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Abstract
Historically, to bound the mean for small sam-
ple sizes, practitioners have had to choose be-
tween using methods with unrealistic assumptions
about the unknown distribution (e.g., Gaussian-
ity) and methods like Hoeffding’s inequality that
use weaker assumptions but produce much looser
(wider) intervals. In 1969, Anderson (1969a) pro-
posed a mean confidence interval strictly better
than or equal to Hoeffding’s whose only assump-
tion is that the distribution’s support is contained
in an interval [a, b]. For the first time since then,
we present a new family of bounds that com-
pares favorably to Anderson’s. We prove that
each bound in the family has guaranteed cover-
age, i.e., it holds with probability at least 1 − α
for all distributions on an interval [a, b]. Further-
more, one of the bounds is tighter than or equal
to Anderson’s for all samples. In simulations, we
show that for many distributions, the gain over
Anderson’s bound is substantial.

1. Introduction
In this work, we revisit the classic statistical problem of
defining a confidence interval on the mean µ of an un-
known distribution with CDF F from an i.i.d. sample
X = X1, X2, . . . , Xn, and the closely related problems
of producing upper or lower confidence bounds on the
mean. For simplicity, we focus on upper confidence bounds
(UCBs), but the development for lower confidence bounds
and confidence intervals is similar.

To produce a non-trivial UCB, one must make assumptions
about F , such as finite variance, sub-Gaussianity, or that
its support is contained on a known interval [a, b]. We
adopt this last assumption, working with distributions whose
support is known to fall in an interval [a, b]. For UCBs, we
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refer to two separate settings, the one-ended support setting,
in which the distribution is known to fall in the interval
[−∞, b], and the two-ended support setting, in which the
distribution is known to fall in an interval [a, b], where a >
−∞ and b <∞.

A UCB has guaranteed coverage for a set of distributions F
if, for all sample sizes 1 ≤ n ≤ ∞, for all confidence levels
1− α ∈ (0, 1), and for all distributions F ∈ F , the bound
µ1−α
upper satisfies

ProbF [µ ≤ µ1−α
upper(X1, X2, ..., Xn)] ≥ 1− α, (1)

where µ is the mean of the unknown distribution F .

Among bounds with guaranteed coverage for distributions
on an interval [a, b], our interest is in bounds with good
performance on small sample sizes. The reason is that, for
‘large enough’ sample sizes, excellent bounds and confi-
dence intervals already exist. In particular, the confidence
intervals based on Student’s t−statistic (Student, 1908) are
satisfactory in terms of coverage and accuracy for most
practitioners, given that the sample size is greater than some
threshold.1

The validity of the Student’s t method depends upon the
Gaussianity of the sample mean, which, strictly speaking
does not hold for any finite sample size unless the original
distribution itself is Gaussian. However, for many applica-
tions, the sample mean becomes close enough to Gaussian
as the sample size grows (due to the effects described by the
central limit theorem), that the resulting bounds hold with
probabilities close to the confidence level. Such results vary
depending upon the unknown distribution, but it is generally
accepted that a large enough sample size can be defined to
cover any distributions that might occur in a given situa-
tion.2 The question is what to do when the sample size is
smaller than such a threshold.

Establishing good confidence intervals on the mean for
small samples is an important but often overlooked problem.
The t-test is widely used in medical and social sciences.

1An adequate sample size for the Student’s t method depends
upon the setting, but a common rule is n > 30.

2An example in which the sample mean is still visibly skewed
(and hence inappropriate for use with Student’s t) even after
n = 80 samples is given for log-normal distributions in the sup-
plementary material.
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Small clinical trials (such as Phase 1 trials), where such
tests could potentially be applied, occur frequently in prac-
tice (Institute of Medicine, 2001). In addition, there are
several machine learning applications. The sample mean
distribution of an importance-weighted estimator is skewed
even when the sample size is much larger than 30, so tighter
bounds with guarantees may be beneficial. Algorithms in
Safe Reinforcement Learning (Thomas et al., 2015) use
importance weights to estimate the return of a policy and
use confidence bounds to estimate the range of the mean.
The UCB multi-armed bandit algorithm is designed using
the Hoeffding bound - a tighter bound may lead to better
performance with guarantees.

In the two-ended support setting, our bounds provide a
new and better option for guaranteed coverage with small
sample sizes.3 At least one version of our bound is tighter
(or as tight) for every possible sample than the bound by
Anderson (Anderson, 1969a), which is arguably the best
existing bound with guaranteed coverage for small sample
sizes. In the limit as a→ −∞, i.e., the one-ended support
setting, this version of our bound is equivalent to Anderson.4

It can be shown from Learned-Miller & Thomas (2019)
that Anderson’s UCB is less than or equal to Hoeffding’s
for any sample when α ≤ 0.5, and is strictly less than
Hoeffding’s when α ≤ 0.5 and n ≥ 3. Therefore our bound
is also less than or equal to Hoeffding’s for any sample when
α ≤ 0.5, and is strictly better than Hoeffding’s inequality
when α ≤ 0.5 and n ≥ 3.

Below we review bounds with coverage guarantees, those
that do not exhibit guaranteed coverage, and those for which
the result is unknown.

1.1. Distribution free bounds with guaranteed coverage

Several bounds exist that have guaranteed coverage. These
include Hoeffding’s inequality (Hoeffding, 1963), Ander-
son’s bound (Anderson, 1969a), and the bound due to Mau-
rer & Pontil (2009).

Hoeffding’s inequality. For a distribution F on [a, b], Ho-
effding’s inequality (Hoeffding, 1963) provides a bound on
the probability that the sample mean, X̄n = 1

n

∑n
i=1Xi,

will deviate from the mean by more than some amount t ≥ 0:

Pr
(
µ− X̄n ≤ t

)
≤ e−

2nt2

(b−a)2 . (2)

3Code accompanying this paper is available at https://
github.com/myphan9/small_sample_mean_bounds.

4At the time of submission, we had established that a particular
version of our bound was tighter than or equal to Anderson’s for
both the one-ended and the two-ended settings. Subsequently,
Phan et al. (2021) established that this version of our bound is
in fact equivalent to Anderson’s for the one-ended setting, but
superior for many cases in the two-ended setting. We made minor
revisions to the text to incorporate this new information.

Defining α to be the right hand side of this inequality, solv-
ing for t as a function of α, and rewriting in terms of α
rather than t, one obtains a 1− α UCB on the mean of

bα,Hoeffding(X)
def
= X̄n + (b− a)

√
ln(1/α)

2n
. (3)

Maurer and Pontil. One limitation of Hoeffding’s inequal-
ity is that the amount added to the sample mean to obtain
the UCB scales with the range of the random variable over√
n, which shrinks slowly as n increases.

Bennett’s inequality (Bennett, 1962) considers both the sam-
ple mean and the sample variance and obtains a better de-
pendence on the range of the random variable when the
variance is known. Maurer & Pontil (2009) derived a UCB
for the variance of a random variable, and suggest combin-
ing this with Bennet’s inequality (via the union bound) to
obtain the following 1− α UCB on the mean:

bα,M&P(X)
def
= X̄n +

7(b− a) ln(2/α)

3(n− 1)
+

√
2σ̂2 ln(2/α)

n
.

Notice that Maurer and Pontil’s UCB scales with the range
(b− a), divided by n (as opposed to the

√
n of Hoeffding’s).

However, the
√
n dependence is unavoidable to some extent:

Maurer and Pontil’s UCB scales with the sample standard
deviation σ̂ divided by

√
n. As a result, Maurer and Pontil’s

bound tends to be tighter than Hoeffding’s when both n is
large and the range of the random variable is large relative
to the variance. Lastly, notice that Maurer and Pontil’s
bound requires n≥2 for the sample standard deviation to be
defined.

Anderson’s bound. Anderson (1969a)5 introduces a bound
by defining an ‘envelope’ of equal width that, with high
probability, contains the true CDF. The upper and lower
extremes of such an envelope define the CDFs with the
minimum and maximum attainable means for distributions
that fit within the envelope, and thus bound the mean with
high probability.6

In practice, Anderson’s bound tends to be significantly
tighter than Maurer and Pontil’s inequality unless the vari-
ance of the random variable is miniscule in comparison
to the range of the random variable (and n is sufficiently
large). However, neither Anderson’s inequality nor Maurer
and Pontil’s inequality strictly dominates the other. That is,
neither upper bound is strictly less than or equal to the other

5An easier to access and virtually equivalent version of Ander-
son’s work can be found in (Anderson, 1969b).

6In his original paper, Anderson also suggests a large family of
envelopes, each of which produces a distinct bound. Our simula-
tion results in Section 5 are based on the equal-width envelope, but
our theoretical results in Section 4 hold for all possible envelopes.

https://github.com/myphan9/small_sample_mean_bounds
https://github.com/myphan9/small_sample_mean_bounds
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in all cases. However, Anderson’s bound does dominate
Hoeffding’s inequality (Learned-Miller & Thomas, 2019).

Some authors have proposed specific envelopes for use with
Anderson’s technique (Diouf & Dufour, 2005; Learned-
Miller & DeStefano, 2008; Romano & Wolf, 2000). How-
ever, none of these variations are shown to dominate An-
derson’s original bound. That is, while they give tighter
intervals for some samples, they are looser for others.

Finally we mention a bound due to Fienberg et al. (1977).
This bound applies to distributions on a discrete set of sup-
port points, but nothing prevents it, in theory, from being
applied to an arbitrarily dense set of points on an inter-
val such as [0, 1]. This bound has a number of appealing
properties, and comes with a proof of guaranteed coverage.
However, the main drawback is that it is currently computa-
tionally intractable, with a computation time that depends
exponentially on the number of points in the support set,
precluding many (if not most) practical applications.

1.2. Bounds that do not exhibit guaranteed coverage

Many bounds that are used in practice are known to violate
Eq. (1) for certain distributions. These include the aforemen-
tioned Student’s tmethod, and various bootstrap procedures,
such as the bias-corrected and accelerated (BCa) bootstrap
and the percentile bootstrap. See Efron & Tibshirani (1993)
for details of these methods. A simple explanation of the
failure of bootstrap methods for certain distributions is given
by Romano & Wolf (2000, pages 757–758). Presumably if
one wants guarantees of Eq. (1), one cannot use these meth-
ods (unless one has extra information about the unknown
distribution).

1.3. Bounds conjectured to have guaranteed coverage

There are at least two known bounds that perform well in
practice but for which no proofs of coverage are known. One
of these, used in accounting procedures, is the so-called
Stringer bound (Stringer, 1963). It is known to violate
Eq. (1) for confidence levels α > 0.5 (Pap & van Zuijlen,
1995), but its coverage for α < 0.5 is unknown.

A little known bound by Gaffke (2005) gives remarkably
tight bounds on the mean, but has eluded a proof of guar-
anteed coverage. This bound was recently rediscovered
by Learned-Miller & Thomas (2019), who do an empirical
study of its performance and provide a method for comput-
ing it efficiently.

We demonstrate in Section 4 that our bound dominates those
of both Hoeffding and Anderson. To our knowledge, this
is the first bound that has been shown to dominate An-
derson’s bound.

2. A Family of Confidence Bounds
In this section we define our new upper confidence bound.
Let n be the sample size. We use bold-faced letters to denote
a vector of size n and normal letters to denote a scalar.
Uppercase letters denote random variables and lowercase
letters denote values taken by them. For example, Xi ∈ R
and X = (X1, ..., Xn) ∈ Rn are random variables. xi ∈ R
is a value of Xi, and x = (x1, ..., xn) ∈ Rn is a value of
X. For a sample x, we let F (x)

def
= (F (x1), · · · , F (xn)) ∈

[0, 1]n.

Order statistics play a central role in our work. We denote
random variable order statistics X(1) ≤ X(2) ≤ ... ≤ X(n)

and of a specific sample as x(1) ≤ x(2) ≤ ... ≤ x(n).

Given a sample X = x of size n and a confidence level
1− α, we would like to calculate a UCB for the mean. Let
F be the CDF of Xi, i.e., the true distribution and D ⊂ R
be the support of F . We assume that D has a finite upper
bound. Given D and any function T : Dn → R we will
calculate an upper confidence bound bαD,T (x) for the mean
of F .

We show in Lemma 2.1 that if D+ is a superset of D with
finite upper bound, then bαD+,T (x) ≥ bαD,T (x). Therefore
we only need to know a superset of the support with finite
upper bound to obtain a guaranteed bound.

Let sD
def
= sup{x : x ∈ D}. We next describe a method

for pairing the sample x with another vector ` ∈ [0, 1]n to
produce a stairstep CDF function Gx,`. Let x(n+1)

def
= sD.

Consider the step function Gx,` : R → [0, 1] defined from
` and x as follows (see Figure 1):

Gx,`(y) =


0, if x < x(1)

`(i), if x(i) ≤ x < x(i+1)

1, if x ≥ sD.
(4)

In particular, when ` = (1/n, . . . , n/n), Gx,` becomes
the empirical CDF. Also note that when ` = F (x),
∀x,Gx,`(x) ≤ F (x), as illustrated in Figure 2.

Following Learned-Miller & Thomas (2019), if we consider
Gx,` to be a CDF, we can compute the mean of the resulting
distribution as a function of two vectors x and ` as

mD(x, `)
def
=

n+1∑
i=1

x(i)(`(i) − `(i−1)) (5)

= sD −
n∑
i=1

`(i)(x(i+1) − x(i)), (6)

where `(0)
def
= 0, `(n+1)

def
= 1 and x(n+1)

def
= sD. When sD

is finite, this is well-defined. Notice that this function is
defined in terms of the order statistics of x and `. Learned-
Miller & Thomas (2019) refer to this as the induced mean
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Figure 1. The stairstep function Gx,`, which is a function of the
sample x and a vector ` of values between 0 and 1. When ` =
(1/n, . . . , n/n), Gx,` becomes the empirical CDF.

Figure 2. The CDF of a distribution F in red, with a random
sample of five order statistics on the x-axis. The blue stairstep
function shows the function Gx,`(x) when ` = F (x). Notice that
for all x, Gx,`(x) ≤ F (x).

for the sample x by the vector `. Although we borrow the
above terms from Learned-Miller & Thomas (2019), the
bound we introduce below is a new class of bounds, and
differs from the bounds discussed in their work.

An ordering on Dn. Next, we introduce a scalar-valued
function T which we will use to define a total order on
samples in Dn, and define a set of samples less than or
equal to another sample. In particular, for any function
T : Rn → R, let SD,T (x) = {y ∈ Dn|T (y) ≤ T (x)}.

The greatest induced mean for a given U. Let U =
U1, ..., Un be a sample of size n from the continuous uni-
form distribution on [0, 1], with u

def
= (u1, · · · , un) being a

particular sample of U.

Now consider the random quantity

bD,T (x,U)
def
= sup

z∈SD,T (x)
mD(z,U), (7)

which depends upon a fixed sample x (non-random) and
also on the random variable U.

Our upper confidence bound. Let 0 < p < 1. Let
Q(p, Y ) be the quantile function of the scalar random vari-
able Y , i.e.,

Q(p, Y )
def
= inf{y ∈ R : FY (y) ≥ p}, (8)

where FY (y) is the CDF of Y . We define bαD,T (x) to be the
(1− α)-quantile of the random quantity bD,T (x,U).

Definition 2.1 (Upper confidence bound on the mean).
Given a sample x and a confidence level 1− α:

bαD,T (x)
def
= Q(1− α, bD,T (x,U)), (9)

where bD,T (x,U) is defined in Eq. 7.

To simplify notation, we drop the superscript and subscripts
whenever clear. We show in Section 2.1 that this UCB has
guaranteed coverage for all sample sizes n, for all confi-
dence levels 0 < 1− α < 1 and for all distributions F and
support D where sD is finite.

We show below that a bound computed from a superset
D+ ⊇ D will be looser than or equal to a bound computed
from the support D. Therefore it is enough to know a
superset of the support D to obtain a bound with guaranteed
coverage.

Lemma 2.1. Let D+ ⊇ D where sD+ is finite. For any
sample x:

bαD(x) ≤ bαD+(x). (10)

Proof. Since sD+ is finite, mD+(y,u) is well-defined.
Since D ⊆ D+, for any y and u, mD(y,u) ≤ mD+(y,u).
Then

sup
y∈SD(x)

mD(y,u) ≤ sup
y∈SD(x)

mD+(y,u) (11)

≤ sup
y∈SD+ (x)

mD+(y,u), (12)

where the last inequality is because SD(x) ⊆ SD+(x).
Let bD(x,U) = supz∈SD(x)mD(z,U) and bD+(x,U) =
supz∈SD+ (x)mD+(z,U). Then bαD(x) and bαD+(x) are
the (1 − α)-quantiles of bD(x,U) and bD+(x,U). Since
bD(x,u) ≤ bD+(x,u) for any u, bαD(x) ≤ bαD+(x).

In Section 2.1 we show that the bound has guaranteed cov-
erage. In Section 3 we discuss how to efficiently compute
the bound. In Section 4 we show that when T is a certain
linear function, the bound is equal to or tighter than An-
derson’s for any sample. In addition, we show that when
the support is known to be {0, 1}, our bound recovers the
well-known Clopper-Pearson confidence bound for bino-
mial distributions (Clopper & Pearson, 1934). In Section 5,
we present simulations that show the consistent superiority
of our bounds over previous bounds.
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2.1. Guaranteed Coverage

In this section we show that our bound has guaranteed cov-
erage in Theorem 2.7. We omit superscripts and subscripts
if they are clear from context.

2.1.1. PREVIEW OF PROOF

We explain the idea behind our bound at a high level using
a special case. Note that our proof is more general than
our special case, which makes assumptions such as the
continuity of F to simplify the intuition.

Suppose that F is continuous. Then the probability integral
transform FX(X) of X is uniformly distributed on [0, 1]
(Angus, 1994). Suppose there exists a sample xµ such
that bα(xµ) = µ. Then the probability that a sample Z
outputs bα(Z) < µ is equal to the probability Z outputs
bα(Z) < bα(xµ) (the yellow region on the left of Fig. 3).
This is the region where the bound fails, and we would like
to show that the probability of this region is at most α.

Let U def
= F (Z) and u

def
= F (z). Then Ui is uniformly

distributed on [0, 1]. If F is invertible, we can transform
the region {z : bα(z) < bα(xµ)} to {u : bα(F−1(u)) <

bα(xµ)} where F−1(u)
def
= (F−1(u1), . . . , F−1(un)) (the

yellow region on the right of Fig. 3).

Through some calculations using the definition of function
b, we can show that the yellow region {u : bα(F−1(u)) <
bα(xµ)} is a subset of the striped region {u : b(xµ,u) ≥
µ}.

Note that since bα(xµ) = µ, µ is equal to the 1−α quantile
of b(xµ,U). Therefore, by the definition of quantile, the
probability of the striped region is at most α:

PU(b(xµ,U) ≥ µ) ≤ α, (13)

and thus the probability of the yellow region is at most α.

2.1.2. MAIN RESULT

In this section, we present some supporting lemmas and then
the main result in Theorem 2.7. The proofs of the simpler
lemmas have been deferred to the supplementary material.
Lemma 2.2. Let X be a random variable with CDF F and
Y

def
= F (X), known as the probability integral transform of

X . Let U be a uniform random variable on [0, 1]. Then for
any 0 ≤ y ≤ 1,

P(Y ≤ y) ≤ P(U ≤ y). (14)

If F is continuous, then Y is uniformly distributed on [0, 1].

The next lemma is illustrated by Fig. 2. It shows that by
building a ‘stairstep CDF’ using a random sample and points
on the true CDF, the resulting distribution has a mean greater
than or equal to the original distribution’s mean.

Lemma 2.3. For any x ∈ Dn,7

mD(x, F (x)) ≥ µ. (15)

For use in the next lemma, we define a partial order for the
samples on Dn. Note that it is defined with respect to the
order statistics of the sample, not the original components.

Definition 2.2 (Partial Order). For any two samples z and
y, we define z � y to indicate that z(i) ≤ y(i), 1 ≤ i ≤ n.

Lemma 2.4. Let Z be a random sample of size n from
F . Let U = U1, ..., Un be a sample of size n from the
continuous uniform distribution on [0, 1]. For any function
T : Dn → R and any x ∈ Dn:

PZ(T (Z) ≤ T (x)) ≤ PU(b(x,U) ≥ µ). (16)

Proof sketch. Let ∪ denote the union of events and {} de-
note an event. Then for any x ∈ Dn:

PZ(T (Z) ≤ T (x)) (17)
= PZ(Z ∈ S(x)) (18)
= PZ(∪y∈S(x){Z = y}) (19)
≤ PZ(∪y∈S(x){Z � y}) (20)
≤ PZ(∪y∈S(x){F (Z) � F (y)}) by monotone F(21)
≤ PU(∪y∈S(x){U � F (y)}). (22)

The last step is by an extension of Lemma 2.2. Recall
that mD(y,u) = sD −

∑n
i=1 u(i)(y(i+1) − y(i)) where

∀i, y(i+1) − y(i) ≥ 0. Therefore if u � F (y) then
mD(y,u) ≥ mD(y, F (y)):

PU(∪y∈S(x){U � F (y)}) (23)
≤ PU(∪y∈S(x){mD(y,U) ≥ mD(y, F (y))}) (24)
≤ PU(∪y∈S(x){mD(y,U) ≥ µ}), by Lem. 2.3 (25)
≤ PU( sup

y∈S(x)
mD(y,U) ≥ µ) (26)

= PU(b(x,U) ≥ µ). (27)

We include a more detailed version of the proof for the
above lemma in the supplementary material.

Lemma 2.5. Let U = U1, ..., Un be a sample of size n from
the continuous uniform distribution on [0, 1]. Let X and Z
denote i.i.d. samples of size n from F . For any function
T : Dn → R and any α ∈ (0, 1),

PX (PU(bD,T (X,U) ≥ µ) ≤ α)

≤ PX (PZ(T (Z) ≤ T (X)) ≤ α) . (28)
7Phan et al. (2021) show a more general property that is also

satisfied by the quantile. Thus this method could also be used to
give confidence intervals for the quantile.
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Figure 3. Illustrations of Section 2.1.1. Left. The yellow region shows samples of z = [z(1), z(2)] such that bα(z) ≤ bα(xmax). Right.
The same yellow region, but in the coordinates u = F−1(z). We will show that the yellow region is a subset of the striped, which
contains u such that b(xmax,u) ≥ µ.

Proof. From Lemma 2.4 for any sample x,

PZ(T (Z) ≤ T (x)) ≤ PU(b(x,U) ≥ µ). (29)

Therefore,

PX (PZ(T (Z) ≤ T (X)) ≤ α) (30)
≥ PX (PU(b(X,U) ≥ µ) ≤ α) . (31)

Lemma 2.6. Let U = U1, ..., Un be a sample of size n
from the continuous uniform distribution on [0, 1]. Let X
be a random sample of size n from F . For any function
T : Dn → R and any α ∈ (0, 1),

PX(bαD,T (X) < µ) (32)

≤ PX (PU(bD,T (X,U) ≥ µ) ≤ α) . (33)

Proof. Because bα(x) is the 1 − α quantile of b(x,U),
by the definition of quantile: PU(b(x,U) ≤ bα(x)) ≥
1−α. Therefore PU(b(x,U) ≥ bα(x)) ≤ α. If bα(x) < µ
then PU(b(x,U) ≥ µ) ≤ α. Since bα(x) < µ implies
PU(b(x,U) ≥ µ) ≤ α, we have

PX(bα(X) < µ) (34)
≤ PX (PU(b(X,U) ≥ µ) ≤ α) . (35)

We now show that the bound has guaranteed coverage.

Theorem 2.7. Let X be a random sample of size n from F .
For any function T : Dn → R and for any α ∈ (0, 1):

PX(bαD,T (X) < µ) ≤ α. (36)

Proof. Let Z be a random sample of size n from F .

PX(bα(X) < µ) (37)
≤ PX (PU(b(X,U) ≥ µ) ≤ α) by Lemma 2.6 (38)
≤ PX (PZ(T (Z) ≤ T (X)) ≤ α) by Lemma 2.5 (39)

= P (W ≤ α) where W def
= PZ(T (Z) ≤ T (X)) (40)

≤ α by Lemma 2.2. (41)

3. Computation
In this section we present a Monte Carlo algorithm to com-
pute the bound. First we note that since the bound only
depends on x via the function T (x), we can precompute
a table of the bounds for each value of T (x). We discuss
how to adjust for the uncertainty in the Monte Carlo result
in Appendix D.

Let the superset of the support D+ be a closed interval with
a finite upper bound. If m is a continuous function,

sup
y∈SD+ (x)

m(y,u) = max
y∈SD+ (x)

m(y,u). (42)

Therefore bD+(x,u) is the solution to

max
y(1),...,y(n)

m(y,u) (43)

subject to:

1. T (y) ≤ T (x),
2. ∀i ∈ {1, . . . , n}, y(i) ∈ D+,
3. y(1) ≤ y(2) ≤ · · · ≤ y(n).

When D+ is an interval and T is linear, this is a linear
programming problem and can be solved efficiently.
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Algorithm 1 Monte Carlo estimation of mα
D+,T (x) where

D+ = [0, 1]. This pseudocode uses 1-based array indexing.

Input: A sample x ∈ Dn, confidence parameter 1−α <
1, a function T : [0, 1]n → R and Monte Carlo sampling
parameter l.
Output: An estimation of mα

D+,T (x)

n← length(x).
Create array ms to hold l floating point numbers, and
initialize it to zero.
Create array u to hold n floating point numbers.
for i← 1 to l do

for j ← 1 to n do
u[j] ∼ Uniform(0,1).

end for
Sort(u, ascending).
Solve: M = maxy(1),··· ,y(n)

m(y,u) subject to:
1) T (y) ≤ T (x).
2) ∀i : 1 ≤ i ≤ n, 0 ≤ y(i) ≤ 1.
3) y(1) ≤ y(2) ≤ ... ≤ y(n).

ms[i] = M .
end for
Sort(ms, ascending).
Return ms[d(1− α)le].

We can compute the 1 − α quantile of a random variable
M using Monte Carlo simulation, sampling M l times. Let-
ting m(1) ≤ ... ≤ m(l) be the sorted values, we output
m(d(1−α)le) as an approximation of the 1− α quantile.

Running time. When T is linear, the algorithm needs to
solve a linear programming problem with n variables and
2n constraints l times. For sample size n = 50, computing
the bound for each sample x ∈ Dn takes just a few seconds
using l = 10,000 Monte Carlo samples.

4. Relationships with Existing Bounds
In this section, we compare our bound to previous bounds
including those of Clopper and Pearson, Hoeffding, and
Anderson. Proofs omitted in this section can be found in the
supplementary material.

4.1. Special Case: Bernoulli Distribution

When we know that D = {0, 1}, the distribution is
Bernoulli. If we choose T to be the sample mean, our
bound becomes the same as the Clopper-Pearson confidence
bound for binomial distributions (Clopper & Pearson, 1934).
See the supplementary material for details.

4.2. Comparisons with Anderson and Hoeffding

In this section we show that for any sample size n, any con-
fidence level α and for any sample x, our method produces
a bound no larger than Anderson’s bound (Theorem 4.3)
and Hoeffding’s bound (Theorem 4.4).

Note that if we only know an upper bound b of the sup-
port (1-ended support setting), we can set D+ = (−∞, b]
and our method is equal to Anderson’s (Phan et al., 2021)
and dominates Hoeffding’s. As the lower support bound
increases (2-ended setting), our bound becomes tighter or
remains constant, whereas Anderson’s remains constant, as
it does not incorporate information about a lower support.
Thus, in cases where our bound can benefit from a lower
support, we are tighter than Anderson’s.

Anderson’s bound constructs an upper bound for the mean
by constructing a lower bound for the CDF. We defined a
lower bound for the CDF as follows.
Definition 4.1 (Lower confidence bound for the CDF). Let
X = (X1, · · · , Xn) be a sample of size n from the distri-
bution on D+ with unknown CDF F . Let α ∈ (0, 1). Let
HX : R → [0, 1] be a function computed from the sample
X such that for any CDF F ,

PX( ∀x ∈ R,F (x) ≥ HX(x)) ≥ 1− α. (44)

Then HX is called a (1 − α) lower confidence bound for
the CDF.

If there exists a CDF F such that

PX( ∀x ∈ R,F (x) ≥ HX(x)) = 1− α, (45)

then HX is called an exact (1− α) lower confidence bound
for the CDF.

In Figs. 1 and 2, it is easy to see that if the stairstep function
GX,` is a lower confidence bound for the CDF then its
induced mean m(X, `) is an upper confidence bound for µ.
Lemma 4.1. Let X = (X1, · · · , Xn) be a sample of size n
from a distribution with mean µ. Let ` ∈ [0, 1]n. If GX,` is
a (1− α) lower confidence bound for the CDF then

PX(m(X, `) ≥ µ) ≥ 1− α. (46)

Let U(i), 1 ≤ i ≤ n be the order statistics of the uniform
distribution. Note that for any CDF F :

PX( ∀x ∈ R, F (x) ≥ GX,`(x)) (47)
= PX(∀i : 1 ≤ i ≤ n, F (X(i)) ≥ `(i)) (48)
≥ PU(∀i : 1 ≤ i ≤ n,U(i) ≥ `(i)) by Lemma 2.2, (49)

where Eq. 49 is an equality if F is the CDF of a continuous
random variable. Therefore GX,` is an exact (1− α) lower
confidence bound for the CDF is equivalent to ` satisfying:

PU(∀i : 1 ≤ i ≤ n,U(i) ≥ `(i)) = 1− α. (50)
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Anderson (1969a) presents bα,Anderson
` (x) = mD+(x, `) as

a UCB for µ where ` ∈ [0, 1]n is a vector such that GX,` is
an exact (1− α) lower confidence bound for the CDF.

In one instance of Anderson’s bound, ` = uAnd ∈ [0, 1]n

is defined as

uAnd
i

def
= max {0, i/n− β(n)} . (51)

Anderson identifies β(n) as the one-sided Kolmogorov-
Smirnov statistic such that GX,` is an exact (1− α) lower
confidence bound for the CDF when ` = uAnd. β(n) can be
computed by Monte Carlo simulation (Appendix A).

Learned-Miller & Thomas (2019) show that for any sam-
ple x, a looser version of Anderson’s bound is better than
Hoeffding’s:

Lemma 4.2 (from Theorem 2 from (Learned-Miller &
Thomas, 2019)). For any sample size n, for any sample
value x ∈ Dn, for all α ∈ (0, 0.5]:

bα,Anderson
` (x) ≤ bα,Hoeffding(x), (52)

where ` is defined8 as

`i
def
= max

{
0, i/n−

√
ln(1/α)/(2n)

}
. (53)

When α ≤ 0.5, this definition of ` satisfies GX,` is a (1−α)
lower confidence bound for the CDF.

The inequality in Eq. 52 is strict for n ≥ 3.

We show below that our bound is always equal to or tighter
than Anderson’s bound. Phan et al. (2021) provide a more
detailed analysis showing that our bound is equal to Ander-
son’s when the lower bound of the support is too small and
can be tighter than Anderson’s when the lower bound of the
support is large enough.

Theorem 4.3. Let ` ∈ [0, 1]n be a vector satisfying GX,`

is an exact (1− α) lower confidence bound for the CDF.

Let D+ = (−∞, b]. For any sample size n, for any sam-
ple value x ∈ Dn, for all α ∈ (0, 1), using T (x) =

bα,Anderson
` (x) yields

bαD+,T (x) ≤ bα,Anderson
` (x). (54)

We explain briefly why this is true. First, from Figure 2,
we can see that if GX,` is a lower confidence bound then
∀i, F (X(i)) ≥ `(i). Note that GX,` must be a lower bound
for all unknown CDFs F , so we can pick a continuous F

8Although Anderson’s bound bα,Anderson
` (x) is only defined

when GX,` is an exact (1 − α) lower confidence bound for the
CDF, here we re-use the same notation for the case when GX,` is
a (1− α) lower confidence bound for the CDF.

where, according to Lemma 2.2, U def
= F (X) is uniformly

distributed on [0, 1]. Therefore ` satisfies

PU(∀i, U(i) ≥ `(i)) ≥ 1− α, (55)

where the U(i)’s are the order statistics of the uniform dis-
tribution. Since b(x,U) is defined from linear functions of
U with negative coefficients (Eq. 6), if ∀i, U(i) ≥ `(i) then
b(x,U) ≤ b(x, `). Therefore with probability at least 1−α,
b(x,U) ≤ b(x, `). So b(x, `) is at least the 1 − α quan-
tile of b(x,U), which is the value of our bound. Therefore
b(x, `) is at least the value of our bound.

Finally, if T is Anderson’s bound, through some calcula-
tions we can show that bD+,T (x, `) = mD+(x, `), which
is Anderson’s bound. The result follows.

The comparison with Hoeffding’s bound follows directly
from Lemma 4.2 and Theorem 4.3:

Theorem 4.4. Let D+ = (−∞, b]. For any sample size n,
for any sample value x ∈ Dn, for all α ∈ (0, 0.5], using
T (x) = bα,Anderson

` (x) where ` = uAnd yields:

bαD+,T (x) ≤ bα,Hoeffding(x), (56)

where the inequality is strict when n ≥ 3.

Diouf & Dufour (2005) present several instances of Ander-
son’s bound with different ` computed from the Anderson-
Darling or the Eicker statistics (Theorem 4, 5 and Theorem
6 with constant ε).

Note that the result from Theorem 4.3 can be generalized
for bounds m(X, `) constructed from a (1− α) confidence
lower bound GX,` using Lemma 4.1. We show the general
case in the supplementary material.

5. Simulations
We perform simulations to compare our bounds to Hoeffd-
ing’s inequality, Anderson’s bound, Maurer and Pontil’s,
and Student-t’s bound (Student, 1908), the latter being

bα,Student(X)
def
= X̄n +

√
σ̂2

n
t1−α,n−1. (57)

We compute Anderson’s bound with ` = uAnd defined
in Eq. 51 through Monte Carlo simulation (described in
Appendix A). We use α = 0.05, D+ = [0, 1] and l =
10,000 Monte Carlo samples. We consider two functions T :

1. Anderson: T (x) = bα,Anderson
` (x), again with ` =

uAnd. Because this T is linear in x, it can be computed
with the linear program in Eq. 42.

2. l2 norm: T (x) = (
∑n
i=1 x

2
i )/n. In this case, T re-

quires the optimization of a linear functional over a
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Figure 4. The expected value of the bounds for α = 0.05 and D+ = [0, 1]. For each sample size, we sample X 10,000 times, compute
the bound for each sample, and take the average. Our new bound with T being Anderson’s bound consistently has lower expected value
than Anderson’s (Theorem 4.3), Hoeffding’s (Theorem 4.4) and Maurer and Pontil’s. With T being the l2-norm, the bound is substantially
tighter in these examples, and also has guaranteed coverage.

Figure 5. The α-quantile of the bound distribution for α = 0.05 and D+ = [0, 1]. For each sample size, we sample X 10,000 times,
compute the bound for each sample, and take the α quantile. If the α-quantile is below the true mean, the bound does not have guaranteed
coverage. For the uniform(0, 1) and beta(1, 5) distribution, when the sample size is small, Student-t does not have guarantee.

convex region, which results in a simple convex opti-
mization problem.

We perform experiments on three distributions: beta(1, 5)
(skewed right), uniform(0, 1) and beta(5, 1) (skewed left).
Their PDFs are included in the supplementary material for
reference. Additional experiments are in the supplementary
material.

In Figure 4 and Figure 5 we plot the expected value and the
α-quantile value of the bounds as the sample size increases.
Consistent with Theorem 4.3, our bound with T being An-
derson’s bound outperforms Anderson’s bound. Our new
bound performs better than Anderson’s in distributions that
are skewed right, and becomes similar to Anderson’s in left-
skewed distributions. Our bound outperforms Hoeffding and
Maurer and Pontil’s for all three distributions. Student-t fails

(the error rate exceeds α) for beta(1, 5) and uniform(0, 1)
when the sample size is small (Figure 5).
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