
A Constructing Constraint Objectives for Common Fairness Definitions

This appendix provides examples of how to construct constraint objectives for several common
fairness definitions. Our example domain will be the loan approval problem described in Section 2. In
this problem, a bank is interested in maximizing the expected number of loan repayments it receives.
The bank chooses to formulate this as an offline bandit problem such that, for each loan applicant, a
single action, i.e., whether or not the applicant should be given a loan, is chosen.

We consider an action to belong to the positive class if the action corresponds to approving a loan,
and we say it belongs to the negative class otherwise. We define an outcome to be whether or not an
applicant repays (or would have repaid) a loan. We consider an outcome to belong to the positive
class if the applicant repays the loan, and we say it belongs to the negative class otherwise. Many of
the statistical measures of fairness we consider in this section rely on metrics we introduce below,
framed in the context of the loan approval example.

• True positive (TP): the event in which the action chosen by the policy and the actual outcome both
belong to the positive class. A true positive in the loan approval setting occurs when an applicant
who would repay a loan is given a loan.

• False positive (FP): the event in which the action chosen by the algorithm is in the positive class
when the actual outcome belongs to the negative class. A false positive in the loan approval setting
is when an applicant who would not repay a loan is given a loan.

• False negative (FN): the event in which the action chosen by the policy is in the negative class but
the actual outcome is in the positive class. A false negative in the loan approval setting is when an
applicant who would have repaid a loan is denied a loan.

• True negative (TN): the event in which the action chosen by the policy and the actual outcome
both belong to the negative class. A true negative in the loan approval setting is when an applicant
who would not have repaid a loan is denied a loan.

Let TPR=TP/(TP+FN), FPR=FP/(TP+FN), FNR=FN/(TP+FN), and TNR=TN/(FP+TN) be the true
positive, false positive, false negative, and true negative rates, respectively. Assume that the bank has
unbiased estimators of these terms.

We now provide examples of how to construct objective constraints for some common definitions of
fairness. In each definition, the bank is interested in guaranteeing fairness with respect to gender (the
protected group), which we will assume to be binary in order to simplify notation.

Predictive Equality [10]. A policy exhibits predictive equality if FP rates are equal between groups.
In our loan approval problem, this implies that the probability that an applicant who would not have
repaid a loan be incorrectly approved for a loan should be the same for male- and female-identifying
applicants. Predictive equality can be defined as E[FPR|f] = E[FPR|m]. To construct a constraint
objective that satisfies g(θ) ≤ 0 if θ is fair, we can set g = |E[FPR|f]−E[FPR|m]| − ε. This gives us
a constraint objective for (approximate) predictive equality.

Equal Opportunity [20]. A policy exhibits equal opportunity if FN rates are equal between groups.
In our loan approval problem, this implies that the probability that an applicant is denied a loan when
they would have repaid it is equal between male- and female-identifying applicants. Equal opportunity
can be defined as E[FNR|f] = E[FNR|m]. To construct a constraint objective that satisfies g(θ) ≤ 0
if θ is fair, we can set g = |E[FNR|f] − E[FNR|m]| − ε. This gives us a constraint objective for
(approximate) equal opportunity.

Equalized Odds [20] (Conditional Procedure Accuracy Equality [5]). This definition combines
predictive equality and equal opportunity: a policy exhibits equalized odds if FPR and TPR are equal
between protected and unprotected groups. Assume the bank has unbiased estimators of FPR and
TPR. Then equalized odds can be defined as (E[FPR|m] = E[FPR|f])∧ (E[TPR|m] = E[TPR|f]). To
satisfy g(θ) ≤ 0 if θ is fair, we can set g = |E[FPR|f]− E[TPR|m]|+ |E[FPR|m]− E[TPR|f]| − ε.

Treatment Equality [5]. This definition focuses on the ratio of FN and FP errors for each
group. A policy exhibits treatment equality if the ratio of FNs and FPs is equal for both female-
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Algorithm 3 ComputeUpperBounds(θ,D,∆, Ẑ, E , inflateBounds)
1: out = [ ]
2: for i = 1, ..., k do
3: Ẑi = {ẑij}

di
j=1 ⊆ Ẑ

4: Li, Ui = Bound(Ei, θ,D, δi/di, Ẑi, inflateBounds)
5: out.append(Ui)

6: return out

and male-identifying applicants. For the loan approval problem, this definition can be writ-
ten as (E[FN|f]/E[FP|f]) = (E[FN|m]/E[FP|m]). For intuition, if the left-hand side of this ex-
pression were greater than the right-hand side, then either fewer female-identifying applicants
were incorrectly assigned to the negative class than male-identifying applicants or more females-
identifying applicants were incorrectly assigned to the positive class than male-identifying ap-
plicants. To construct a constraint objective that satisfies g(θ) ≤ 0 if θ is fair, we can set
g = |(E[FN|f]/E[FP|f])− E[FN|m]/E[FP|m])| − ε.

B RobinHood Algorithm

This section elaborates on the helper methods (Algorithms 3 through 6) our approach uses. Recall
that during candidate selection, Ûi is calculated as the estimate of Ui, the upper bound of a behavioral
constraint function gi. This is done by substituting all quantities that depend on Ds with approxi-
mations computed from Dc, and inflating the confidence intervals used to reflect this substitution,
which is indicated by the Boolean variable inflateBounds. When set to True, the number of g(θc)
estimates obtained using Ds is approximated as m = m|Dc|/|Ds| (Algorithm 5).

Algorithm 6 uses concentration inequalities [36] to produce high probability upper and lower bounds
for a given behavioral constraint. It does this by recursively looking at sub-expressions of E until
a base variable is encountered, upon which, Algorithm 4 is called to calculate a real-valued high-
confidence bound on the base variable’s estimators. Correctness of Algorithm 6 is shown in Section C,
and mostly follows from correct use of interval arithmetic and probability theory.

Different concentration inequalities can be substituted into Algorithm 5 to calculate upper and lower
(1−δi)-confidence bounds on each gi. The pseudocode in Algorithm 5 presents both Hoeffding’s
inequality and Student’s t-test as examples, where σ is the sample standard deviation with Bessel’s
correction and t1−δi,m is the 100(1−δi) percentile of the Student’s t distribution with m degrees
of freedom. Note that Hoeffding’s inequality often requires algorithms to be very conservative,
i.e., high-probability guarantees may require an impractical amount of data. We could instead use
Student’s t-test, which is more data-efficient but assumes that the amount of many random variables
is normally distributed. Due to the central limit theorem this is a reasonable assumption, but does not
hold in general.

Finally, different policy evaluation methods, concentration inequalities, and optimization methods
can be used for this algorithm. Here, we describe the specific modules we use in our experiments.
Our experiments use importance sampling [39] to compute the expected return of a potential solution
πc. Next, we use several concentration inequalities to bound the base variables used in our algorithm.
As mentioned above, Hoeffding’s inequality or the Student’s t-test were used for most experiments.
In addition, we use confidence intervals based on Bootstrap methods [15] due to their desirable
variance-reduction properties in the tutoring experiment. Lastly, RobinHood uses a black box search
method to solve the optimization problem on line 2 of Algorithm 1. In our experiments, we use the
CMA-ES [19] implementation provided in the Python package cma (Python package).

Our algorithms were implemented in Python 3.6 (https://www.python.org/) using the numerical
processing package, Numpy 1.15 (https://www.numpy.org/).

For the criminal recidivism and loan approval, a partition of 60% of the total data was used for
testing and 40% for training. For the tutoring system experiments, we instead used 80% of the data
for training. In all experiments, when training RobinHood, 40% of the training data was used for
candidate selection and 60% for the safety test.
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Algorithm 4 CIbound(θ,D, δ, Ẑ, inflateBounds)
1: z = ẑj(θ,D)
2: margin = CIFunction(z,D, δ, inflateBounds)
3: return

(
mean(z)− margin, mean(z) + margin

)
Algorithm 5 CIfunction(z,D, δ, inflateBounds)

1: scale = 1
2: m = length(z)
3: if inflateBounds then
4: scale = 2
5: m = m |Ds|

|Dc|

6: case Hoeffding: CI = (b− a)
√

ln 1/δ
2m case Student’s t: CI = σ(z)√

m
t1−δ,m−1

7: return scale× CI

C Proof of Correctness for Recursive Bounds

In this section, we show that the upper bounds computed by the helper functions in Appendix B
(Algorithms 3 through 6) satisfy Pr(gi(θ) > Ui) ≤ δi for all constraint objectives. This follows from
the use of concentration inequalities and transformations to convert bounds on the base variables
zj(θc), into a high-confidence upper bound, Ui on gi(θc). More formally, we want to prove Lemma 1
below, whose assumptions are with respect to Hoeffding’s inequality [21]. We show the proof for this
lemma as well as a similar proof using Student’s t-test [43] here.

Lemma 1 (Recursive Bounds: Hoeffding’s Inequality). The upper bounds, {Ui}ki=1, returned by
ComputeUpperBounds (Algorithm 3) satisfy the following inequality when inflateBounds=False
and ẑj(θc, D) is bounded in some interval [a, b] for θc and all j ∈ {1, ..., d}: ∀i ∈
{1, ..., k} Pr(gi(θ) > Ui) ≤ δi.

For Student’s t-test, assume that {Ui}ni=1 satisfies Lemma 1 when inflateBounds=False and
Average(ẑj(θc, D)) is normally distributed.

Proof. Assume l1, u1, and l2, u2 are 1−δ/2 confidence lower and upper bounds on base variables
z1 and z2, respectively. Then Pr(z1 ∈ [l1, u1]) ≥ 1−δ/2 and Pr(z2 ∈ [l2, u2]) ≥ 1−δ/2. Below,
we show that operations on base variables z1 and z2 result in high probability bounds. Note that
throughout this proof, we make use of interval arithmetic and the following fact, which holds by the
Union Bound:

Pr(z1 ∈ [l1, u1], z2 ∈ [l2, u2]) ≥ 1−δ.

Addition: The event (z1 ∈ [l1, u1] ∧ z2 ∈ [l2, u2]) implies that z1 + z2 ∈ [l1 + l2, u1 +u2]. Then,
Pr((z1 + z2) ∈ [l1 + l2, u1 + u2]) ≥ Pr(z1 ∈ [l1, u1] ∧ z2 ∈ [l2, u2]), which is at least 1−δ. So,
Pr((u1 + u2) ∈ [l1 + l2, u1 + u2]) ≥ 1−δ.

Maximum: The event (z1 ∈ [l1, u1] ∧ z2 ∈ [l2, u2]) implies that max{z1, z2} ∈ [max{l1, l2} ∧
max{u1, u2}]. Then, Pr(max{u1, u2} ∈ [max{l1, l2} ∧max{z1, z2}]) ≥ Pr(z1 ∈ [l1, u1] ∧ z2 ∈
[l2, u2]), which is at least 1−δ. So, Pr(max{z1, z2} ∈ [max{l1, l2},max{u1, u2}]) ≥ 1−δ.

Product: Let A := min{l1l2, l1u2, l2u1, l2u2} and B := max{u1l1, u1l2, u2l1, u2l2}. The event
(z1 ∈ [l1, u1] ∧ z2 ∈ [l2, u2]) implies that (z1 × z2) ∈ [A,B]. Then, Pr((z1 × z2) ∈ [A,B]) ≥
Pr(z1 ∈ [l1, u1] ∧ z2 ∈ [l2, u2]) which is at least 1−δ. So, Pr((z1 × z2) ∈ [A,B]) ≥ 1−δ.

This can extend to d base variables instead of two, in which case the operations on the probability
inequalities described are less than or equal to 1−δ/d. Now, assume l and u are endpoints of an
interval that satisfies Pr(z ∈ [l, u]) ≥ 1−δ, for base variable z.

Negation: The event z ∈ [l, u] implies that −z ∈ [−u,−l]. Then, Pr(−z ∈ [−u,−l]) ≥ 1−δ.

15



Algorithm 6 Bound(E, θ,D, δ, Ẑ, inflate)

1: X = {θ,D, δ, Ẑ, inflate}
2: switch E do
3: case u(θ)
4: return CIBound(X)

5: case −E
6: return −Bound(E,X)

7: case El + Er
8: (Ll, Ul) = Bound(El, X)
9: (Lr, Ur) = Bound(Er, X)

10: return (Ll + Lr, Ul + Ur)

11: case El × Er
12: (Ll, Ul) = Bound(El, X)
13: (Lr, Ur) = Bound(Er, X)
14: return (min{LlLr, UlLr, LlUr, UlUr}, max{LlLr, UlLr, LlUr, UlUr})
15: case E−1

16: (L,U) = Bound(E′, X)
17: if 0 ∈ [l, u] then return NaN else return (1/U, 1/L)

18: case |E|
19: (L,U) = Bound(E,X)
20: if 0 ∈ [l, u] then
21: return (min{0, |L|, |U |},max{|L|, |U |})
22: else
23: return (min{|L|, |U |},max{|L|, |U |})
24: case max{El, Er}
25: (Ll, Ul) = Bound(El, X)
26: (Lr, Ur) = Bound(Er, X)
27: return (max{Ll, Lr},max{Ul, Ur})

Inverse (1/z): Let E be the event z ∈ [l, u]. If l = 0, then E implies that 1/z ∈ [1/u,∞], and if
u = 0, then E implies that 1/z ∈ [−∞, 1/l]. If 0 ∈ [l, u], then E implies that 1/z ∈ ([−∞, 1/l] ∪
[1/u,∞]) = [−∞,∞]. In these cases, Pr(1/z ∈ [1/u,∞]) ≥ 1−δ and Pr(1/z ∈ [−∞, 1/l]) ≥
1−δ, respectively. If 0 6∈ [l, u], E implies that 1/z ∈ [1/u, 1/l], and Pr(1/z ∈ [1/u, 1/l]) ≥ 1−δ.

Absolute value: If 0 ∈ [l, u], then the event z ∈ [l, u] implies |z|∈ [0,max{|l|, |u|}]. In this case,
Pr(|z|∈ [0,max{|L|, U}]) ≥ 1−δ. Otherwise, z ∈ [l, u] implies |z|∈ [min{|l|, |u|},max{|l|, |u|}],
and Pr(|z|∈ [min{|l|, |u|},max{|l|, |u|}]) ≥ 1−δ.

While our set of operations does not include much more than simple arithmetic, interval methods can
also be applied to functions with certain behaviors, e.g., functions with properties of monotonicity.
This can be used to extend the set of operations allowed on base variables.

D Proof of Theorem 1: High Probability Fairness Guarantee

Consider the contrapositive formulation of behavioral constraint i, Pr(gi(a(D)) > 0) ≤ δi. With
respect to this expression, gi(a(D)) > 0) implies that a(D) is not NSF, which further implies that
Ui ≤ 0 for all i, and thus Pr(gi(a(D)) > 0) = Pr(gi(a(D)) > 0, Ui ≤ 0). Next, we use the fact
that the joint event, (gi(a(D)) > 0, Ui ≤ 0) implies the event, (gi(a(D)) > Ui):

Pr(gi(a(D)) > 0) ≤ Pr
(
gi(a(D)) > Ui(θc, Ds)

)
.

Lastly, we note that g(a(D)) > 0 implies that a solution was returned—that is, a(D) = θc:

Pr(gi(a(D)) > 0) ≤ Pr(gi(θc) > Ui).

Assumption 1 shows that for any fixed parameter vector, θ ∈ Θ, the upper bounds estimated by
Algorithm 3 using inflateBounds=False satisfy Pr(gi(θ) > Ui) ≤ δi. Because θc ∈ Θ for
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any Dc, it follows from the substitution, θ = θc, that Pr(gi(a(D)) > Ui) ≤ δi. This implies that
Pr(gi(a(D)) > 0) ≤ δi), which further implies Pr(gi(a(D)) ≤ 0) ≥ 1− δi, completing the proof.

E Proof of Theorem 2: Consistency Guarantee

Recall that the logged data, D, is a random variable. To further formalize this notion, let (Ω,Σ, p)
be a probability space on which all relevant random variables are defined, and let Dn : Ω→ D be
a random variable, where Dn = Dc ∪ Ds. We will discuss convergence as n → ∞. Dn(ω) is a
particular sample of the entire set of logged data with n trajectories, where ω ∈ Ω. Below, we present
formal definitions and assumptions necessary for presenting our main result. To simplify notation, we
assume that there exists only a single behavioral constraint and note that the extension of our proof to
multiple behavioral constraints is straightforward.

Definition 1. We say that a function f : M → R on a metric space (M,d) is piecewise Lipschitz
continuous with Lipschitz constant K and with respect to a countable partition, {M1,M2, ...}, of M
if f is Lipschitz continuous with Lipschitz constant K on all metric spaces in {(Mi, d)}∞i=1.

Definition 2. If (M,d) is a metric space, a set X ⊆ M is a δ-covering of (M,d) if and only if
max
y∈M

min
x∈X

d(x, y) ≤ δ.

Let ĉ(θ,Dc) denote the output of a call to CandidateUtility(Θ, Dc,∆, Ẑ, E) and let c(θ) :=
rmin − g(θ). Because we assume that there exists only a single behavioral constraint, the candidate
utility function can be rewritten as CandidateUtility(Θ, Dc, δ, Ẑ, E). That is, there is only a
single threshold δ and a single analytic expression E. The next assumption ensures that c and ĉ are
piecewise Lipschitz continuous. Notice that the δ-covering requirement is straightforwardly satisfied
if Θ is countable for Θ ⊆ Rm for any positive natural number m.

Assumption 1. The feasible set of policies, Θ, is equipped with a metric, dΘ, such that for all Dc(ω)
there exist countable partitions of Θ, Θc = {Θc

1,Θ
c
2, ...} and Θĉ = {Θĉ

1,Θ
ĉ
2, ...}, where c(·) and

ĉ(·, Dc(ω)) are piecewise Lipschitz continuous with respect to Θc and Θĉ respectively with Lipschitz
constants K and K̂. Furthermore, for all i ∈ N>0 and all δ > 0 there exist countable δ-covers of Θc

i

and Θĉ
i .

Next we assume that for all θ ∈ Θ, the user-provided analytic expression E is a continuous function
of the base variables. With the exception of division, all operators discussed in Section 4 satisfy this
assumption. In fact, this assumption is still satisfied for division when positive base variables are
used in the denominator.

Assumption 2. For all θ ∈ Θ, g(θ) is a continuous function of the base variables,
z1(θ), z2(θ), ..., zd(θ).

Next we assume that a fair solution, θ?, exists such that g(θ?) is not precisely on the boundary of fair
and unfair. This can be satisfied by solutions that are arbitrarily close to the fair-unfair boundary.

Assumption 3. There exists an ε > ξ and a θ? ∈ Θ such that g(θ?) ≤ −ε.

Next we assume that the sample off-policy estimator, r̂, converges almost surely to r, the actual
expected reward. This is satisfied by most off-policy estimators [46].

Assumption 4. ∀θ ∈ Θ, r̂(θ,Dc)
a.s.−→ r(θ).

Lastly, we assume that the method used in RobinHood for constructing high-probability upper and
lower bounds of a sample mean constructs confidence intervals that converge almost surely to the
true mean, i.e., we assume that the confidence intervals on the base variables converge almost surely
to the true base variable values for all solutions.. Hoeffding and Student’s t-test are two example
concentration inequalities that have this property: Hoeffding’s inequality converges to the mean
deterministically as n→∞, while the confidence interval used by Student’s t-test converges almost
surely to the mean assuming the standard deviation is finite (to see this, notice that the t statistic is
bounded and 1/

√
n→ 0).

Assumption 5. The confidence intervals on the base variables, z1(θ), z2(θ), ..., zd(θ), converge
almost surely to the true base variable values for all θ ∈ Θ.
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We prove Theorem 2 by building up properties that culminate with the desired result, starting with a
variant of the strong law of large numbers:
Property 1 (Khintchine Strong Law of Large Numbers). Let {Xι}∞i=1 be independent and identi-
cally distributed random variables. Then ( 1

n

∑n
i=1Xι)

∞
n=1 is a sequence of random variables that

converges almost surely to E[X1], if E[X1] exists, i.e., 1
n

∑n
i=1Xι

a.s.−→ E[X1].

Proof. See Theorem 2.3.13 of Sen and Singer [42].

In this proof, we consider the set Θ̄ ⊆ Θ, which contains all solutions that are not safe, and some that
are safe but fall beneath a certain threshold: Θ̄ := {θ ∈ Θ : g(θ) > −ξ/2}. At a high level, we will
show that the probability that the candidate solution, θc, viewed as a random variable that depends on
the candidate data set Dc, satisfies θc 6∈ Θ̄ converges to one as n→∞, and then that the probability
that θc is returned also converges to one as n→∞.

First, consider the confidence intervals produced for each base variable, zj . Let lj(θ,Dc) and
uj(θ,Dc) be the upper and lower confidence intervals on zj(θ), respectively.

Property 2. For all θ ∈ Θ, lj(θ,Dc)
a.s.−→ zj(θ) and uj(θ,Dc)

a.s.−→ zj(θ).

Proof. Concentration inequalities construct confidence intervals around the mean by starting with the
sample mean of the unbiased estimates (in our case, ẑ(θ,Dc)) and then adding or subtracting a con-
stant. While some concentration inequalities are naturally in this form, such as Hoeffding’s inequality
and Student’s t-test, others can be restructured to produce this form. Thus, given Assumption 5,
lj(θ,Dc) and uj(θ,Dc) can be be written as Average(ẑ(θ,Dc)) + Zn, where Zn is a sequence of
random variables that converges (almost surely) to zero. Since Average(ẑ(θ,Dc))

a.s.−→ zj(θ) by
Property 1, we therefore have that both lj(θ,Dc)

a.s.−→ zj(θ) and uj(θ,Dc)
a.s.−→ zj(θ).

Next, we are interested in showing that the upper bound, Û , returned by Algorithm 3 converges to
g(θ). To clarify notation, here we write Û(θ,Dc) to emphasize that Û depends on the solution, θ,
and the data, Dc, passed to the off-policy estimator.

Property 3. For all θ ∈ Θ, Û(θ,Dc)
a.s.−→ g(θ).

Proof. We have from Property 2 that the confidence intervals on the base variables converge almost
surely to z1(θ), z2(θ), . . . , zd(θ). Furthermore, by Assumption 2 we have that g(θ) is a continuous
function of these base variables. Recall that Û(θ,Dc) is the upper bound produced by pushing the
confidence intervals on the base variables though the analytic expression for g(θ). Since g(θ) is a
continuous function of these base variables, Û(θ,Dc) is a continuous function of the confidence
intervals on the base variables. So, by the continuous mapping theorem [2], Û(θ,Dc) converges
almost surely to the value that it takes when applied to the converged values for the base variables,
i.e., g(θ).

Recall that we define ĉ(θ,Dc) as the output of Algorithm 2, i.e., CandidateUtility(Θ, Dc, δ, Ẑ, E).
Below, we show that given a fair solution θ? and data Dc, ĉ(θ?, Dc) converges almost surely to r(θ?),
the expected reward of θ?.

Property 4. ĉ(θ?, Dc)
a.s.−→ r(θ?).

Proof. By Property 3, we have that given Assumption 2, Û(θ?)
a.s.−→ g(θ?). By Assumption 3, we

have that g(θ?) ≤ −ε. Now, let

A = {ω ∈ Ω : lim
n→∞

U(θ?, Dc(ω)) = g(θ?)}. (2)

Recall that Û(θ?, Dc)
a.s.−→ g(θ?) means that Pr(limn→∞ Û(θ?, Dc) = g(θ?)) = 1. So ω is in

A almost surely, i.e., Pr(ω ∈ A) = 1. Consider any ω ∈ A. From the definition of a limit and
the previously established property that g(θ?) ≤ −ε, we have that there exists an n0 such that
for all n ≥ n0, the candidate utility function, Algorithm 2, will return r̂(θ?, Dc) (this avoids the
discontinuity of the if statement in Algorithm 2 for values smaller than n0).
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Furthermore, we have from Assumption 4 that r̂(θ?, Dc)
a.s.−→ r(θ?). Let

B = {ω ∈ Ω : lim
n→∞

r̂(θ?, Dc(ω)) = r(θ?)}. (3)

From Assumption 4 we have that ω is in B almost surely, i.e., Pr(ω ∈ B) = 1, and thus by the
countable additivity of probability measures, Pr(ω ∈ (A ∩B)) = 1.

Consider now any ω ∈ (A ∩ B). We have that for sufficiently large n, Algorithm 2 will return
r̂(θ?, Dc) (since ω ∈ A), and further that r̂(θ?, Dc) → r(θ?) (since ω ∈ B). Thus, for all ω ∈
(A ∩B), the output of the candidate utility function converges to r(θ?), i.e., ĉ(θ?, Dc(ω))→ r(θ?).
Since Pr(ω ∈ (A ∩B)) = 1, we conclude that ĉ(θ?, Dc(ω))

a.s.−→ r(θ?).

We have now established that the candidate utility function converges almost surely to r(θ?) for
the θ? assumed to exist in Assumption 3. We now establish a similar result for all θ ∈ Θ̄—that the
output of the candidate utility function converges almost surely to c(θ) (recall that c(θ) is defined as
rmin − g(θ)).

Property 5. For all θ ∈ Θ̄, ĉ(θ,Dc)
a.s.−→ c(θ).

Proof. By Property 3, we have that Û(θ,Dc)
a.s.−→ g(θ). If θ ∈ Θ̄, then we have that g(θ) > −ξ/2.

We now change the definition of the set A from its definition in the previous property to a similar
definition suited to this property. That is, let:

A = {ω ∈ Ω : lim
n→∞

U(θ,Dc(ω)) = g(θ)}. (4)

Recall that Û(θ,Dc)
a.s.−→ g(θ) means that Pr(limn→∞ Û(θ,Dc) = g(θ)) = 1. So, ω is in A

almost surely, i.e., Pr(ω ∈ A) = 1. Consider any ω ∈ A. From the definition of a limit and the
previously established property that g(θ) > −ξ/2, we have that there exists an n0 such that for all
n ≥ n0 the candidate utility function will return rmin −

∑k
i=1 max{0, Ûi}. By the same argument,

Û(θ,Dc(ω))→ g(θ). So, for all ω ∈ A, the output of the candidate utility function, ĉ(θ,Dc(ω))→
rmin − g(θ)− ξ, and since Pr(ω ∈ A) = 1 we therefore conclude that ĉ(θ,Dc(ω))

a.s.−→ c(θ).

By Property 5 and one of the common definitions of almost sure convergence,

∀θ ∈ Θ̄,∀ε > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : |ĉ(θ,Dn(ω))− c(θ)| < ε}
)

= 1.

Because Θ is not countable, it is not immediately clear that all θ ∈ Θ̄ converge simultaneously to
their respective c(θ). We show next that this is the case due to our smoothness assumptions.

Property 6. ∀ε′ > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : ∀θ ∈ Θ̄, |ĉ(θ,Dc(ω))− c(θ)| < ε′}
)

= 1.

Proof. Let C(δ) denote the union of all the points in the δ-covers of the countable partitions of Θ
assumed to exist by Assumption 1. Since the partitions are countable and the δ-covers for each
region are assumed to be countable, we have that C(δ) is countable for all δ. Then for all δ, we have
convergence for all θ ∈ C(δ) simultaneously:

∀δ > 0,∀ε > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : ∀θ ∈ C(δ), |ĉ(θ,Dc(ω))− c(θ)| < ε}
)

= 1. (5)

Now, consider a θ 6∈ C(δ). By Definition 2 and Assumption 1, ∃ θ′ ∈ Θ̄c
i , d(θ, θ′) ≤ δ. Moreover,

because c and ĉ are Lipschitz continuous on Θ̄c
i and Θ̄ĉ

i (by Assumption 1) respectively, we have
that |c(θ) − c(θ′)| ≤ Kδ and |ĉ(θ,Dc(ω)) − ĉ(θ′, Dc(ω))| ≤ K̂δ. So, |ĉ(θ,Dc(ω)) − c(θ)| ≤
|ĉ(θ,Dc(ω))− c(θ′)|+Kδ ≤ |ĉ(θ′, Dc(ω))− c(θ′)|+ δ(K + K̂). This means that for all δ > 0:(
∀θ ∈ C(δ), |ĉ(θ,Dc(ω))− c(θ)| < ε

)
=⇒

(
∀θ ∈ Θ̄, |ĉ(θ,Dc(ω))− c(θ)| < ε+ δ(K + K̂)

)
.

Substituting this into (5), we get:

∀δ > 0,∀ε > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : ∀θ ∈ Θ̄, |ĉ(θ,Dc(ω))− c(θ)| < ε+ δ(K + K̂)}
)

= 1.
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Now, let δ := ε/(K + K̂) and ε′ = 2ε. Thus, we have the following:

∀ε′ > 0,Pr
(

lim
n→∞

inf{ω ∈ Ω : ∀θ ∈ Θ̄, |ĉ(θ,Dc(ω))− c(θ)| < ε′}
)

= 1.

So, given the appropriate assumptions, for all θ ∈ Θ̄, we have that ĉ(θ,Dc(ω))
a.s.−→ c(θ) and that

ĉ(θ?, Dc(ω))
a.s.−→ r(θ?). Due to the countable additivity property of probability measures and

Property 6, we have the following:

Pr
([
∀θ ∈ Θ̄, lim

n→∞
ĉ(θ,Dc(ω)) = c(θ)

]
,
[

lim
n→∞

ĉ(θ?, Dc(ω)) = r(θ?)
])

= 1, (6)

where Pr(A,B) denotes the joint probability of A and B.

Let H denote the set of ω ∈ Ω such that (6) is satisfied. Note that rmin is defined as the value always
less than r(θ) for all θ ∈ Θ, and −g(θ) ≤ 0 for all θ ∈ Θ̄. So, for all ω ∈ H , for sufficiently
large n, the candidate utility function will not define θc to be in Θ̄. Since ω is in H almost surely
(Pr(ω ∈ H) = 1), we therefore have that limn→∞ Pr(θc 6∈ Θ̄) = 1.

The remaining challenge is to establish that, given θc 6∈ Θ̄, the probability that the safety test returns
NSF converges to zero as n → ∞. By Property 3 (but using Ds in place of Dc), we have that
Û(θc, Ds)

a.s.−→ g(θc). Furthermore, we have that for all ω ∈ H , there exists an n0 such that for all
n ≥ n0, θc 6∈ Θ. From the definition of Θ, this means that there exists an n such that for all n ≥ n0,
g(θc) < −ξ/2, at which point the safety test would return θc. So, we have our desired result—the
limit as n→∞ of the probability that RobinHood returns a solution, θc, is one, meaning the limit as
n→∞ of the probability that RobinHood returns NSF is zero.

F Additional Experimental Details

This section provides pseudocode for the helper methods in RobinHood, details for the baselines,
more details on our application domains, and a discussion of the results in our loan approval
experiments.

F.1 Baseline Methods

Except for NaïveFairBandit, the baselines we compare to exist as repositories online and are
linked below.

• Offset Tree [6]: https://github.com/david-cortes/contextualbandits
• POEM [44]: http://www.cs.cornell.edu/ adith/POEM/
• Rawlsian Fair Machine Learning for Contextual Bandits [23]: An online contextual bandit algo-

rithm which enforces weakly meritocratic fairness at every step of the learning process. We used
the repository located at https://github.com/jtcho/FairMachineLearning for this experiment, but
made changes to the original code. This was done to accurately reflect the original work in Joseph
et al. [23]. Specifically, the repository code showed the bandit the reward for each action at every
round, and this was instead changed to returning the reward for only the action chosen by the
algorithm.

• NaïveFairBandit does not employ a safety test, and therefore does not search for candidate
solutions with inflated confidence intervals or return NSF. Pseudocode for NaïveFairBandit is
located in Algorithm 7.

F.2 Tutoring Systems

User Study. We define a new mathematical operator called the $ operator such that A$B =
B × dA/10e. In total, three tutorial versions are used in our experiments. The $ operator is
described in different ways in each of the three tutorials, as depicted in Figures F.1 through F.3.
Tutorial 1 (Figure F.1) describes the $ operator using code, and includes example problems. Tutorial 2
(Figure F.2 describes the $ operator in a non-intuitive way, and uses fewer example problems.
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Algorithm 7 NaïveFairBandit

1: function NAIVEFAIRBANDIT(D,∆, Ẑ, E)
2: θc = arg max

θ∈Θ
NaiveCandidateValue(θ,D,∆, Ẑ, E)

3:
4: function NAIVECANDIDATEVALUE(θ,Dc,∆, Ẑ, E)
5: [Û1, ..., Ûk] = ComputeUpperBounds(θ,Dc,∆, Ẑ, E , False)
6: rmin = min

θ′∈Θ
r̂(θ′, Dc)

7: if Ûi ≤ 0 for all i ∈ {1, ..., k} then return r̂(θ,Dc) else return rmin −
k∑
i=1

max{0, Ûi}

Tutorial 1

Figure F.1: Tutorial that defines the $ operator using code.

Tutorial 3 (Figure F.3) responds differently to users based on their gender identification. Male-
identifying users were given the straightforward definition of the $ operator, while female-identifying
users were given an incorrect definition. The number of female-identified users in this data set is
1,403 and the number of male-identified users is 1,178. In the equal proportions experiment, two
tutorials were used for a total of 1988 samples. In the skewed proportions experiment, three tutorials
were used for a total of 2581 samples were used. The assessment shown to each user once they
completed the provided tutorial consists of ten questions using the $ operator, e.g., 16$4. When
computing importance weights, we re-scale female and male samples to simulate a similar data set
containing 80% males and 20% females. Response format was fill-in-the-blank.

F.3 Loan Approval

Statistical Parity. In this experiment, we enforce statistical parity. A policy is considered fair
in this case if its probability of approving male applicants is equal to its probability of approving
female applicants. We use the Personal Status and Sex feature of each applicant to determine
sex. Statistical parity can be encoded as the following constraint objective:

g(θ) :=
∣∣∣E[A|m]− E[A|f]

∣∣∣− ε, (7)

where A = 1 if the corresponding applicant was granted a loan and A = 0 otherwise. To satisfy this
constraint objective, the absolute difference between the conditional expectations must be less than ε
with high probability.

Statistical Parity Experimental Results. We ran 50 trials for this experiment. We find that for
larger training set sizes the estimated expected reward of solutions returned by RobinHood grows
steadily more comparable to those returned by Offset Tree and NaïveFairBandit. Very quickly,
we see that baselines begin to return solutions that are fair with respect to each constraint objective,
indicating that solutions that optimize performance also are in line with the behavioral constraints.
As can be seen in Figure F.4, RobinHood is able to find and return these solutions as well.
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Tutorial 2

Figure F.2: Tutorial that explains the $ operator in a convoluted manner.

Tutorial 3

Figure F.3: Biased tutorial that provides incorrect information to female-identifying users.

Comparison to Online Fairness Methods. Because most existing work on fairness for bandits
considers the online setting, we performed an additional experiment to evaluate how RobinHood
performs in comparison to these baselines. In particular, we compare RobinHood to the framework
discussed by Joseph et al. [23], called Rawlsian Fair Machine Learning. This framework considers
the contextual bandit setting in a slightly different way, where contexts are actions from which to
choose. Importantly, we note that this experiment is not entirely fair, as RobinHood is formulated for
the offline bandit setting. Nonetheless, the results of this experiment provide a rudimentary analysis
of how our method might perform if used in this setting.

To compare our method, which learns using a batch of data, to baselines that make decisions online,
we use the following procedure. First, we assume that the problem definition provides a reward
function, r : (X × A) → R, which determines the value of taking each action given a particular
context. In our experiment, we obtain r by training a Gaussian process regression model to predict R
given (X,A), using the data from the loan approval experiment. Importantly, because this experiment
uses a simulator, which only roughly approximates the processes that generated the loan approval
dataset, we expect the results to differ from those that were obtained in the offline loan approval
experiments. Given r, we train RobinHood as in offline experiments, with the exception that reward
is computed dynamically using r instead of being estimated using importance sampling. To train the
online baseline algorithms, we allow them to iteratively learn over each context in the training data
set in random order. As a result, despite the fact that RobinHood learns in batch while the baselines
learn iteratively, our training procedure ensures that all models are trained on the same amount of
data, and using the same set of contexts and reward function, r. Once the algorithms are trained,
their parameters are fixed and they are evaluated on the remaining testing data. As in the offline
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Figure F.4: Enforcing statistical parity in the Loan Approval domain (ε = 0.23).
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Figure F.5: Comparison to online methods for loan approval using disparate impact (ε = −0.8).

experiments, we report evaluation statistics averaged over several randomized trials, where each trial
uses 40% of the data for training and 60% for testing.

Figure F.5 shows the results of this experiment, which we averaged over 50 trials. Similar to our
other results, RobinHood maintains an acceptable failure rate (5% in this experiment), and returns
solutions other than NSF given a reasonable amount of data.

G Example Base Variable Without Unbiased Estimator

In Section 4 we mentioned that there may be some base variables that the user wants to use when
defining fairness that do not have unbiased estimators (e.g., standard deviation). For example, say the
user wanted to define a base variable to be the largest possible expected reward for any policy with
parameters θ in some set Θ, i.e., maxθ∈Θ r(θ). That is, this base variable is: z(θ) := maxθ′∈Θ r(θ

′).
Note that because this quantity does not depend on the solution being evaluated, θ, we denote it as z
instead of z(θ). This base variable is important in the context of this paper because it can be a useful
component in definitions of fairness.

Consider an example application where each context corresponds to a person, actions correspond to
deciding which tutorial on consumer economics to give to a person, and the reward is the person’s
fiscal savings during the following year. In this case, we might desire a system that is fair with
respect to people from different locations, say Maryland and Mississippi. Since the mean income in
Maryland in 2015 was $75,847, while the mean income in Mississippi in 2015 was only $40,593, it
would not be reasonable to require the bandit algorithm to ensure that it selects actions in a way that
ensures the expected return for people in both states is similar (the expected yearly income). That
is, a tutoring system on resource economics could not be expected to remedy the income disparity
between these two states.

Rather than compare the expected rewards for people in each state, it would be more reasonable
to compare how far the expected reward is from the best possible expected reward for people in
each state. This allows for behavioral constraints that require the expected yearly income (expected
return) for people in each state to be within $500 of the maximum possible expected income when
considering the impact of different policies (tutoring systems). Alternatively, one might require the
expected yearly income to be within 10% of the best possible (our of all of the tutoring systems
considered) for people in each state. To use these definitions of fairness, we might desire a base
variable that is equal to the maximum possible expected reward for people of a particular type. The
base variable that we present here shows how this can be achieved (although we present the variable
without conditioning on a person’s type, this extension is straightforward).
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The challenge when upper-bounding z is that we do not know which policy is optimal. It is
straightforward to construct high-confidence upper bounds on the performance of a particular policy
using importance sampling and a concentration inequality like Hoeffding’s inequality. In this section
only, let U(θ,D) denote a (1−δ)-confidence upper bound on z, constructed from data, D. One
approach to upper bound z would be to first produce a high-confidence upper bound, U(θ′, D), on
the performance of each solution θ′ ∈ Θ, and then compute the bound on z using the set of upper
bounds, {U(θ′, D)}θ′∈Θ. Because θ? is the optimal policy with respect to r, i.e.,

θ? ∈ arg max
θ′∈Θ

r(θ′), (8)

one candidate for a (1−δ)-confidence upper bound on z is the supremum of the upper bounds
computed for each θ′: supθ′∈Θ U(θ′, D).

However, it is not clear that this is a valid upper bound on z. Intuitively, if the upper bound computed
for any of the θ′ ∈ Θ is too small, then this proposed upper bound on r(θ?) may be too small. So, it
may seem that the probability that this upper bound fails is the probability that there is one or more
θ′ ∈ Θ for which U(θ′, D) does not upper bound z. If Θ has cardinality n, then this probability can
be as large as nδ. Here we show that this reasoning is incorrect: for this particular base variable, the
probability of failure remains δ, not nδ. That is:
Property 7. Let Θ be a (possibly uncountable) set of policy parameters (policies). If, there exists at
least one θ? satisfying (8) and for all θ′ ∈ Θ, U(θ′, D) is a (1−δ)-confidence upper bound on r(θ′),
constructed from data D, then

Pr

(
sup
θ′∈Θ

U(θ′, D) ≥ max
θ′∈Θ

r(θ′)

)
≥ 1−δ. (9)

Proof. Note that in (9), U(θ′, D) is the only random variable—it is the source of all randomness.
Furthermore, by the assumption that there exists at least one θ? satisfying (8), maxθ′∈Θ r(θ

′) exists.
However, maxθ′∈Θ U(θ′, D) may not exist, and so we use supθ′∈Θ U(θ′, D).

Let θ? be any policy satisfying (8). By assumption, U(θ?) is a (1−δ)-confidence upper bound on
r(θ?). That is,

Pr
(
U(θ?, D) ≥ r(θ?)

)
≥ 1−δ. (10)

Because θ? satisfies (8), we have that r(θ?) = maxθ′∈Θ r(θ
′), and so

Pr

(
U(θ?, D) ≥ max

θ′∈Θ
r(θ′)

)
≥ 1−δ. (11)

Since θ? ∈ Θ, we have that U(θ?, D) ≤ supθ′∈Θ U(θ′, D), and so

Pr

(
sup
θ′∈Θ

U(θ′, D) ≥ max
θ′∈Θ

r(θ′)

)
≥ 1−δ. (12)
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