mathematics and

Mechanics 6.

[6] Blana, D., Kirsch, R.F., Chadwick, E.K. (2009). Combined Feedforward and

Feedback Control of a Redundant, Nonlinear, Dynamic Musculoskeletal System.

Medical and Biological Engineering and Computing. 47:533–542.

[7] Braz, G.P., Russold, M., Smith, R.M., and Davis, G.M. (2007). Electrically-Evoked

Control of the Swinging Leg After Spinal Cord Injury: Open-Loop or Motion Sensor-

Assisted Control? Australasian Physical Engineering Sciences in Medicine, 30(4):

317–323.

189

[8] Chadwick, E.K., Blana, D., van den Bogert, A.J., and Kirsch, R.F. (2009). A Real-

Time, 3-D Musculoskeletal Model for Dynamic Simulation of Arm Movements.

IEEE Transactions on Biomedical Engineering, 56(4): 941–948.

[9] Chang, G.C., Luh, J.J., Liao, G.D., Lai, J.S., Cheng, C.K., Kuo, B.L., and Kuo, T.S.

(1997). A Neuro-Control System For the Knee Joint Position Control With

Quadriceps Stimulation. IEEE Transactions on Rehabilitation Engineering, 5(1): 2–

11.

[10] Crago, P.E., Lan, N., Veltink, P.H., Abbas, J.J., and Kantor, C. (1996). New Control

Strategies for Neuroprosthetic Systems. Journal of Rehabilitation Research and

Development, 33(2): 158–172.

[11] Crago, P.E., Nakai, R.J., and Chizeck, H.J. (1991). Feedback Regulation of Hand

Grasp Opening and Contact Force During Stimulation of Paralyzed Muscle. IEEE

Transactions on Biomedical Engineering, 38(1): 17–28.

[12] Davoodi, R., and Andrews, J.B. (1998). Computer Simulation of FES Standing Up in

Paraplegia: A Self-Adaptive Fuzzy Controller With Reinforcement Learning. IEEE

Transactions on Rehabilitation Engineering 6(2): 151–161.

[13] Doya, K. (2000). Reinforcement Learning in Continuous Time and Space. Neural

Computation, 12(1):219–245.

[14] Edwards, C.H., Penney, D.E. (2002). Calculus, Matrix Version, Englewood Cliffs,

NJ: Prentice Hall. Sixth Edition.

[15] Ferrarin, M., Pavan, E.E., Spadone, R., Cardini, R., and Frigo, C. (2002). Standing-

Up Exerciser Based on Functional Electrical Stimulation and Body Weight Relief.

Medical and Biological Engineering and Computing, 40(3): 282–289.

190

[16] Franklin, G.F., Powell, D.J. Workman, L.M. (1997). Digital Control of Dynamic

Systems, Englewood Cliffs, NJ: Prentice Hall. Third Edition.

[17] Gullapalli, V. (1990). A Stochastic Reinforcement Learning Algorithm for Learning

Real-Valued Functions. Neural Networks, 3:671–192.

[18] Hagen, S.T., Kröse, B. (2000). Q-learning for Systems with Continuous State and

Action Spaces. 10th Belgian-Dutch Conference on Machine Learning, Tilburg, The

Netherlands, 13 December.

[19] Hutchinson, J.M. (1994). A Radial Basis Function Approach to Financial Time Series

Analysis. Ph.D. dissertation, Massachusetts Institute of Technology.

[20] Izawa, J., Toshiyuki, K., and Koji, I. (2004). Biological Arm Motion Through

Reinforcement Learning. Biological Cybernetics, 91(1): 10–22.

[21] Izhikevich, E.M. (2007). Dynamical Systems in Neuroscience: The Geometry of

Excitability and Bursting, MIT Press, Cambridge, Massachusetts.

[22] Jaeger, R.J. (1992). Lower Extremity Applications of Functional Neuromuscular

Stimulation. Assistive Technology, 4(1): 19–30.

[23] Jagodnik, K.M., and van den Bogert, A.J. (2007). A Proportional Derivative FES

Controller for Planar Arm Movement. 12th Annual Conference International FES

Society, Philadelphia.

[24] Jagodnik, K.M., van den Bogert, K.M., Branicky, M.B., Thomas, P.S. (2008). A

Proportional Derivative Controller for Planar Arm Movement. North American

Congress on Biomechanics (NACOB), Ann Arbor, Michigan, 5–9 August. Poster.

[25] Kaelbling, L.P., Littman, M.L., and Moore, A.W. (1996). Reinforcement Learning: A

Survey. Journal of Artificial Intelligence Research, Volume 4.

191

[26] Klassen, M., Pao, Y.H., Chen, V. (1988). Characteristics of the Functional Link Net:

A Higher Order Deltarule Net. Proceedings of the IEEE Second Annual International

Conference on Neural Networks, San Diego, California, July.

[27] Kobetic, R., and Marsolais, E.B. (1994). Synthesis of Paraplegic Gait With Multi-

Channel Functional Neuromuscular Stimulation. IEEE Transactions on

Rehabilitation Engineering, 2: 66–79.

[28] Le Cun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., and

Jackel, L. D. (1990). Handwritten Digit Recognition with a Back-propagation

Network. Advances in Neural Information Processing Systems, 2: 248–257.

[29] Leung, M.T., Engeler, W.E., and Frank, P. (1990). Fingerprint Processing using

Backpropagation Neural Networks. Proceedings of the International Joint

Conference on Neural Networks I, 15–20.

[30] Lynch, L.C.; and Popovic, R.M. (2008). Functional Electrical Stimulation: Closed-

Loop Control of Induced Muscle Contractions. IEEE Control Systems Magazine,

28(2): 40–50.

[31] McLean, S.G., Su, A., and van den Bogert, A.J. (2003). Development and Validation

of a 3-D Model to Predict Knee Joint Loading During Dynamic Movement. Journal

of Biomechanical Engineering, 125(6): 864–874.

[32] Mitchell, T. (1997). Machine Learning. Singapore: McGraw-Hill.

[33] Peckham, P.H., Keith, M.W., Kilgore, K.L., Grill, J.H., Wuolle, K.S., et al. (2001).

Efficacy of an Implanted Neuroprosthesis for Restoring Hand Grasp in Tetraplegia: A

Multicenter Study. Archives of Physical Medicine and Rehabilitation, 82: 1380–1388.

192

[34] Peckham, P.H., and Knutson, J.S. (2005). Functional Electrical Stimulation for

Neuromuscular Applications. Annual Review of Biomedical Engineering, 7: 327–360.

[35] Pomerleau, D.A. (1993). Neural Network Perception for Mobile Robot Guidance.

Boston: Kluwer.

[36] Ragnarsson, K.T. (2008). Functional Electrical Stimulation After Spinal Cord Injury:

Current Use, Therapeutic Effects and Future Directions. Spinal Cord, 46(6): 255–274.

[37] Russell, S., and Norvig, P. (1995). Artificial Intelligence: A Modern Approach,

Englewood Cliffs, NJ: Prentice Hall. Second Edition.

[38] Schaal, S., Atkeson, C.G., and Vijayakumar, S. (2002). Scalable Techniques From

Nonparametric Statistics for Real Time Robot Learning. Applied Intelligence, 17:49–

60.

[39] Schultz, A.B., Faulkner, J.A., and Kadhiresan, V.A. (1991). A Simple Hill Element-

Nonlinear Spring Model of Muscle Contraction Biomechanics. Journal of Applied

Physiology, 70(2): 803–812.

[40] Sejnowski, T.J., Yuhas, B.P., Goldstein, M.H., Jr., and Jenkins, R.E. (1990).

Combining Visual and Acoustic Speech Signals with a Neural Network Improves

Intelligibility. Advances in Neural Information Processing Systems, 2: 232–239.

[41] Shannon, C.E. (1950). Programming a Computer for Playing Chess. Philosophical

Magazine, 41:256–275.

[42] Shea, P.M., and Liu, F. (1990). Operational Experience with a Neural Network in the

Detection of Explosives in Checked Airline Baggage. Proceedings of the

International Joint Conference on Neural Networks, Vol. II, 175–178.

193

[43] Sheffler, L.R., and Chae, J. (2007). Neuromuscular Electrical Stimulation in

Neurorehabilitation. Muscle Nerve, 35(5): 562–590.

[44] Spinal Cord Injury Facts and Figures at a Glance. (2008). National Spinal Cord

Injury Statistical Center (NSCISC), Birmingham, Alabama, January.

[45] Stroeve, S. (1996). Learning Combined Feedback and Feedforward Control of a

Musculoskeletal System. Biological Cybernetics, 75(1): 73–83.

[46] Sujith, O.K. (2008). Functional Electrical Stimulation in Neurological Disorders.

European Journal of Neurology, 15(5): 437–444.

[47] Sukharev, A.G. (1971). Optimal Strategies of the Search for an Extremum. U.S.S.R.

Computational Mathematics and mathematical Physics, 11(4). Translated from

Russian, Zh. Vychisl. Mat. i Mat. Fiz., 11, 4, 910–924.

[48] Sutton, R.S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT

Press, Cambridge, Massachusetts.

[49] Thomas, P.S., Branicky, M.B., van den Bogert, A.J., and Jagodnik, K.M. (2008a).

Creating a Reinforcement Learning Controller for Functional Electrical Stimulation

of a Human Arm. Proceedings of the Fourteenth Yale Workshop on Adaptive and

Learning Systems, New Haven, Connecticut, 1–6 June.

[50] Thomas, P.S., Branicky, M.B., van den Bogert, A.J., and Jagodnik, K.M. (2008b).

Creating a Reinforcement Learning Controller for Functional Electrical Stimulation

of a Human Arm. Research ShowCase. Case Western Reserve University, Cleveland,

Ohio, 17 April. Poster.

194

[51] Thomas, P.S., Branicky, M.B., van den Bogert, A.J., and Jagodnik, K.M. (2008c).

FES Control of a Human Arm using Reinforcement Learning. Adaptive Movements in

Animals and Machines (AMAM), Cleveland, Ohio, 1–6 June. Poster.

[52] Thomas, P.S., Branicky, M.B., van den Bogert, A.J., and Jagodnik, K.M. (2009a).

Application of the Actor-Critic Architecture to Functional Electrical Stimulation

Control of a Human Arm. Proceedings of the Twenty-First Innovative Applications of

Artificial Intelligence Conference, Pasadena, 14–16 July. To appear.

[53] Thomas, P.S., Branicky, M.B., van den Bogert, A.J., and Jagodnik, K.M. (2009b).

Achieving Long-Term Stability using a Reinforcement Learning Controller for

Functional Electrical Stimulation Control of a Human Arm. Research ShowCase.

Case Western Reserve University, Cleveland, Ohio, 16 April. Poster.

[54] Vijayakumar, S., D'Souza, A., Schaal, S. (2005). Incremental Online Learning in

High Dimensions. Neural Computation, 17(12):2602–2634.

[55] Watkins, C.J.C.H. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge

University, Cambridge, England.

[56] Wedge, N.A. (2004). Analysis of Cellular Cardiac Bioelectricity Models Toward

Computationally Efficient Whole-Heart Simulation. MS thesis, Case Western Reserve

University, Cleveland, Ohio.

[57] Witten, I. H. and Corbin, M. J. (1973). Human Operators and Automatic Adaptive

Controllers: A Comparative Study on a Particular Control Task. International Journal

of Man-Machine Studies, 5:75–104.

[58] Witten, I.H. (1977). An Adaptive Optimal Controller for Discrete-time Markov

Environments. Information and Control, 34:286–295.

195

[59] Wheeler, G.D., Andrews, B., Lederer, R., Davoodi, R., Natho, K., Weiss, C., Jeon, J.,

Bhambhani, Y., and Steadward, R.D. (2002). Functional Electrical Stimulation-

Assisted Rowing: Increasing Cardiovascular Fitness Through Functional Electrical

Stimulation Rowing Training in Persons With Spinal Cord Injury. Archives of

Physical Medicine and Rehabilitation, 83(8):1093–1099.

	Title Page
	Signature Sheet
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Acknowledgements
	Chapter 1: Introduction
	1.1 Functional Electrical Stimulation (FES)
	1.2 Problem Statement (Adaptive RL FES Controller Task)
	1.3 Thesis Contribution
	1.4 Thesis Outline
	1.5 Implementation

	Chapter 2: Background
	2.1 Proportional Derivative (PD) and Proportional Integral Derivative (PID) Controllers
	2.2 Reinforcement Learning (RL)
	2.2.1 History
	2.2.2 Problem Statement
	2.2.3 Value Function
	2.2.4 Optimal Policy
	2.2.5 Q-Functions
	2.2.6 Temporal Difference (TD) Methods
	2.2.7 Discrete Actor-Critic
	2.2.8 Continuous Actor-Critic
	2.2.9 Stochastic Real-Valued Unit Algorithm (SRV Algorithm)
	2.2.10 Continuous Actor-Critic Analysis

	2.3 Function Approximators
	2.3.1 Artificial Neural Networks (ANNs)
	2.3.2 Functional Link Networks (FLNs)
	2.3.3 k-Nearest Neighbors (k-NN)
	2.3.4 Locally Weighted Regression (LWR)
	2.3.5 Radial Basis Functions (RBFs)
	2.3.6 Function Approximator Performance Summary

	2.4 Pendulum Swing-Up Case Study

	Chapter 3: Incremental Locally Weighted Regression
	3.1 Experiments
	3.1.1 Sigmoid Environment
	3.1.2 Double Environment
	3.1.3 FitzHugh-Nagumo Approximation (Accuracy)
	3.1.4 FitzHugh-Nagumo Approximation (Learning Speed)
	3.1.5 Non-Stationary Function

	3.2 Conclusion

	Chapter 4: DAS1 Arm Simulation Experiments
	4.1 Pre-Training and Evaluation
	4.2 Control Test (CT)
	4.3 Baseline Biceps Test (BBT)
	4.4 Fatigued Triceps Test (FTT)
	4.5 Noise Robustness Test (NRT)
	4.6 Fatigued Biceps Test (FBT)
	4.7 Toggling Test (TT)
	4.8 Delayed Reward Test (DRT)
	4.9 Discrete Reward Test (DiRT)
	4.10 Continuous Learning Modification (CLM)

	Chapter 5: DAS1 ANN Actor-Critic Results
	5.1 Pre-Training
	5.2 Parameter Optimization
	5.3 Control Test (CT)
	5.4 Baseline Biceps Test (BBT)
	5.5 Fatigued Triceps Test (FTT)
	5.6 Effects of Exploration
	5.7 Noise Robustness Test (NRT)
	5.8 Delayed Reward Test (DRT)
	5.9 Discrete Reward Test (DiRT)
	5.10 Continuous Learning Modification (CLM)
	5.11 An Unexplained and Unexpected Phenomenon

	Chapter 6: Long-Term Stability
	6.1 TD-Error Cap
	6.2 Muscle Force Weight
	6.3 Monitor Critic
	6.4 Weight Decay Term
	6.5 Hybrid Controller Achieving Fast Learning and Long-Term Stability
	6.6 Conclusion

	Chapter 7: DAS1 ILWR-Critic Results
	7.1 Pre-Training
	7.2 Parameter Optimization
	7.3 Control Test (CT)
	7.4 Baseline Biceps Test (BBT)
	7.5 Fatigued Triceps Test (FTT)
	7.6 Noise Robustness Test (NRT)
	7.7 Conclusion

	Chapter 8: Conclusion
	8.1 Results and Contribution
	8.2 Future Work

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	References

