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Abstract 
Clinical tests have shown that the dynamics of a human 
arm, controlled using Functional Electrical Stimulation 
(FES), can vary significantly between and during trials. In 
this paper, we study the application of the actor-critic 
architecture, with neural networks for the both the actor and 
the critic, as a controller that can adapt to these changing 
dynamics of a human arm. Development and tests were 
done in simulation using a planar arm model and Hill-based 
muscle dynamics. We begin by training it using a 
Proportional Derivative (PD) controller as a supervisor. We 
then make clinically relevant changes to the dynamics of the 
arm and test the actor-critic's ability to adapt without 
supervision in a reasonable number of episodes. Finally, we 
devise methods for achieving both rapid learning and long-
term stability. 

Introduction   
 People with spinal cord injury (SCI) are often unable to 
move their limbs, though most of their nerves and muscles 
may be intact. Functional Electrical Stimulation (FES) can 
activate these muscles to restore movement by activating 
motor neurons with electrical currents, which are applied 
via subcutaneous probes. By intelligently selecting the 
current given to the motor neurons associated with each 
muscle, individual muscles can be stimulated by various 
amounts, allowing researchers to control a subject's 
muscles. For background information on FES refer to 
(Sujith 2008; Ragnarsson 2008; Sheffler and Chae 2007; 
Peckham and Knutson 2005).  
 Open-loop control has been applied to FES systems 
including hand grasp (Peckham et al. 2001), rowing 
(Wheeler et al. 2002), and gait (Kobetic and Marsolais 
1994; Braz et al. 2007). The drawbacks to open-loop (feed-
forward) control are that detailed information about the 
system’s properties is required to produce accurate 
movements, and that poor movements can result if the 
properties of the system change (Crago et al. 1996). 
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 Closed-loop control, which involves the use of sensors 
for feedback, has been applied to FES tasks such as hand 
grasp (Crago et al. 1991), knee joint position control 
(Chang et al. 1997), and standing up (Ferrarin et al. 2002). 
This form of control has the advantages that it can 
significantly improve performance as compared to feed-
forward control, and it can compensate for disturbances 
(Crago et al. 1996). However, challenges related to using 
the required sensors have largely prevented feedback 
control from being used in a clinical setting (Jaeger 1992). 
 Other more complex controllers, such as those 
combining feed-forward and feedback control (Stroeve 
1996) or adaptive feed-forward control (Abbas and Triolo 
1997) have been largely tested only in simulation or in 
simple human systems.  
 In practice, basic closed-loop controllers have been 
manually tuned to each subject to overcome significant 
differences in dynamics from simulation, often due to 
muscle spasticity and atrophy. Traditional closed-loop 
controllers, such as those described in the following 
section, are also unable to adapt to muscle fatigue during 
trials, which is frequent because muscle atrophy can create 
a higher proportion of fast-twitch muscle fibers, which 
fatigue faster than slow-twitch fibers. Fatigue is also 
exacerbated because FES has a high stimulation frequency 
compared to a healthy central nervous system (Lynch and 
Popovic 2008).  
 Reinforcement learning (RL) techniques (Sutton and 
Barto 1998) can be used to create controllers that adapt to 
these changes in system dynamics, finding non-obvious 
and efficient strategies. Within FES, RL has been tested in 
simulation to control a standing up movement (Davoodi 
and Andrews 1998) but this did not require generalization 
or a command input. RL has also been shown to control 
arm movements (Izawa et al. 2004), but learning required 
too many episodes for clinical applications. In prior work 
by the authors, RL was used to adapt to changing dynamics 
in a simulated arm, though the resulting controller used 
impractical exploration, was not stable, and was not shown 
to be robust to sensor noise (Thomas et al. 2008). 
 In this paper, we extend our prior work and try to design 
a stable and robust controller based on RL that can quickly 
adapt to various realistic changes in arm dynamics, which 



 

 

would otherwise cause significant loss of performance. The 
approach chosen was to first train the agent to approximate 
the PD controller described in the following section, giving 
it a near optimal policy. Next we found parameters for the 
RL system that perform well on a specific real-world 
adaptation problem, the Baseline Biceps Test (BBT). The 
resulting parameters of the optimization were then tested 
on other relevant adaption and robustness tests: the Control 
Test (CT), Fatigued Triceps Test (FTT), and the Noise 
Robustness Test (NRT). In all cases, speed of learning and 
long term stability were evaluated. Finally, a hybrid RL 
controller was devised that achieves both rapid initial 
learning and long-term stability. 
 

Static Linear Controllers 
 A computational model (Figure 1) was used to test 
controllers in simulation. The arm moved in a horizontal 
plane without friction, had two joints (shoulder and elbow) 
and was driven by six muscles. Two of the four muscles 
act across both joints. Each muscle was modeled by a 
three-element Hill model and simulated using two 
differential equations, one for activation and one for 
contraction (McLean et al. 2003). Consequently, muscle 
force was not directly controlled but indirectly via muscle 
dynamics. The internal muscle states (active state and 
contractile element length) were hidden and not available 
to the controller. 
 Jagodnik and van den Bogert (2007) have designed a 
Proportional Derivative (PD) controller for planar control 
of the arm of a paralyzed subject. The gains for the PD 
controller were tuned to minimize joint angle error and 
muscle forces for a two-dimensional arm simulation using 
a Hill-based muscle model (Schultz et al. 1991) with a time 
step of 20ms. 
 

 
Figure 1: Two-joint, six-muscle biomechanical arm model used. 
Antagonistic muscle pairs are as follows, listed as (flexor, 
extensor): monoarticular shoulder muscles (a: anterior deltoid, b: 
posterior deltoid); monoarticular elbow muscles (c: brachialis, d: 
triceps brachii (short head)); biarticular muscles (e: biceps 
brachii, f: triceps brachii (long head)). 
 
 During human trials, Jagodnik and van den Bogert 
(2007) found that the PD controller's gain matrix often 
required retuning to account for changing dynamics in the 
subject's arm. The subject's arm  differed significantly from 
the ideal arm used in simulation because it had baseline 

biceps stimulation due to spasticity. Results from 
simulation, which will be given later, support the claim 
that PD and PID controllers do not perform well with 
changing dynamics. 
 The output equation for the PD and PID controllers is 
 
 u Gs= , (1) 
 
where u is a 6x1 vector of muscle stimulations and G is a 
6x4 gain matrix for the PD controller and a 6x6 gain 
matrix for the PID controller. The error vector, s, is given 
by 
 

 ( ) ( ) ( ) T
Goal[ , ]s t t tθ θ θ= −  (2) 

for the PD controller, and 
 

 ( ) ( ) ( ) ( ) ( )
T

Goal Goal[ , , ]s t t t dθ θ θ θ τ θ τ τ= − −∫  (3) 
 
for the PID controller, where ( )tθ  is a vector of the 
shoulder and elbow joint angles, and         contains the 
target joint angles. The integral error term was 
approximated using backward rectangular approximation.  
 We implemented a Proportional Integral Derivative 
(PID) controller to determine whether a more sophisticated 
closed-loop architecture could better cope with the 
changing dynamics of the arm. The gains were tuned using 
the Random- Restart Hill Climbing (RRHC) minimization 
algorithm (Russell and Norvig 1995) using the same 
evaluation criteria as Jagodnik and van den Bogert (2007). 
For the random restarts, the proportional and derivative 
gains were taken from the PD controller, and the integral 
gains chosen randomly between 1−  and 1. The gradient 
was sampled in steps of 5% of each current gain value, 
with sign changes allowed as each weight approaches 0. 
 To test the PID's ability to adapt to changing dynamics, 
the arm model was modified to include a baseline biceps 
stimulation. The biceps muscle was given the PID's 
instructed stimulation to the biceps muscle plus an 
additional 20% (not to exceed 100%). This simulated the 
spasticity that was observed during human trials of the PD 
controller. When using the PID controller during a two-
second episode with an initial state of shoulder joint angle 
θ1=20°, elbow joint angle θ2=90°, and a goal state of 
θ1=90°, θ2=20°, the arm overshoots the goal state by  .216 
radians for the shoulder angle, and .231 radians on the 
elbow angle, which equates to an overshoot of 23cm for a 
typical arm. Unlike the PD and PID controllers, the RL 
controller described in the next section learns to avoid 
overshooting the goal position given unexpected muscle 
spasticity. 
 Retuning of static linear controllers could restore 
performance, but would require extensive trial and error 
experimentation to find the optimal controller. Such a 
design process would not scale well to systems with more 
muscles and more joints, especially considering that this 
must be done on a patient. We therefore decided to 
consider RL as a method for adaptive control. RL learns 
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online from experience and exploration and allows us to 
shape the reward signal such that its time integral 
corresponds with the chosen optimality criterion. 

Reinforcement Learning Methods 
 We chose to use the actor-critic architecture (Sutton and 
Barto 1998) because of its ability to reduce the 
dimensionality of the problem as opposed to other 
temporal difference (TD) learning architectures. For a 
problem involving an m-dimensional state space and an n-
dimensional action space, state-action based agents, such 
as Q-learning agents, must compute a function 

: 1m nf × → . In the actor-critic architecture, this 
problem is reduced to two lower-dimensional problems: 
learning the value function : 1mf →  and learning the 
policy : m nf → . This explicit representation of the 
policy also avoids the problem of finding the optimal 
action given the Q function, which can be difficult when 
working in continuous space with an infinite number of 
possible actions. With these considerations, we selected the 
continuous actor-critic (Doya 2000), reviewed below. 
 The actor and critic were implemented using artificial 
neural networks (ANNs) with ten neurons in their hidden 
layers and one neuron in their output layers. Experiments 
with varying numbers of neurons had similar results. The 
neurons in the output layers used the identity threshold 
function, while the neurons in the hidden layers used the 
sigmoid threshold function 
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 The actor-critic uses a 6x1 state vector x, given by 

 ( ) ( ) ( ) ( ) T
Goal[ , , ]x t t t tθ θ θ= . (5) 

 
At each time step, the 6x1 action vector of muscle 
stimulations ( )u t  was computed using 
 

 
( ) ( )( ) ( )( );u t S A x t w n tσ= + ⋅ , (6) 

 
where ( ( ); )A x t w  is the actor ANN with weight vector w, 
σ is a noise scaling constant, and ( )n t  is the 6x1 noise 
vector given by 
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where ( )tN  is normal Gaussian noise and τn is another 
noise scaling constant. The noise is initialized to 0: 

(0) 0n = .  
 The resulting TD error was computed using a backward 
Euler approximation given by 
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Δ
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where tΔ  is the discrete time step for learning updates, τ  
is the time constant for discounting future rewards, ( )tV  is 
the critic's estimate of the value of the state at time t and 
( )r t  is the instantaneous reward given by 

 

 
( )

22
Goali

i
r t W u θ θ= − −∑ , (9) 

 
where ui is the stimulation of the ith muscle and .016W = , 
a value that was empirically found to generate desirable 
behavior in which position error and effort were 
appropriately balanced. This signal is nearly identical to 
that used to train the PID controller and PD controller 
(Jagodnik and van den Bogert 2007), except it uses muscle 
stimulations rather than muscle forces. This change was 
made because muscle forces are not directly observable in 
practice. 
 The weights for the critic ANN were then updated using 
 
 ( ) ( )i C i C C iw t e t k wη δ η= − ,

 
(10) 

 
where ηC is the learning rate, kC is a weight decay constant, 
and ei(t) is the eligibility trace for the corresponding 
weight, given by 
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where κ is a time constant and 0 κ τ< ≤ . Finally, each 
weight in the actor ANN is updated using 

 
( ) ( ) ( )( ) ( ) ( )

; T
i A A A i

i

A x t w
w t n t n t n t k w

w
η δ η

∂
= ⋅ −

∂
,

  
(12) 

where ηA is a learning rate and kA is a weight decay 
constant. Note the dot product between the noise and the 
derivative of the actor ANN with respect to each weight. 
To ensure stability in both the actor and the critic while 
allowing for larger learning rates, the magnitude of the TD 
error, ( )tδ , was capped at .5. 

Pre-training 
 Before beginning reinforcement learning using the 
equations above, the actor-critic was pre-trained using the 
PD controller as a supervisor. To do this, the actions for 
550,000 training points and 170,000 testing points, each 
consisting of the state and corresponding action generated 
by the PD controller, were run through the inverse 
sigmoid, generating training points for the actor ANN, 

( )( );A x t w  from Equation 6. The actor ANN was then 
trained using the error backpropagation algorithm with a 



 

 

learning rate of .001 (Russell and Norvig 1995). After 
2,000 epochs, each of which consisted of training once on 
each of the 550,000 training points, the actor converged to 
a policy qualitatively similar to the PD controller's policy. 
 The critic ANN was then trained using the full actor-
critic with the previously trained actor. The actor's policy 
was fixed while the critic was brought on-policy. For each 
two second episode, the start and goal were randomly 
selected movements with the sum of the squared difference 
in joint angles (in radians) between the initial and goal 
configurations being greater than .6. This constraint 
removed episodes in which the arm did not have to make a 
significant motion. All future training was done with the 
same episode duration and constraints. 
 The actor-critic thus begins with an actor ANN that is a 
close approximation of the PD controller, and an on-policy 
critic. When the arm dynamics change, the critic will not 
be on-policy, but will reconverge quickly. 

Evaluation 
 To evaluate actor-critic performance, we use a backward 
Euler approximation of the integral of the reward signal, 
averaged over 256 fixed episodes involving large motions 
over the state space. The larger the evaluation, the better, 
though because all rewards are negative, the evaluations 
will always be negative. For comparison throughout, the 
PD controller's evaluation is .18− , and the actor, after pre-
training on the PD controller, has an evaluation of .21.−  
These numbers represent smooth, fast, and efficient 
movements, as judged from inspecting the movements and 
muscle forces generated during these tests. 
 Four tests were devised to judge the actor-critic's 
learning and adaptive capabilities for medically relevant 
changes in the system. The first was a control test, where 
the dynamics of the arm were not changed, allowing the 
actor-critic to further adapt to the standard arm model. 
 The second test was inspired by PD controller human 
trials in which the subject had spasticity of the biceps 
brachii, causing it to exert a constant low level of torque on 
both joints. This Baseline Biceps Test (BBT) involved 
adding 20% of the maximum stimulation to the stimulation 
requested by the controller in order to simulate the 
condition of the subject used in PD controller tests. In the 
BBT, when using the PD controller or the actor-critic 
trained on it, the steady state of the arm is 
counterclockwise of the goal state at the point where the 
controller's requested triceps stimulation balances out the 
baseline biceps stimulation.  The actor-critic's evaluation 
on the BBT is .65−  immediately after pre-training (i.e., 
before further learning). 
 The third test, the Fatigued Triceps Test (FTT), 
simulates the effects of a muscle being severely weakened. 
In this test, the triceps stimulation used is 20% of the 
requested triceps (long head) stimulation. Thus, when a 
controller requests full triceps stimulation, only 20% will 
be given. Unlike the BBT, this does not change the steady 
state when using the PD controller, though it does induce 
overshoot if the initial configuration is clockwise of the 

goal. This occurs because the biceps is used to pull the arm 
towards the goal, and the triceps is used to stop it at the 
goal configuration. With the triceps weakened, the PD 
controller does not exert enough torque to overcome the 
arm's angular momentum. The actor-critic's evaluation on 
the FTT immediately after pre-training is .22.−  
 The fourth test, the Noise Robustness Test (NRT), adds 
sensor noise to the model to test the robustness of the 
controller on the BBT. Standard normal Gaussian noise 
was added to both the joint angle measurements, ( )tθ , and 
the joint angle velocity measurements, ( )tθ , scaled by the 
constants θσ  and θσ  respectively. Realistic values for 
these two parameters are .1θσ <  and .3θσ < . For all tests, 

tΔ =.02s. 
 The actor-critic's ability to improve the policy on each 
test hinges on all of its learning parameters being properly 
set. The six learning parameters, τ, τn, κ, σ, ηA and ηC were 
optimized via RRHC search for the BBT, and their 
generalizability was tested using the FTT. 
 The RRHC search sampled the gradient of the 
performance by evaluating it at 90% and 110% of the 
current value for each learning parameter. Each parameter 
set's learning abilities were measured as the average 
evaluation after 100, 200, 500, and 1000 random training 
episodes. Again, only interesting episodes were allowed, in 
which the squared difference in joint angles between the 
initial and goal configurations was greater than .6. Random 
restarts used a logarithmic distribution half the time, and a 
linear distribution the other half of the time in order to 
better explore the extremes and full range of the parameter 
space. 
 Figure 2 shows performance on the three tests after pre-
training, but before any further training. 
 

 
  Control Test  Baseline Biceps Test  Fatigued Triceps Test 

Figure 2: Initial actor ANN's performance on a particular motion 
for the three tests. The black state is the goal state (90°, 20°), the 
medium grey state is the final state after two seconds of 
simulation, and the light grey states are snapshots of the arm 
location taken every 20ms. The initial condition is the clockwise-
most trace (20°, 90°). In the BBT, the final state is the 
counterclockwise-most trace, while in the control test and FTT 
the final state partially obscures the goal state. 

Test Results 
 Of the 4,460 learning parameter sets examined by the 
RRHC search, 1,363 had evaluations higher than .3.−  
However, many of the best learning parameter sets found 
by the optimization did not have stable evaluations. For 
example, the best parameter set received an evaluation of 



 

 

.22−  during the optimization, though further tests found 
their average evaluation was –.33 with a standard deviation 
of .15 (N=100).  
 The parameter values τ=.1s, τn=2400, κ=.1, and σ=9000, 
were found to work best while providing realistic 
exploration. The learning rates in Table 1 were selected for 
further evaluation. They are manually tuned parameters 
similar to those from RRHC, which gave consistently good 
evaluations. 
 

Parameter 
Names 

ηA ηC kA kC 

Slow 10 .344 0 0 
Fast 70 0 0 0 

Table 1: Parameter sets representative of those found by RRHC. 
 

The slow parameters represent slow and stable on-policy 
learning, while the fast parameters represent rapid initial 
learning using the shape of the pre-trained critic. Because 
we do not want adaptation to slow or stop, the learning 
rates are not decayed. 

Control Test 
Using the fast parameters on the control test, the system 

initially improves its evaluation, before becoming unstable. 
Qualitatively, the arm movements begin to oscillate around 
the goal state within the first 1,000 episodes. Using the 
slow parameters, learning is significantly slower, though 
stable. Figure 3 show the short and long-term performance 
of both parameters on the control tests. 
 

Figure 3: The actor-critic's average evaluation on the control test 
with standard devation error bars (N=10). Evaluations represent 
those just prior to the xth episode. For this and the next two 
figures, the thick line represents the slow parameters (finishes 
higher in all plots), while the thin line represents the fast 
parameters (finishes lower in all plots). 

Baseline Biceps Test 
 Because the learning parameter sets were optimized 
using the BBT, the fast parameters perform well on the 
BBT, quickly removing overshoot of the goal when the 
initial configuration is clockwise of the goal configuration, 
and generating a steady state close to the goal state. Once 
again, the fast parameters are unstable in the long-term, 
while the slow parameters remain stable, as shown in 
Figure 4. 

 
Figure 4: The actor-critic's evaluation on the BBT. 

Fatigued Triceps Test 
 The learning parameter sets' ability to adapt to changing 
dynamics was then tested using the FTT. Because the 
parameters were optimized using the BBT, the FTT serves 
as a test of their generalizability to other changes in 
dynamics. The fast parameters remove the overshoot 
within 200 episodes. 
 Performance is consistent with the previous tests, with 
the fast parameters initially learning rapidly, then 
diverging, while the slow parameters learn more slowly, 
but remain stable as shown in Figure 5. 
 

 
Figure 5: The actor-critic's average evaluation on the FTT. 

Noise Robustness Test 
The system performs well on the NRT, without 

significant changes to learning speed with noise in the 
inputs representative of those expected in real world 
experiments. 
 

 
Figure 6: The actor-critic's average evaluation on the NRT with 

.1θσ = , .3θσ = , and N=10. 



 

 

Long-Term Stability 
In order to be practical for subjects with SCI, the agent 

must be able to adapt quickly (e.g. using the fast 
parameters), but remain stable (e.g. using the slow 
parameters). However, all fast parameter sets found were 
unstable. Several techniques and modifications to the 
actor-critic were therefore tested in an attempt to improve 
the stability of the fast parameters. 

In the following subsections, references to fast and slow 
parameters refer to the set of parameters found with similar 
behavior, most of which have nonzero ηC. 

TD-Error Cap 
In the previous tests, the magnitude of the TD-error was 

capped to .5 for training purposes. By lowering this cap, 
the system is forced to make smaller updates. This 
improves stability, but slows down learning. Tests showed 
that the tradeoff between stability and learning speed was 
not significantly changed. 

Muscle Force Weight 
When the system is diverging, it first begins to oscillate 

at high frequency around the goal state.  A possible cause 
is an improper weighting of the squared muscle stimulation 
in Equation 9. Changes to this constant were found to 
influence the magnitude and frequency of the jitter, though 
its onset was relatively constant, and divergence properties 
unchanged. 

Monitor Critic 
 Under the assumption that divergence occurs because of 
error in the value function, a possible solution is to only 
update the actor when the TD-error over the previous k 
updates has been less than a manually tuned constant, Δ . 
Tests showed this system to be relatively stable with TD-
errors of magnitude less than .02, suggesting .02Δ ≈ . The 
tradeoff between stability and learning speed was again not 
significantly changed. For small Δ  and large k, the system 
was stable, though learning was slow, while larger Δ  and 
smaller k learned faster but was unstable. 

Weight Decay Term 
Previous tests had kA and kC both set to zero, resulting in 

no weight decay term. Trials using the parameters in Table 
2 with the TD-error capped at .03 on the control test 
resulted in a policy more robust to varying dynamics. 

 
ηA ηC kA kC 
70 .344 2E-7  2E-6  

Table 2: Two of the best parameter sets found from optimization 
after manual tuning. 
 
 After slow but stable training with these parameters on 
the control test, they achieve a policy with an evaluation of 

.192−  on the control test, .22−  on the BBT, and .197−  

on the FTT. This result is expected, as weight decay terms 
are known in machine learning to improve generalization. 
These parameters use larger muscle forces, similar to a PD 
controller with larger gains. Though these are mostly 
desirable traits, the long-term stability of the system 
remains unchanged. 

Local Function Approximator Updates 
Tests were run using radial basis functions (RBFs) with 

Gaussian kernels, and using locally weighted linear 
regression (LWR) as the critic. Though RBFs are common 
in literature, the incremental variant of LWR used is novel 
in its application. LWR was implemented following 
(Schaal, Atkeson, and Vijayakumar 2002). A fixed number 
of points was selected, initially in an evenly distributed 
grid over the domain with reasonable initial values. Rather 
than adding or removing points, the system was updated 
according to Equations 11 and 12, with both the position 
and output of each point treated as a weight. Due to matrix 
arithmetic properties and certain values having been 
computed during the approximation step, Equations 11 and 
12 can be implemented efficiently. 

LWR achieved smaller TD-errors than the ANNs and 
RBFs, though the stability properties of the system 
remained unchanged. 

Toggling Parameter Sets 
The most successful approach was to implement a 

hybrid controller, switching to the fast parameter set when 
rapid learning is required, followed by a longer period 
using the slow parameters to bring the critic back on-
policy.  

This can be tested by first testing performance on the 
BBT, and then testing performance in an environment that 
switches between various tests, requiring constant 
adaptation. For this, a new test was devised, the Fatigued 
Biceps Test (FBT). This is required because a policy that 
performs well on the BBT may also perform well on the 
FTT, because both call for less biceps stimulation and 
more triceps stimulation. The FBT is identical to the FTT, 
except that the muscle affected is the biceps brachii. 

For these tests, the parameters were switched to the fast 
parameters whenever the environment switched dynamics. 
For practical applications, the fast parameters can be used 
for initial adaptation when the agent is first used on a 
subject, after which the slow parameters can be used to 
maintain stability (e.g. Figure 8). At any point, if a subject 
notices the performance of his or her arm has deteriorated 
due to muscle fatigue or other changes, the subject could 
activate a short-term switch to the fast parameters to 
improve performance (e.g. Figure 7). 

Figures 7 and 8 show that this toggling system can learn 
quickly and remain stable in the long-term. Figure 7 also 
shows how the system can rapidly converge to a policy 
with a reasonable evaluation on both the BBT and FBT, 
while remaining stable. 

 



 

 

 
Figure 7: The actor-critic's evaluation, where the environment 
starts as the BBT, then switches to the FBT after 1,100 episodes, 
then back to the BBT after 2,200 episodes, etc. The parameters 
also switch to the fast parameters for the first 100 episodes on 
each test to the slow parameters for the remaining 1000 episodes 
on each test. The top plot shows the long-term performance while 
the bottom shows the short-term performance. 
 

 
Figure 8: The actor-critic's evaluation over 50,000 episodes on 
the BBT using the fast parameters for the first 200 episodes, and 
the slow parameters thereafter. 

Conclusion and Future Work 
We have examined reinforcement learning’s application 

to FES control of the upper extremity. In particular, we 
have shown that rapid learning is achievable with the 
continuous actor-critic architecture, though the system 
changes too rapidly for the critic to remain on-policy, 
resulting in long-term divergence. Slowing the learning to 
a speed with which the critic can keep up, the system 
becomes impractically slow. These two results can be 
combined by toggling between the fast and slow 
parameters to achieve both rapid learning and long-term 
stability. We have also shown the continuous actor-critic to 
be robust to noise similar to that expected in the real world 

application of FES control. This controller achieves the 
goal of adapting to realistic changes in arm dynamics 
within 200 episodes, while remaining stable and robust. 
 As this is one of the first attempts known by the authors 
to apply RL techniques to FES, the research area is still 
open for significant development. These encouraging 
results have inspired further work in the application of RL 
to FES control. At the Lerner Research Institute (LRI) of 
the Cleveland Clinic Foundation, researchers are preparing 
for human trials of this controller for planar arm 
movement. These experiments are expected to commence 
in Summer, 2009. 
 Researchers at the LRI have also created a detailed 
three-dimensional musculoskeletal model of a human arm 
(Chadwick et al. 2009). Pending successful results from the 
real world application of RL for planar control, this same 
controller could be applied to the three-dimensional model, 
and eventually three-dimensional human trials. The 
primary difficulty in the switch will be the increase in the 
dimension of the action space, as the three-dimensional 
model includes over 100 muscles, though this can be 
overcome by clustering similar muscles into groups that 
are all given equal stimulation. 
 This paper has shown that RL is a viable approach for 
FES control of a human arm, and will hopefully open up a 
vein of further research in the area, with the long-term goal 
of restoring natural motor function to people with SCI. 
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