
 

  
Abstract—Clinical tests have shown that the dynamics of a 

human arm, controlled using Functional Electrical Stimulation 
(FES), can vary significantly between and during trials. In this 
paper, we study the application of Reinforcement Learning to 
create a controller that can adapt to these changing dynamics of 
a human arm. Development and tests were done in simulation 
using a two-dimensional arm model and Hill-based muscle 
dynamics. An actor-critic architecture is used with artificial 
neural networks for both the actor and the critic. We begin by 
training it using a Proportional Derivative (PD) controller as a 
supervisor. We then make clinically relevant changes to the 
dynamics of the arm and test the actor-critic's ability to adapt 
without supervision in a reasonable number of episodes. 
 

Index Terms—Functional Electrical Stimulation, Motor 
Control, Reinforcement Learning, Actor-Critic, Function 
Approximation.  

I. INTRODUCTION 
EOPLE with spinal cord injury (SCI) are often unable to 
move their limbs, though most of their nerves and muscles 

may be intact. Functional Electrical Stimulation (FES) can 
activate these muscles to restore movement. For background 
information on FES refer to (Sujith, 2008; Ragnarsson, 2008; 
Sheffler and Chae, 2007; Peckham and Knutson, 2005).  
 Open-loop control has been applied to FES systems 
including hand grasp (Peckham et al., 2001), rowing (Wheeler 
et al. 2002), and gait (Kobetic and Marsolais, 1994; Braz et 
al., 2007). The drawbacks to open-loop (feed-forward) control 
are that detailed information about the system’s properties is 
required to produce accurate movements, and that poor 
movements can result if the properties of the system change 
(Crago et al., 1996). 
     Closed-loop control, which involves the use of sensors for 
feedback, has been applied to FES tasks such as hand grasp 
(Crago et al., 1991), knee joint position control (Chang et al., 
1997), and standing up (Ferrarin et al., 2002). This form of 
control has the advantages that it can significantly improve 
performance as compared to feed-forward control, and it can 
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compensate for disturbances (Crago et al., 1996). However, 
challenges related to using the required sensors have largely 
prevented feedback control from being used in a clinical 
setting (Jaeger, 1992).  
     Other, more complex controllers, such as those combining 
feed-forward and feedback control (Stroeve, 1996) or adaptive 
feed-forward control (Abbas and Triolo, 1997) have been 
largely tested only in simulation or in simple human systems.  
 In practice, closed-loop controllers have been manually 
tuned to each subject to overcome differences in dynamics 
from simulation. These differences in dynamics can be 
significant due to muscle spasticity and atrophy. Closed-loop 
controllers are also unable to adapt to muscle fatigue during 
trials, which is frequent because muscle atrophy can create a 
higher proportion of fast-twitch muscle fibers which fatigue 
faster than slow-twitch fibers. Fatigue is also exacerbated 
because FES has a high stimulation frequency compared to a 
healthy central nervous system (Lynch and Popovic, 2008).  
 Reinforcement learning (RL) techniques (Sutton and Barto, 
1998) can be used to create controllers that adapt to changes in 
system dynamics, such as those due to spasticity, atrophy, and 
fatigue, and can find non-obvious and efficient strategies. 
Within FES, RL has been tested in simulation to control a 
standing up movement (Davoodi and Andrews, 1998) but this 
did not require generalization or a command input. RL has 
also been shown to control arm movements (Izawa et al., 
2004), but learning required too many episodes for clinical 
applications. In this paper we show the feasibility of using  
reinforcement learning for FES control of upper extremities as 
an improvement over previous closed-loop controllers that are 
unable to adapt to changing system dynamics. 
 The rest of the paper is organized as follows. We begin by 
considering static linear controllers in Section II. In Section 
III, we present the actor-critic framework used, the results of 
which are given in Section IV and discussed in Section V. 
Section VI contains overall conclusions and future work. 

II. STATIC LINEAR CONTROLLERS 
 A computational model (Fig. 1) was used to test 

controllers in simulation. The arm moved in a horizontal plane 
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without friction, had two joints (shoulder and elbow) and was 
driven by six muscles. Two of the four muscles act across both 
joints. Each muscle was modeled by a three-element Hill 
model and simulated using two differential equations, one for 
activation and one for contraction (McLean et al., 2003). 
Consequently, muscle force was not directly controlled but 
indirectly via muscle dynamics. The internal muscle states 
(active state and contractile element length) were hidden and 
not available to the controller. 

Jagodnik and van den Bogert (2007) have designed a 
Proportional Derivative (PD) controller for planar control of 
the arm of a paralyzed subject. The gains for the PD controller 
were tuned to minimize joint angle error and muscle forces for 
a two-dimensional arm simulation using a Hill-based muscle 
model (Schultz et al., 1991) with a time step of 20ms.  

 

 
Fig. 1. Two-joint, six-muscle biomechanical arm model used. 
Antagonistic muscle pairs are as follows, listed as (flexor, extensor): 
monoarticular shoulder muscles (a: anterior deltoid, b: posterior 
deltoid); monoarticular elbow muscles (c: brachialis, d: triceps 
brachii (short head)); biarticular muscles (e: biceps brachii, f: triceps 
brachii (long head)).  
 
 During human trials, Jagodnik and van den Bogert (2007) 
found that the PD controller's gain matrix often required 
retuning to account for changing dynamics in the subject's 
arm. The subject's arm  differed significantly from the ideal 
arm used in simulation because it had baseline biceps 
stimulation due to spasticity. Results from simulation, which 
will be given later, support the claim that PD and PID 
controllers do not perform well with changing dynamics. 
 The output equation for the PD and PID controllers is 
 u Gs= , (1) 
where u is a 6x1 vector of muscle stimulations, s is the state 
vector, and G is a 6x4 gain matrix for the PD controller and a 
6x6 gain matrix for the PID controller. For the PD controller, 
the state vector, s, is given by 

 ( ) ( ) ( ) T
Goal[ , ]s t t tθ θ θ= −  (2) 

for the PD controller, and 

 ( ) ( ) ( ) ( ) ( )
T

Goal Goal[ , , ]s t t t dθ θ θ θ τ θ τ τ= − −∫  (3) 

for the PID controller, where ( )tθ  is a vector of the shoulder 
and elbow joint angles, and        contains the target joint 
angles. The integral error term was approximated using 
backward rectangular approximation. 
 We implemented a Proportional Integral Derivative (PID) 
controller to determine whether a more sophisticated closed-

loop architecture could better cope with the changing 
dynamics of the arm. The gains were tuned using the Random- 
Restart Hill Climbing (RRHC) minimization algorithm 
(Russell and Norvig, 1995) using the same evaluation criteria 
as Jagodnik and van den Bogert (2007). For the random 
restarts, the proportional and derivative gains were taken from 
the PD controller, and the integral gains chosen randomly 
between –1 and 1. The gradient was sampled in steps 5% of 
each current gain value, with sign changes allowed as each 
weight approaches 0. 
 To test the PID's ability to adapt to changing dynamics, the 
arm model was modified to include a baseline biceps 
stimulation. The biceps muscle was given the PID's instructed 
stimulation to the biceps muscle plus an additional 20% (not 
to exceed 100%). This simulated the spasticity that was 
observed during human trials of the PD controller. When 
using the PID controller during a two-second episode with an 
initial state of shoulder joint angle θ1=20°, elbow joint angle 
θ2=90°, and a goal state of θ1=90°, θ2=20°, the arm overshoots 
the goal state. 
 Unlike the PD and PID controllers, an RL controller 
(described in the next section) could learn to not overshoot the 
goal position given unexpected muscle spasticity.  

III. REINFORCEMENT LEARNING METHODS 
We chose to use the actor-critic architecture (Sutton and 

Barto, 1998) because of its ability to reduce the dimensionality 
of the problem by half, as opposed to other temporal 
difference (TD) learning architectures. Because we are 
working in continuous time and space, we selected the 
continuous actor-critic (Doya, 2000), which is reviewed in this 
section. 

The critic was implemented using an artificial neural 
network (ANN) with twenty neurons in its hidden layer and 
one neuron in its output layer, while the actor had ten neurons 
in its hidden layer and six in its output layer. For both, the 
neurons in the output layers used the identity threshold 
function, while the neurons in the hidden layers used the 
sigmoid threshold function 

 ( ) 1

1
S z ze

= −+
. (4) 

 The actor-critic uses a 6x1 state vector x, given by 

 ( ) ( ) ( ) ( ) T
Goal[ , , ]x t t t tθ θ θ= . (5) 

At each time step, the 6x1 action vector of muscle stimulations 
u(t) was computed using 

 
( ) ( )( ) ( )( ); tu t S A x t w nσ= + ⋅ , (6) 

where ( ( ); )A x t w  is the actor ANN with weight vector w, σ is 
a noise scaling constant, and n(t) is the 6x1 noise vector given 
by 
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where N(t) is normal Gaussian noise and τn is another noise 
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scaling constant. The noise is initialized to 0: (0) 0n = .  
 The resulting TD error was computed using a backward 
Euler approximation given by 
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δ
τ

Δ
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Δ
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where tΔ  is the discrete time step for learning updates, τ  is 
the time constant for discounting future rewards, V(t) is the 
critic's estimate of the value of the state at time t and r(t) is the 
instantaneous reward given by 

 ( ) Goal
27 210 Fi

i
r t θ θ−= − − −∑ , (9) 

where Fi is the muscle force of the ith muscle, in Newtons. 
 The weights for the critic ANN were then updated using  

 ( ) ( )Cw t e ti iη δ= ,
 

(10) 

where ηC is the learning rate and ei(t) is the eligibility trace for 
the corresponding weight, given by 

 
( ) ( ) ( )( );1 1 V x t w

e t e ti i wiκ κ

∂
= − +

∂
 , (11) 

where κ is a time constant. Finally, each weight in the actor 
ANN is updated using 

 
( ) ( ) ( )( );A x t w

w t n ti A wi
η δ

∂
= ⋅

∂
,
 

(12) 

where ηA is a learning rate. Note the dot product between the 
noise and the derivative of the actor ANN with respect to each 
weight. To ensure stability in both the actor and the critic 
while allowing for larger learning rates, the magnitude of the 
TD error, δ(t), was capped at 10. 
 
PRE-TRAINING 

Before beginning unsupervised learning using the equations 
above, the actor-critic was pre-trained using the PD controller 
as a supervisor. To do this, the actions for 550,000 training 
pairs and 170,000 testing pairs, each consisting of the state 
and corresponding action generated by the PD controller, were 
run through the inverse sigmoid giving training pairs for the 
actor ANN, ( )( );A x t w  from Eqn. 6. The actor ANN was 
then trained using the error backpropagation algorithm with a 
learning rate of .001 (Russell and Norvig, 1995). After 2,000 
epochs, each of which consisted of training once on each of 
the 550,000 training points, the actor converged to a policy 
qualitatively similar to the PD controller's policy. 

The critic ANN was then trained using the full actor-critic 
with the previously trained actor. The actor's policy was fixed, 
and noise removed from its actions while the critic was 
brought on-policy. It was trained for 100,000 two second 
episodes with ηC=1, and κ=1. For each episode, the start and 
goal were randomly selected movements with the sum of the 
squared difference in joint angles (in radians) between the 
initial and goal configurations being greater than .6. This 
constraint removed episodes in which the arm does not have to 
make a significant motion. All future training was done with 

the same episode duration and constraints. 
The actor-critic thus begins with an actor ANN that is a 

close approximation of the PD controller, and an on-policy 
critic if there is no discrete change to the arm dynamics. The 
latter is important because the actor-critic can diverge until the 
critic is on-policy. When the arm dynamics change, the critic 
will not be on-policy, but will hopefully reconverge quickly. 

 
EVALUATION 

To evaluate the actor-critic's performance, we use the 
average total reward over 256 fixed episodes involving large 
motions over the state space. For comparison throughout, the 
PD controller's evaluation is –.18, and the actor, after pre-
training on the PD controller, has an evaluation of –.21.  

Three tests were devised to judge the actor-critic's learning 
and adaptive capabilities. The first was a control test, where 
the dynamics of the arm were not changed, but  the actor-critic 
was allowed to continue to learn. 

The second test was inspired by PD controller human trials 
in which the subject had spasticity of the biceps brachii, 
causing it to exert a constant low level of torque on both 
joints. This Baseline Biceps Test (BBT) involved adding 20% 
of the maximum stimulation to the stimulation requested by 
the controller in order to simulate this subject's condition. 
When using the PD controller or the actor-critic trained on it, 
the steady state of the arm is counterclockwise of the goal 
state at the point where the controller's requested triceps 
stimulation balances out the baseline biceps stimulation.  The 
actor-critic's evaluation on the BBT is –.65 immediately after 
pre-training (i.e., before further learning). 

The third test, the Fatigued Triceps Test (FTT), simulates 
the effects of a muscle being severely weakened. In this test, 
the triceps stimulation used is 20% of the requested triceps 
stimulation. Thus, when a controller requests full triceps 
stimulation, only 20% will be given. Unlike the BBT, this 
does not change the steady state when using the PD controller, 
though it does induce overshoot if the initial configuration is 
clockwise of the goal. This occurs because the biceps are used 
to pull the arm towards the goal, and the triceps are used to 
stop it at the goal configuration. With the triceps weakened, 
the PD controller does not exert enough torque to overcome 
the arm's angular momentum. The actor-critic's evaluation on 
the FTT immediately after pre-training is –.22. 

The actor-critic's ability to improve the policy hinges on all 
of its learning parameters being properly set. For all tests we 
used tΔ =.02s, and τ=1s, while ηA, ηC, τn, κ, and σ were varied. 
Thus, the learning rates, exploratory noise, and decay rate of 
eligibility traces were varied to find those that are most 
suitable for adapting to changing dynamics in the system. 
These learning parameters were optimized for the BBT, and 
their generalizability was tested using the FTT. 

The parameters were again optimized using RRHC search 
(cf. Sec. II), with the gradient sampled at 90% and 110% of 
the current value for each learning parameter. Each parameter 
set's learning abilities were measured as the average 
evaluation after 100, 200, 500, and 1000 random training 



 

episodes. Again, only interesting episodes were allowed, in 
which the squared difference in joint angles between the initial 
and goal configurations was greater than .6. Random restarts 
used a logarithmic distribution half the time, and a linear 
distribution the other half of the time in order to better explore 
the extremes and full range of the parameter space. 

The actor-critic's performance on the three tests after pre-
training, but before any further training, is shown in Fig. 2. 

 

 
  Control Test  Baseline Biceps Test  Fatigued Triceps Test 

 
Fig. 2. Initial actor ANN's performance on a particular motion for the 
three tests. The black state is the goal state (90°, 20°), the medium 
grey state is the final state after two seconds of simulation, and the 
light grey states are snapshots of the arm location taken every 20ms. 
The initial condition is the clockwise-most trace (20°, 90°). In the 
BBT, the final state is the counterclockwise-most trace, while in the 
control test and FTT the final state partially obscures the goal state. 

IV. RESULTS 
 Of the 4,460 learning parameter sets examined by the 
RRHC search, 1,363 had evaluations higher than –.3. 
However, many of the best learning parameter sets found by 
the optimization did not have stable evaluations. For example, 
the best parameter set received an evaluation of –.22 during 
the optimization, though further tests found their average 
evaluation was –.33 with a standard deviation of .15 (N=100). 
The parameter sets in Table 1 were selected for further 
inspection due to their consistently good evaluations, as well 
as their different characteristics with respect to exploratory 
noise, which will be addressed later. 
 
Table 1: Two of the best parameter sets found from optimization. 
Means and standard deviations of the evaluations were calculated 
with a sample size of N=30. 

Parameter 
Names 

ηA ηC τn κ σ Mean 
Evaluation 

Std. 
Dev. 

A .001 .0001 .55 .55 74.5 -.267 .01 
B 99.5 34.4 2500 71.5 7991 -.286 .09 

  
CONTROL TEST 
 The first test was the control test, in which the arm model 
was not modified, and the actor-critic was allowed to further 
adapt to the standard arm model. Both parameter sets 
improved objectively upon the pre-trained policy, making 
faster movements to the goal configuration with less 
oscillation before reaching stability. Neither achieved the 
same reward as the PD controller itself (–.18) within 400 
episodes of training, as shown in Fig. 3. 
 It was also observed that after training for thousands of 
episodes, the actor-critic controller, with the current parameter 

sets and reward system, becomes unstable. The muscle 
stimulations become erratic and the arm begins shaking. 
Eventually, the policy falls apart completely and the arm flails. 
Increasing the weighting of the muscle forces in the reward 
(Eqn. 9) was found to decrease and postpone this jitter. 

 
Fig. 3. Graph of the actor-critic's evaluation over time, in episodes, 
using learning parameter sets A and B on the control test. 
 
BASELINE BICEPS TEST 
 Because the learning parameter sets were optimized using 
the BBT, they both perform well on the BBT, quickly 
removing overshoot of the goal when the initial configuration 
is clockwise of the goal configuration, and generating a steady 
state close to the goal state. Fig. 4 shows the steady state 
moving closer to the goal configuration over time, as the 
actor-critic controllers learn. 
 

        
Fig. 4. Final states (grey) after training for 1, 10, 50, 100, and 200 
episodes (left to right), where the black state is the goal. The plot on 
the left uses learning parameter set A, and the plot on the right uses 
learning parameter set B. 

 
Fig. 5. Graph of the actor-critic's evaluation over time, in episodes, 
using learning parameter sets A and B on the BBT. 
  
 Fig. 5 shows the actor-critics' policy evaluations after each 
episode of training on the BBT, when using parameter sets A 
and B given in Table 1. For reference, an evaluation of –.21 is 
equivalent to the actor-critic's performance on the unmodified 
arm model after pre-training on the PD controller. 
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FATIGUED TRICEPS TEST 
 The learning parameter sets' ability to adapt to changing 
dynamics was then tested using the FTT. Because the 
parameters were optimized using the BBT, the FTT serves as a 
test of their generalizability to other changes in dynamics. 
Parameter set A did better than parameter set B on this test, 
steadily improving to the point where the arm does not 
overshoot the goal when starting clockwise of it, after 70 
episodes (Fig. 6, left). Parameter set B learns slower, such that 
after 400 episodes it has reduced the overshoot, but it is still 
present (Fig. 6, right). 
 

      
Fig. 6. Repeat of simulations from Fig. 2 after training. Arm 
trajectories on FTT using learning parameter set A after 70 training 
episodes (left), and using learning parameter set B after 400 training 
episodes (right). 
 
 Fig. 7 shows the actor-critic's policy evaluations after each 
episode of training on the FTT when using parameter sets A 
and B given in Table 1. For reference, an evaluation of –.21 is 
equivalent to the actor-critic's performance on the unmodified 
arm model after pre-training on the PD controller. 

 
Fig. 7. Graph of the actor-critic's evaluation over time, in episodes, 
using paramer sets A and B on the FTT. 

V. DISCUSSION 
 In order to be practical for subjects with SCI, the learning 
agent must be able to adapt to the changing dynamics in a 
reasonable amount of time. On the BBT, the actor-critic 
adapted to a significant and discrete change in dynamics in 
fewer than 200 episodes. This change in arm properties was 
similar to the expected change when adapting to a new 
subject’s arm. On the FTT, the actor-critic adapted to a similar 
discrete change representing a fatigued arm in fewer than 70 
episodes. 

Learning parameter sets A and B were chosen because they 
exemplify how different parameters are capable of learning in 
the simulated environment. Parameter set A has a massive 
amount of noise, flopping the arm around during training trials 

to explore the state and action spaces, while parameter set B 
exploits current knowledge, with subtle exploratory noise 
injected into the policy. In a typical episode in the control test, 
the average sum of the squared joint angle noise for parameter 
set A was four orders of magnitude larger than that of 
parameter set B. 

 

 

 

 

 
Fig. 8. Plot of the hand position when using learning parameter set A 
without noise (top left), B without noise (top right), A with noise 
(bottom left), B with noise (bottom right). All are attempting the 
same motion to the grey goal state. Dots, starting white and fading to 
black, map the endpoint position every 20ms. 
 
 The ability of the RL system to learn equally well with 
various sets of learning parameters on the simulated arm is 
encouraging and potentially useful in clinical applications. 
When used with a human arm, there will be unintentional 
noise introduced to the system. Parameters ought to be chosen 
which have just enough noise that the agent can distinguish 
between the intended exploratory noise and the undetectable 
noise inherent in real-world experiments. With too much 
noise, however, the exploratory actions would interfere with 
the desired movement or even cause injury. 

We also performed some experiments using different 
function approximators to represent the actor and critic. Each 
function approximator was trained using 550,000 training 
points, and tested using 170,000 different testing points. The 
points consist of state and utility pairs, computed in simulation 
using the PD controller as the actor. Fig. 9 shows the results 
for learning the critic's utility function. (Policy approximation 
performance was similar among all function approximators.) 

‐0.23

‐0.22

‐0.21

‐0.20

1 101 201 301 401

Ev
al
ua

ti
on

Time (Episodes)

A
B

Parameter 
Set B 

Parameter 
Set A 

A without 
 noise 

B without  
noise 

A with 
 noise 

B with 
 noise 



 

Locally weighted linear regression (LWR) (Schaal et al., 
2002) achieved a total squared error one tenth of that achieved 
by an ANN with 20 neurons in its hidden layer, trained using 
error backpropagation on the same training set. If converted to 
a learning algorithm in which one point in the knowledge base 
is replaced at every 20ms update, the entire knowledge base 
would be replaced after every three hours of use. Functional 
link nets (FLNs), using kernel functions derived from the 
equations of motion, were found to have little improvement 
over ANNs. K-Nearest Neighbor (K-NN), though a simple 
algorithm, was also found to perform better than the ANNs. 

The ANN and FLN had 20 neurons in their hidden layers, a 
learning rate of 10–6, and were trained for 550 epochs. K-NN 
performed best with K=9, using a squared-inverse distance 
weighting metric. LWR performed best using a neighborhood 
containing the 20 nearest points, using a weighting scale 
parameter h (Schaal et al., 2002) on the order of 10–5. 

 
Fig. 9. Plot of the sum of the squared error in approximating the 
critic's utility function for an actor-critic with the PD controller as the 
actor in the simulated arm environment. 

VI. CONCLUSIONS AND FUTURE WORK 
We have examined reinforcement learning’s application to 

FES control of the upper extremity. In particular, we have 
shown that the actor-critic architecture can perform well, 
adapting to changing dynamics in a simulated human arm 
within 70 to 200 two-second episodes. While other closed-
loop controllers (e.g., PD and PID) can partially compensate 
for changing dynamics, the reinforcement learning controller 
outperforms them after training. We also found that the actor-
critic was capable of learning with varying amounts of 
exploratory noise, which will be necessary when training the 
actor-critic in a noisy environment. 

As this is one of the first attempts known by the authors to 
apply reinforcement learning techniques to FES, the research 
area is still open for significant development. Human trials of 
the actor-critic controller presented in this paper could give 
further insight into the real world implementation issues. 

A similar reinforcement learning agent could be applied to a 
model of the human arm that allows for full three-dimensional 
motion. This would bring the field closer to the long-term goal 
of restoring motor function to people with SCI. 
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