
COMPSCI 389

Introduction to Machine Learning

Prof. Philip S. Thomas

Spring 2022

Manning College of Information and Computer Sciences

University of Massachusetts



COMPSCI 389

Acknowledgements. I would like to thank the many people who contributed to this

document with feedback and corrections. This includes the teaching assistants, Scott

Jordan (Spring 2021) and Cooper Sigrist (Spring 2021), as well as the many students who

took this course. I would particularly like to thank Wes Cowley [link], who provided

many edits that improved the clarity and veracity of the initial Spring 2021 version this

document. Finally, I would like to thank the Berkeley Existential Risk Initiative for their

support.

This document is made available under CC0. To the extent possible under law, Philip

Thomas has waived all copyright and related or neighboring rights to this work. This

work is published from: United States.

https://www.wordsbywes.ink/
https://creativecommons.org/share-your-work/public-domain/cc0/


Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 What is COMPSCI 389? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 What is This Document? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 What is Artificial Intelligence? . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Artificial General Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Topics and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Supervised Learning 7

2 Regression I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Regression Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 8

GPA Prediction Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Regression Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Nonparametric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Parametric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Regression II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Linear Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Including an Offset Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Defining “Best Fit” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Optimization Perspective of Regression . . . . . . . . . . . . . . . . . . . . 21

3.4 Evaluating a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Regression III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 Black Box Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Regression 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 Gradient Descent Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Gradient Descent for Least Squares Linear Regression . . . . . . . . . . . . 33

6 Regression 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1 Convergence of Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Convergence Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



7 Regression 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1 Objective Function Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Input Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1 Biological Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Perceptron Parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.3 Gradient Descent using a Perceptron Parametric Model . . . . . . . . . . . 46

9 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.1 New Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.2 Forward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11 Vanishing Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
11.1 Vanishing Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

12 Other Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
12.1 Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

12.2 Adaptive Step Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

12.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

12.4 Generalization Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Hoeffding’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

12.5 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Reinforcement Learning 65

13 What is Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 66

14 MENACE, Notation, and Problem Formulation . . . . . . . . . . . . . . . . . . 68
14.1 Machine Educable Naughts and Crosses Engine (MENACE) . . . . . . . . 68

Exploration Versus Exploitation . . . . . . . . . . . . . . . . . . . . . . . . 68

14.2 Operant Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

14.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

15 Episodes and Additional Notation . . . . . . . . . . . . . . . . . . . . . . . . . 73
15.1 Episodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

15.2 Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

15.3 Reward Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

15.4 How to Represent 𝜋? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

15.5 From Supervised Learning to RL . . . . . . . . . . . . . . . . . . . . . . . . 76

16 Policy Gradient Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
16.1 A Simple RL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Make Action 𝐴𝑡 More Likely in State 𝑆𝑡 . . . . . . . . . . . . . . . . . . . . 78

Make Action 𝐴𝑡 Less Likely in State 𝑆𝑡 . . . . . . . . . . . . . . . . . . . . 79

A Simple RL Algorithm v2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Is The Discounted Sum of Rewards Big or Small? . . . . . . . . . . . . . . 79



17 Policy Gradient Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
17.1 Improving the MENACE-Like Algorithm . . . . . . . . . . . . . . . . . . . 82

17.2 Value Functions and Updating during Episodes . . . . . . . . . . . . . . . 83

17.3 Temporal Difference Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

18 Policy Gradient Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
18.1 An Actor-Critic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94





1: This text uses the abbreviations “e.g.”

and “i.e.” for the common Latin terms

exempli gratia (for example) and id est (that

is).

2: This usage of the word agent stems from

the Latin word agere, which means “to do.”

Introduction 1
1.1 What is COMPSCI 389? . . . . 1
1.2 What is This Document? . . . 1
1.3 What is Artificial Intelligence? 1
1.4 What is Machine Learning? . 3
1.5 Artificial General Intelligence 5
1.6 Topics and Overview . . . . . . 5

1.1 What is COMPSCI 389?

COMPSCI 389 is an undergraduate (junior level) introduction to machine

learning. This course is intended for students who have learned the

basics of programming but who may have no previous exposure to

machine learning or artificial intelligence. Familiarity with linear algebra

is not required for this course, but familiarity with calculus and basic

probability is assumed.

1.2 What is This Document?

This document is a study aid for the Spring 2022 offering of COMPSCI

389 in the Manning College of Information and Computer Sciences (CICS) at

the University of Massachusetts. Each chapter corresponds to one lecture.

This is not a full-fledged book, nor is it merely a collection of notes that

a student might have taken during lecture. Rather, this document lies

between these two extremes, providing more context than notes that you

might take during lecture without being a stand-alone resource like a

textbook.

1.3 What is Artificial Intelligence?

Artificial intelligence (AI) is a field concerned with intelligent behavior in

artifacts [1] [1]: Nilsson (1998), Artificial Intelligence: A
New Synthesis

. To properly parse this definition, we must define the three

colored terms: field, intelligent behavior, and artifacts.

A field is an area of study like math, physics, and theology. Within the

AI field, the phrase “AI” is typically not used to refer to a thing. For

example, one would not say “I want to create an AI that . . . ”, even though

this phrasing is common outside of the AI field (e.g.,
1

in video game

design). Within the AI field, the thing (software, robot, object, etc.) that

uses AI methods is called an agent. More precisely, an agent2
is an

autonomous entity which acts, directing its activity towards achieving

goals, upon an environment using observation through sensors and

consequent actuators [2] [2]: Wikipedia contributors (2021),

Intelligent Agent
. So, someone in the AI field is more likely to say

“I want to create an agent that . . . ”.

With this modern usage of the word agent, we can update Nilsson’s

definition of AI by replacing artifact with agent: Artificial intelligence is

a field concerned with intelligent behavior in agents.

Last, but certainly not least, intelligent behavior is behavior that a rea-

sonable person might recognize as indicative of intelligence. You may

rightfully be thinking “What a cop-out! What then is intelligence?”. Rather
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3: A graph (𝑉, 𝐸) is a set of vertices, 𝑉 ,

and a set of edges, 𝐸. [Wiki]

4: Throughout this document, I make mi-

nor abuses of grammar and notation for

brevity. For example, here the two vertices

are start and goal, not the two Boolean

values start ∈ 𝑉 and goal ∈ 𝑉 .

than attempt to answer this nuanced and debated question, we point

out that it is not particularly important in the context of this discussion.

AI is a field, and so determining what is, and is not, intelligent behavior

is useful in this context to determine what is, and what is not, part of

the AI field. However, in reality, the various definitions of AI are of little

importance when deciding what is and is not AI; the broader computer

science community generally decides by implicit consensus which fields

are and are not part of AI, independent of any definitions.

For example, consider two programs, Optimize and Path. Optimize

takes as input easy-to-read source code and outputs source code that is

fast to run. An example input might be:

Algorithm 1.1: Example input to Optimize.

1 while value < 100 do
2 item = 10;

3 value = value + item;

4 end

With the above algorithm as input, Optimize might output:

Algorithm 1.2: Example output from Optimize.

1 while value < 100 do
2 value = value + 10;

3 end

Or, perhaps Optimize might be even more intelligent, producing the

following as output.

Algorithm 1.3: Example output from Optimize.

1 value = 100 + (value modulo 10);

Looking at the second example output, Algorithm 1.3, I suspect that

you had to think a bit to verify that the input and output programs are

equivalent. A program that can do this reduction is surely in some way

exhibiting intelligent behavior! However, this program is one that would

be studied within the field of compiler optimization, which is generally

viewed as not part of AI.

Next, consider a program, Path, which takes as input a graph
3 (𝑉, 𝐸)

and two vertices, start ∈ 𝑉 and goal ∈ 𝑉 ,
4

and outputs yes if there

is a path from start to goal, and outputs no otherwise. I do not find

this behavior to be particularly “intelligent” (do you?). Sure, it may be

computationally intensive, but I think intelligence is more than just the

amount of computation used by a program—if that was the way to

measure intelligence, then the most intelligent agent on Earth would be

a Chrome browser with more than five tabs open!

However, regardless of whether you believe that Path exhibits intelligent

behavior or not, it is a type of algorithm called a search algorithm, which

the AI community agrees is part of AI. How can we reconcile our

definition of the AI field with fact that Optimize seems like it should

be part of AI but is not, while Path seems like it should not be part

of AI but is? The answer is to view the definition of AI as a guiding

principle for crudely summarizing what is and is not part of AI, rather

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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than a precise rule. Furthermore, this guiding principle should be applied

inclusively—do not be the zealot arguing that some subfield that has been

established as part of AI should not be considered part of the AI field.

You will only annoy the people working in that subfield. Instead, try to

be inclusive—recognize that inclusion within AI is a communal decision

that does not necessarily have to agree with any written definition of AI

or intelligence.

A consequence of this usage of the phrase AI is that students are often

disappointed by their first classes in AI or machine learning. Students

enter expecting an enlightening discussion of intelligence and how to

create minds, only to find an introductory course filled with discussion

of algorithms like Path. When taking my first course on AI, I recall

thinking “none of this is AI” for the vast majority of the semester.

One goal of this course is to prevent this disillusionment by including

discussion of more advanced topics, like reinforcement learning algorithms,

which closely resemble the algorithms implemented by parts of animal

brains. Furthermore, I will explicitly discuss topics related to psychology,

neuroscience, and even philosophy of mind in order to situate the topics

covered in this course relative to the broader discussion of (natural and

synthetic) intelligence and minds.

1.4 What is Machine Learning?

Machine learning (ML) is a subfield of AI concerned with the question of

how to construct computer programs that automatically improve with

experience [3] [3]: Mitchell (1997), Machine Learning. The inputs to a program that characterize an “experience”

are typically called data.
5

5: Data is the plural of the word datum,

much like how agenda is the plural of the

Latin word agendum. Just as people have

started using agenda as a singular noun

in English, the word data is increasingly

treated as a singular noun in English, as

shown in the Google Ngram below.

In this document I use data as both the

singular and plural forms.

Similarly, the modification of behavioral

tendencies by experience is called learning [4] [4]: Merriam-Webster (2021), Learning. Finally, incorporating the

word agent, defined above, we can rewrite Mitchell’s definition of ML as:

Machine learning is a subfield of AI concerned with the question of how

to construct agents that learn from data.

As an example, consider a third program, Predict, that takes as input

data consisting of labeled images of handwritten letters along with a

handwritten letter without a label (called the query), and which outputs

a prediction of the label for the unlabeled letter. Example inputs and

outputs for Predict are depicted in Figure 1.1 and Table 1.1. Problems

of the sort solved by Predict, where the labels are discrete (not real

numbers), are called classification problems and will be covered in a later

chapter.

To summarize, artificial intelligence (AI) is a subfield of computer science

concerned with agents that are in any way intelligent, and machine learning
(ML) is a subfield of AI concerned with agents that become intelligent

via learning. For example, a program that takes as input the rules to chess

and then computes an optimal strategy for the game would fall within AI,

but not ML, while a program that learns an optimal chess strategy over

time by playing many games of chess would fall within ML. However, the

precise boundaries of AI and ML are vague and sometimes debated. As

a result, you may find it surprising that certain topics are, or are not, part

of AI or ML, and you should try not to be dismissive of other peoples’

https://books.google.com/ngrams/graph?content=the+data+is%2Cthe+data+are&year_start=1760&year_end=2000&corpus=0&smoothing=3
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Figure 1.1: Example data that could be

provided to the Predict algorithm. Each

row corresponds to a different label, from

zero to nine. These images are examples of

some of the entries in a popular data set

called the Modified National Institute of

Standards and Technology data set, which

is commonly called MNIST (pronounced

“em-nist”). If you were standing in for

the Predict algorithm and saw the

handwritten number below as an input

for which you should predict the label,

what would you output?

Input Label

Wolf

Seax

Pacul

Wolf

Pacul

Seax

Input Your Predicted Label

?

?

?

Table 1.1: Left. Example input data for the

Predict algorithm. Right. Examples of

additional inputs (without labels) for the

Predict algorithm to produce predictions

of what the labels should be. If you were

the Predict algorithm, what would you

predict the correct labels are?

work as “not really AI” just because it does not fit your definitions of

artificial or intelligence.
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1.5 Artificial General Intelligence

Artificial general intelligence (AGI) is the hypothetical intelligence of

a computer program that has the capacity to understand or learn any

intellectual task that a human being can [5] [5]: Wikipedia contributors (2021),

Artificial General Intelligence
. Creating AGI is the long-term

goal of many AI researchers, and the consensus among AI researchers is

that AGI is feasible in theory. However, the general consensus is that we

are far from creating AGI. In fact, we know so little about how AGI might

eventually be created that it is challenging to guess how long it will be

before it is achieved. If every remaining challenge ends up being easier

to overcome than expected, and if breakthroughs come rapidly, then

perhaps AGI might be created in 20 years. Similarly, if some particularly

nefarious yet unforeseen challenge arises, it could be millennia.

As a result, there are two (sometimes conflicting) motivations for studying

AI and ML. Some people do not think about AGI because it is too distant,

and instead focus on creating AI and ML systems that can be beneficial

today and in the near future—systems that could improve medical

treatments, automate dangerous tasks, and be profitable. Others are

entirely captivated by the long-term goal of creating AGI. These two

motivations are sometimes conflicting, with peer reviewers of research

papers sometimes arguing against work that is not practicable today but

rather is a small step down the path towards AGI, and vice versa.

However, most AI researchers are motivated by both the short-term

practical benefits that advances in AI and ML bring and the long-term

goal of creating AGI. I hypothesize that most people enter the field leaning

more towards the long-term goal of creating AGI, and over time shift

towards focusing more heavily on shorter-term (feasible within a decade)

research. This shift is caused by the necessity to show progress—it is hard

to make a living by saying: “Pay me to think for 20–200,000 years, and I

might have an awesome development then.” Rather, real-world pressures

and celebrations of smaller successes train researchers to increasingly

lean towards the shorter-term goals. However, the passion for creating

AGI often persists under the surface. So, if you are interested in creating

AGI, do not be discouraged when you find that people more senior in

the AI and ML fields often talk very little about it. The interest in AGI

is generally shared—there is just very little to say, and we do not know

how to make progress beyond focusing on shorter-term subgoals on the

path to AGI.

While we will talk about some topics related to AGI later in the course,

particularly when discussing the relationship between ML and other

fields like psychology, neuroscience, and philosophy, the first two-thirds

of this course will not focus on AGI. Instead, it will focus on creating agents

capable of learning, albeit for extremely simple problems when compared

to the problems humans solve. Still, this study of the foundations of

intelligence and learning provides useful background for your future

deliberations concerning AGI.

1.6 Topics and Overview

This course can be roughly broken into three parts:
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1. Supervised learning. This part focuses on creating agents that can

learn from labeled data, like the Predict algorithm.

2. Reinforcement learning. This part focuses on creating agents that

can learn from their own experiences—by trial and error.

3. Safety, fairness, ethics, and related fields. This part focuses on a

variety of topics, beginning with those related to the responsible

use of ML for real-world problems—topics like safety, fairness, and

ethics. After discussing these practical issues, this part turns to

describing how ML research relates to other research areas like

psychology, neuroscience, and philosophy.

Finally, the last chapter may contain a survey of advanced topics in

ML, to show what will come next if you decide to pursue further ML

education.



Supervised Learning
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2.1 Regression Problem Formulation

Regression problems are a type of supervised learning problem wherein

an agent uses labeled data to learn to predict the labels for new inputs

that were not necessarily seen during training, and where the labels are

real numbers. This differs from the classification setting, which we will

cover later, where the labels are discrete (like the 26 discrete letters in the

alphabet when classifying handwritten letters).

GPA Prediction Example

As an illustrative example, consider the problem of using information

from college applications to predict what an applicant’s grade point average
(GPA) would be if the student were to be admitted.

1
Such a system could

be useful for filtering large numbers of applications to determine who

to admit, or if a human is in the loop, for filtering applications to select

which ones should be looked at by the human. This example is similar

to a common use of ML: determining which job applicant résumés [6] [6]: Lauren Weber (2012), Your Résumé
vs. Oblivion

should be inspected by a person.

Specifically, we will consider a data set2

2: Data sets are simply collections of data

often used to train ML algorithms. In

this course, we use “data set” rather than

“dataset.” For formal writing, use the ver-

sion that matches your target publication’s

style.

containing information about

43,303 students from the Federal University of Rio Grande do Sul (UFRGS),

a top university in Brazil. This data was collected as part of an evaluation

of Brazil’s quota system [7] [7]: Julia Carneiro (2013), Brazil’s universi-
ties take affirmative action

, and includes each student’s scores on nine

entrance exams taken specifically when applying to UFRGS, along with

students’ GPAs after their first three semesters at UFRGS.

You can download the data set in comma-separated value (.csv) form here.

This data set, which we call the base GPA data set or simply the GPA data
set (later, we will consider an expanded version of this data set) has 10

columns and 43,303 rows. Each row corresponds to one applicant; the first

nine columns correspond to the applicant’s scores on different entrance

exams and the tenth column is the student’s GPA after completing the

first three semesters at UFRGS. The first few rows are provided in Table

2.1.

Exam Number
1 2 3 4 5 6 7 8 9 GPA

538 491 407 529 532 447 528 379 489 2.98

455 440 571 418 454 426 476 476 407 1.97

757 680 531 584 534 521 592 784 588 2.53333

Table 2.1: The first three rows from the

base GPA data set, with exam scores

rounded to the nearest integer.

https://people.cs.umass.edu/~pthomas/courses/CMPSCI_390A_Spring2021/baseGPA.csv
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3: Notice that this equation uses the sym-

bol ≈, which means approximately equal to.

In this case, the approximation is due to

rounding to the nearest integer.

4: ℝ is the letter R written in blackboard
bold. Blackboard bold has a fascinating

history, which you can read about here.

5: A common convention, which we use

here, is to write �̂� to denote an estimate or

approximation of 𝑎, for any symbol 𝑎.

6: In this text we will use a nonstandard

notation {𝑎 : 𝑏} to be the set of integers

in the closed interval [𝑎, 𝑏]. For example,

{1 : 3} = {1, 2, 3}. You may have noticed

that we are using [·], (·), and {·} to mean

different things. Here, we use standard

notation: we write [𝑎, 𝑏], (𝑎, 𝑏), [𝑎, 𝑏), and

(𝑎, 𝑏] to denote intervals of the real num-

ber line, spanning from 𝑎 to 𝑏, with brack-

ets indicating inclusion of the endpoint

and parentheses indicating that the end-

point is excluded. We write {𝑎1 , 𝑎2 , . . . }
to denote a set with elements 𝑎1 , 𝑎2 , etc.,

and we write (𝑎1 , 𝑎2 , . . . ) to denote a se-

quence (ordered set) with elements 𝑎1 , 𝑎2 ,

etc. Finally, we use a form of mathematical

logic notation similar to first order logic.

For example,

∀𝑖 ∈ {1 : 𝑛}, 𝑥𝑖 ∈ ℝ𝑚 , 𝑦𝑖 ∈ ℝ,

could be written in sloppy first order logic

notation as:

∀𝑖 ∈ {1 : 𝑛}
(
(𝑥𝑖 ∈ ℝ𝑚) ∧ (𝑦𝑖 ∈ ℝ)

)
.

More precisely, first order logic does not

allow for range specification, and so the

proper equivalent expression would be:

∀𝑖
( (
𝑖 ∈ {1, 2, . . . , 𝑛}

)
=⇒(

(𝑥𝑖 ∈ ℝ𝑚) ∧ (𝑦𝑖 ∈ ℝ)
) )
.

7: So much notation! Keep with it—we’re

almost there! Notice how we just refer-

enced (2.3) without writing something

like “Equation 2.3” or “Eq. 2.3”. Though

you may see these latter examples fairly

often, they raise an issue: (2.3) is not an

equation—there is no equality specified!

This is most noticeable when authors ref-

erence inequalities by calling them “equa-

tions.”

8: For this discussion, we ignore the

strange realities of time that make it non-

sense to talk about “some given time”

across large distances (even at the global

scale, not just the interstellar scale). For a

mind-bending adventure into the nature

of time, I highly recommend the book The
Order of Time by Carlo Rovelli [8].

2.2 Regression Notation

While all of the available data is called the data set, one row is called a

data point. Each data point has two components: the example input and

the desired output for that input, which we call the label. In the GPA

data set, the input is the applicant’s scores on the nine entrance exams,

and the label is the student’s subsequent GPA.

The input data is a vector (one-dimensional array) of real numbers, called

a feature vector. We write 𝑥𝑖 to denote the 𝑖th feature vector. For example,

in the GPA data set,
3

𝑥1 ≈ (538, 491, 407, 529, 532, 447, 528, 379, 489). (2.1)

We write 𝑥𝑖 , 𝑗 to denote the 𝑗th feature within 𝑥𝑖 . For example, 𝑥1,3 ≈ 407.

Also, let 𝑚 be the number of features in each data point, so we can write

𝑥𝑖 ∈ ℝ𝑚
to concisely indicate that each 𝑥𝑖 is a vector of𝑚 real numbers.

Notice that we are using the symbol ℝ to denote the set of all real

numbers.
4

At the end of this document you will find a section titled

Notation that serves as a reference for common symbols like ℝ.

We write 𝑦𝑖 to denote the 𝑖th label. For regression problems, 𝑦𝑖 is a real

number. That is,

𝑦𝑖 ∈ ℝ. (2.2)

Additionally, let �̂�𝑖 be the agent’s prediction of 𝑦𝑖 (this prediction is

created based on 𝑥𝑖).
5

Let 𝑛 ∈ ℕ>0 be the number of data points in the data set (𝑛 = 43,303 in

the GPA data set). With these definitions, a data set is a set of 𝑛 data

points,

(𝑥1 , 𝑦1), (𝑥2 , 𝑦2), . . . , (𝑥𝑛 , 𝑦𝑛), (2.3)

where ∀𝑖 ∈ {1 : 𝑛}, 𝑥𝑖 ∈ ℝ𝑚 , 𝑦𝑖 ∈ ℝ.
6

Even this was a bit cumbersome

to write, and so we use a shorthand for sequences, writing (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1
to

denote (2.3).
7

Finally, let 𝑥𝑛+1 be a feature vector for which the agent is not provided

with the corresponding label, 𝑦𝑛+1. In this and later chapters, we will

discuss how an agent can use the labeled data to construct an estimate,

�̂�𝑛+1, of the unknown label 𝑦𝑛+1.

The previous sentence presents a common point of confusion: What is

the difference between something being “unknown” and something “not

existing”? When we say that something is “not known,” we generally

mean that it is not known by the agent. In the previous paragraph, we

described how 𝑦𝑛+1 is not known by the agent. However, that does not
mean that 𝑦𝑛+1 does not exist—we are assuming that it does, and we

(you and I) may or may not know its value. Another example of this

point of confusion is when we make statements like: Assume that 𝑠 is

the state of the universe—a complete description of everything in the

universe at some given time.
8

A common response is: “How can we do

that—we don’t know the complete state of the universe!” The key here is

that this is not a statement about what we or the agent knows, but rather

a statement about the existence of such a state. We can then even reason

about this state, 𝑠, even though we will never know it. Similarly, here, the

https://en.wikipedia.org/wiki/Blackboard_bold#Origin
https://en.wikipedia.org/wiki/First-order_logic
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9: We call these specifications hyperparam-
eters, which we will discuss further in Sec-

tion 2.4.

10: Hereafter, we will write∀𝑥, 𝑦 ∈ ℝ𝑚
as

shorthand for ∀𝑥 ∈ ℝ𝑚 ,∀𝑦 ∈ ℝ𝑚
. Notice

that this is different from ∀(𝑥, 𝑦) ∈ ℝ𝑚
,

which would indicate that (𝑥, 𝑦) is one

element of ℝ𝑚
.

agent will reason about what it thinks 𝑦𝑛+1 is, despite the fact that it may

never actually know what 𝑦𝑛+1 really is.

2.3 Nonparametric Methods

How might an agent go about using the available data to predict the

labels for new, unlabeled, feature vectors? One first idea might be to

search through the data set for the feature vector 𝑥𝑖 that is “closest” to

𝑥𝑛+1 and then guess that the label for 𝑥𝑛+1 will be 𝑦𝑖—that is, the label

will be the same as the label for the closest point.

Pseudocode for this algorithm, called nearest neighbor, is provided

in Algorithm 2.1. This algorithm has two nuances worth discussing

here. First, to find the nearest feature vector, we sort the points by their

distance to 𝑥𝑛+1. This pseudocode is very computationally inefficient,

so we place “naïve” in the algorithm name. In practice, the search for

nearest neighbors should be performed using a data structure designed

to speed up the search, such as a 𝑘-d tree [9] [9]: Wikipedia contributors (2021), 𝑘-d tree. However, as long as 𝑛

is relatively small, our basic version will be sufficient. Second, notice

that this algorithm requires us to specify how we want to measure the

distance between feature vectors
9

. Although any distance function could

work, we will use Euclidean distance (for vectors) because it is familiar:
10

∀𝑥 ∈ ℝ𝑚 ,∀𝑥′ ∈ ℝ𝑚 , dist(𝑥, 𝑥′) =
√√

𝑚∑
𝑗=1

(
𝑥′
𝑗
− 𝑥 𝑗

)
2

. (2.4)

Algorithm 2.1: Nearest Neighbor (Naïve)

Input :Data set (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1
, feature vector 𝑥𝑛+1

Output : �̂�𝑛+1, a prediction of 𝑦𝑛+1.

Hyperparameters :Distance function dist

1 /* Initialize variables and compute needed distances */
2 Allocate array dists of length 𝑛;

3 for 𝑖 ← 1 to 𝑛 do
4 dists[𝑖] ← dist(𝑥𝑖 , 𝑥𝑛+1);
5 end
6 /* Sort the points by their distance to 𝑥𝑛+1 (smallest

first). */
7 Sort (𝑥𝑖 , 𝑦𝑖 , dists[𝑖])𝑛

𝑖=1
by dists[𝑖], breaking ties randomly;

8 /* Return the label of the closest point */
9 return 𝑦1;

To visualize the behavior of this algorithm, we applied it to the GPA data

set. However, to make the behavior of the algorithm easier to visualize,

we made predictions from only one exam score (the first column of the

data set) and used only the first 30 data points. See Figure 2.1 for the

results of this experiment.

In Figure 2.1, two undesirable behaviors of Algorithm 2.1 become appar-

ent. First, consider the predicted GPAs for students with exam scores

around 550. Slight changes in exam scores result in wild shifts in the

predictions as the nearest neighbor changes from one data point to an-

other. Even as the amount of available data increases, this trend will not

https://en.wikipedia.org/wiki/Euclidean_distance
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Figure 2.1: Black dots correspond to scores

on the first exam (horizontal position) and

GPAs (vertical position) for the first 30

rows (students) in the base GPA data set.

The blue lines show the predictions of

Algorithm 2.1 (nearest neighbor).

go away—if anything, it will get worse because small changes in exam

scores will be more likely to result in a different nearest neighbor.

Second, consider the algorithm’s behavior for students with exam scores

around 400. Two data points (the 12
th

and 15
th

) have the same score on

Exam 1, but different GPAs. As a result, Algorithm 2.1 selects randomly

between the GPAs of these two points. This is usually not desirable

behavior of a regression algorithm—imagine if the algorithm selected

the lower prediction for you but the higher prediction for someone else

who, from the algorithm’s perspective, is identical to you!

We might mitigate the latter issue by returning the average of the labels

for all of the points that are closest to 𝑥𝑛+1. For exam scores around 400,

this would result in predictions closer to ≈ 2 rather than predictions that

randomly flip between ≈ 0.75 and ≈ 3. However, that does not fix the

former problem of predictions jumping around when there is only one

unique nearest neighbor.

To fix both issues simultaneously, we might consider more than just the

nearest neighbor—we could consider the 𝑘 ∈ ℕ>0 nearest neighbors.

However, once the agent has identified the 𝑘 nearest points, which label

should it output? One popular strategy is to return the average label for

the 𝑘 nearest neighbors. Notice that when 𝑘 = 1 this more sophisticated

algorithm degenerates exactly to Algorithm 2.1.

The resulting algorithm, called 𝑘 nearest neighbor, or 𝑘-NN, is an

extremely popular algorithm due to its simplicity and efficacy. Pseudocode

for the 𝑘 nearest neighbor algorithm is provided in Algorithm 2.2. Notice

that this algorithm differs from Algorithm 2.1 only in its inclusion of the

hyperparameter 𝑘 (and the corresponding assumption that 𝑘 ≤ 𝑛) and

in the final line that determines the value to return.

Figure 2.2 shows the predictions of both nearest neighbor (Algorithm

2.1) and 𝑘 nearest neighbor (Algorithm 2.2) with 𝑘 = 10. Notice that by

considering many of the nearby points the resulting predictions deviate

less with individual outliers and better follow the general trend of the

data. However, some issues remain. Consider how 𝑘 is set. When points

are densely packed along the horizontal axis (e.g., the middle of the

horizontal axis in Figure 2.2), large values of 𝑘 are appropriate, providing

an average of the many points with similar horizontal positions.
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Algorithm 2.2: 𝑘 Nearest Neighbor (Naïve)

Input :Data set (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1
, feature vector 𝑥𝑛+1

Output : �̂�𝑛+1, a prediction of 𝑦𝑛+1.

Hyperparameters :Distance function dist, number of nearest

neighbors 𝑘 ∈ ℕ>0

Assumptions : 𝑘 ≤ 𝑛
1 /* Initialize variables and compute needed distances */
2 Allocate array dists of length 𝑛;

3 for 𝑖 ← 1 to 𝑛 do
4 dists[𝑖] ← dist(𝑥𝑖 , 𝑥𝑛+1);
5 end
6 /* Sort the points by their distance to 𝑥𝑛+1 (smallest

first). */
7 Sort (𝑥𝑖 , 𝑦𝑖 , dists[𝑖])𝑛

𝑖=1
by dists[𝑖], breaking ties randomly;

8 /* Return the average of the labels for the 𝑘 closest
points */

9 return 1

𝑘

∑𝑘
𝑖=1

𝑦𝑖 ;

However, when points are sparse along the horizontal axis (e.g., the

left part of the horizontal axis in Figure 2.2), large values of 𝑘 are not
appropriate, because it results in the algorithm considering distant points

just as much as nearby points. As a result, on the far left side of the plot

in Figure 2.2, the predictions of 𝑘-NN with 𝑘 = 10 tend to be higher

than the data points. This happens because the 10 nearest neighbors

include points corresponding to students with significantly higher scores

on Exam 1, and these points are given the same weight in the prediction

as the nearby points with much closer exam scores.

Figure 2.2: Like Figure 2.1, but with the

predictions of 𝑘 nearest neighbor (𝑘-NN)

with 𝑘 = 10 plotted in green. Recall that

the blue predictions also correspond to

𝑘-NN, but with 𝑘 = 1.

So, the choice of 𝑘 changes the behavior of the algorithm, and the best

choice for 𝑘 varies depending on the position on the horizontal axis

(intuitively, we may want larger 𝑘 when there are many points nearby).

While one fix might be to allow 𝑘 to vary based on the local density of

points, we can make a more principled fix by using a weighted average

that places a larger weight on nearby points and a smaller weight on

distant points. Consider the left side of Figure 2.2—with an appropriate

weighting scheme, the weighted average can effectively ignore the distant

points that happen to be one of the 𝑘 closest not because they are close in

value, but because points are sparse on the far left of the plot. However,
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11: The notation 𝑓 : A→ B indicates that

𝑓 is a function that takes any element of

Aas input and always outputs an element

of B. So, 𝑤 : ℝ→ ℝ means that 𝑤 takes

any real number as input and produces a

real number as output.

for predictions near the middle of the horizontal axis, all of the 𝑘 closest

points will be considered almost equally because none are particularly

distant.

Pseudocode for this algorithm, called weighted 𝑘 nearest neighbors, is

provided in Algorithm 2.3. Notice that Algorithm 2.3 takes as input an

additional hyperparameter, 𝑤 : ℝ≥0 → ℝ.
11

This function is used to

determine how much weight should be given to each point based on its

distance to 𝑥𝑛+1. While there are many reasonable choices, a common

choice is a bell curve (the probability density function (PDF) of the normal

distribution with mean zero and standard deviation 𝜎 ∈ ℝ). That is, a

point distance dist from 𝑥𝑛+1 is given the weight:

𝑤(dist) = 1√
2𝜋𝜎2

𝑒
− dist

2

2𝜎2 . (2.5)

Notice that using this weighting function introduces another hyperpa-

rameter 𝜎. The impact of this hyperparameter on the weighting scheme

is depicted in Figure 2.3.

Also, notice that Algorithm 2.3 divides each weight by the sum of the (𝑘)

weights. To see why, consider measuring the temperature around you

with three thermometers of different quality—a scientific thermometer,

a cheap thermometer from a typical store, and your own guess of the

temperature. Rather than directly average the temperature readings,

you might take a weighted average that places a larger weight on the

thermometer that you expect to be most accurate. Say that the scientific

thermometer reads 𝑡1 = 71.3◦F, the cheap thermometer reads 𝑡2 = 70
◦
F,

and your best guess is 𝑡3 = 72
◦
F. Rather than simply average these, you

might take a weighted average with a weight of 10 on the scientific

thermometer and weights of 1 on the other two thermometers.

However, if you take the weighted sum using the formula:

combined estimate = 10𝑡1 + 1𝑡2 + 1𝑡3 , (2.6)

you would obtain a combined estimate of 855
◦
F! Clearly something went

wrong. The issue is that our weights did not sum to one, and so the scale

of the estimate is off by a factor of 10 + 1 + 1 = 12. To fix this, we simply

divide each weight by the sum of the weights, ensuring that the sum of

the weights is one. This gives:

combined estimate =
10

12

𝑡1 +
1

12

𝑡2 +
1

12

𝑡3 = 71.25
◦
F, (2.7)

which is a much more reasonable estimate. Notice in Algorithm 2.3 the

variable sum is used to normalize the weights in this same way.

Figure 2.4 shows the predictions of all three variants of the nearest neigh-

bor algorithm. Notice on the left side of the plot that the weighting brings

the predictions (magenta) down relative to 𝑘-NN without weighting

(green) because the distant points with higher GPAs have less of an

impact on the predictions for students with low scores on Exam 1. Also,

note that the predictions tend to be a smoother function of exam scores.
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Algorithm 2.3: Weighted 𝑘 Nearest Neighbor (Naïve)

Input :Data set (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1
, feature vector 𝑥𝑛+1

Output : �̂�𝑛+1, a prediction of 𝑦𝑛+1.

Hyperparameters :Distance function dist, number of nearest

neighbors 𝑘 ∈ ℕ>0, weight function 𝑤 : ℝ≥0 → ℝ

1 /* Initialize variables and compute needed distances */
2 Allocate arrays dists of length 𝑛;

3 for 𝑖 ← 1 to 𝑛 do
4 dists[𝑖] ← dist(𝑥𝑖 , 𝑥𝑛+1);
5 end
6 /* Sort the points by their distance to 𝑥𝑛+1 (smallest

first). */
7 Sort (𝑥𝑖 , 𝑦𝑖 , dists[𝑖])𝑛

𝑖=1
by dists[𝑖], breaking ties randomly;

8 /* Compute weights */
9 Allocate array weights of length 𝑘;

10 sum← 0;

11 for 𝑖 ← 1 to 𝑘 do
12 weights[𝑖] ← 𝑤(dists[𝑖]);
13 sum← sum+weights[𝑖];
14 end
15 /* Return the weighted average of the labels for the 𝑘

closest points */

16 return
∑𝑘
𝑖=1

weights[𝑖]
sum

𝑦𝑖 ;

Figure 2.3: The weights assigned by (2.5)

to points of distance dist (horizontal axis).

Notice that 𝜎 sets the width of the weight-

ing function—large values of 𝜎 correspond

to wider bell curves (more consideration

of distant points) and smaller values of 𝜎
to thinner bell curves (less consideration

of distant points).

Figure 2.4: Like Figure 2.2, but with the

predictions of weighted 𝑘 nearest neigh-

bor with 𝑘 = 20 and 𝜎 = 50 plotted in

magenta. Recall that the green predictions

correspond to 𝑘-NN with 𝑘 = 10 and the

blue predictions correspond to 𝑘-NN with

𝑘 = 1.
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2.4 Hyperparameters

We have used the term hyperparameters to refer to several parameters

of the various nearest neighbor algorithms. Hyperparameters are pa-

rameters whose values are used to tune the learning process. Intuitively,

you can think of hyperparameters as values that are set (typically by a

person) before the agent begins learning (reasoning from data) and that

shape the learning process. For example, we discussed how the choice of

𝑘 impacts the behavior of the 𝑘 nearest neighbor algorithm.

How should one select values for all of an algorithm’s hyperparameters?

Setting hyperparameters is an art learned with practice—as you gain

experience with ML algorithms, you will get better at guessing which val-

ues of hyperparameters will be effective, and you will learn how to study

the behavior of an agent and make predictions about how the agent’s

hyperparameters should be changed to improve its performance.

Consider trying to apply ML algorithm alg to some application. In some

cases, you might find a different ML algorithm, meta, that is designed to

automatically adjust the hyperparameters of alg to make it more effective.

In some cases, meta will have hyperparameters of its own. However, if

meta is effective, it will tend to have fewer hyperparameters than alg or

at least ones that are easier to set. We will discuss algorithms like meta

later when automatically adjusting a hyperparameter called the step size
that is used by some ML algorithms.

Also, notice that the quality of predictions generally improved as we

made the nearest neighbor algorithm more sophisticated. However, the

increased sophistication also came with an increase in the number of

hyperparameters—nearest neighbor had one (the distance function), 𝑘

nearest neighbor had two (the distance function and 𝑘), and weighted 𝑘

nearest neighbor had three (the distance function, 𝑘, and the weighting

function [or 𝜎 if you only consider the bell-curve weighting function]).

This presents a trade-off: we can obtain better performance from the

more sophisticated algorithms once the hyperparameters have been

properly tuned, but it becomes increasingly difficult to properly tune

the hyperparameters. We are essentially shifting some of the difficulty

of the task from the ML algorithm to the mechanism performing the

hyperparameter optimization (often a person).

Are we therefore deceiving ourselves by calling these algorithms better

or more sophisticated, when really they are offloading the work to the

hyperparameter optimization process? How should we compare these al-

gorithms to determine which one to use for a specific application? Should

we focus on the performance of the algorithm once the hyperparameters

have been tuned? Should we focus on the performance of the algorithm

with random hyperparameters? Is there some other way to account for

the difficulty of tuning hyperparameters? These are surprisingly difficult

questions to answer. Some efforts have been made to quantify how diffi-

cult it is to apply an ML algorithm to a new problem, taking into account

the difficulty of setting hyperparameters. However, these efforts often

make an assumption about how hyperparameters are tuned that does

not reflect the reality that a human will often be a part of the process.

Additionally, this human in the loop presents a serious confounding

variable—are the predictions of weighted 𝑘 nearest neighbor in Figure
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2.4 the predictions of the ML algorithm or my predictions as the one who

manually tuned the hyperparameters until the predictions looked good

to me? Surely, we (myself and the algorithm) both deserve partial credit

for the predictions, but who deserves more credit?

An unfortunate reality of modern ML, and particularly the reinforcement

learning subfield, is that the amount of effort, computation, and time

spent optimizing hyperparameters typically dwarfs all other aspects of

applying ML. This should be obvious—tuning hyperparameters generally

involves setting the hyperparameters, allowing the agent to learn, then

resetting the agent with new (and hopefully improved) hyperparameters,

and repeating the process. As this process involves multiple agent

“lifetimes” (learning from scratch, then being reset), it is necessarily more

time-consuming than a single agent lifetime.

The difficulty of tuning the hyperparameters of algorithms suggests that

in many cases the mechanism tuning the hyperparameters of an agent,

whether it is a person or a massively computationally intensive brute force

search, is more responsible for the seemingly intelligent behavior of the

agent than any learning process implemented by the agent. Furthermore,

because of how much work it takes to tune hyperparameters, I encourage

you to be skeptical of any “improvements” to ML algorithms that come

with an increase in the difficulty of tuning hyperparameters (either by

introducing more hyperparameters or by making the algorithm more

sensitive to the hyperparameter settings). Often, purported improvements

are consequences of increased work during hyperparameter optimization

that is not accounted for in performance reports.

Lastly, you may have noticed a similarity to natural intelligences—recall

from the first homework assignment that the computational power spent

by evolution to tune your hyperparameters dwarfs all of the computation

and learning performed by your brain during your lifetime, and so one

might argue that your intelligence is primarily shaped by evolution and

events from before your birth, not the learning that occurred since your

birth. This provides an accurate analogy to keep in mind when working

with ML algorithms—think of hyperparameter tuning as performing

the job of evolution, and do not ignore the difficulty of this task nor the

fact that seemingly intelligent behavior of an agent may actually be more

reflective of an effective hyperparameter optimization mechanism than

an effective ML algorithm.

2.5 Parametric Methods

Look back at Figure 2.4, and notice that all of the reported variants of

the nearest neighbor algorithm present a troubling behavior: in some

cases, they predict that your GPA will be higher if your exam score was

lower! To overcome this, we might want to place a constraint on the agent,

requiring it to make higher GPA predictions as exam scores increase.

Including constraints within ML algorithms is an important topic and

one that we will discuss later in the course, particularly when discussing

how to place constraints on agents to prevent them from exhibiting racist,

sexist, or otherwise unfair behavior.
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12: Here we use𝑚 as the standard symbol

for the slope parameter of a line, which is

unrelated to our usage of 𝑚 elsewhere as

the number of input features.

13: In reinforcement learning this func-

tion is called a policy, and the word model
is used to refer to a completely different

mechanism within the agent that can be

used to generate new training data (includ-

ing generating new feature vectors!).

14: The two forms are not perfectly equiv-

alent. For example, 𝑑𝑓𝑤(𝑥𝑖)/𝑑𝑥𝑖 is a valid

way of writing the derivative of the func-

tion 𝑓𝑤 . However, 𝑑𝑓 (𝑥𝑖 , 𝑤)/𝑑𝑥𝑖 is not

correct notation because this is a partial

derivative of 𝑓 , not a total derivative, and

so it should be written as 𝜕 𝑓 (𝑥𝑖 , 𝑤)/𝜕𝑥𝑖
(notice the difference between 𝑑 and 𝜕). For

the purposes of this introductory course,

you may ignore these differences.

For now, we will consider a particular type of constraint: what if we

constrain the agent by assuming that the predictions should have a

particular form? For example, what if we require the agent to make

predictions that are linear in the first exam score, that is, predictions

that form a line in Figure 2.4? We might parameterize this line with two

parameters, 𝑚 and 𝑏, using the formula:
12

�̂�𝑛+1 = 𝑚𝑥𝑛+1 + 𝑏, (2.8)

so that 𝑚 is the slope of the line and 𝑏 is the 𝑦-intercept (the height

at which the line crosses the 𝑦-axis). Now, the problem of learning to

make predictions has been distilled to the seemingly simpler problem

of finding the values for 𝑚 and 𝑏 that make accurate predictions for the

available data.

Let 𝑓 be the function within the agent that takes as input a feature vector

and produces as output a prediction of the corresponding label:

�̂�𝑖 = 𝑓 (𝑥𝑖). (2.9)

In supervised learning (but not reinforcement learning)
13

this function

is called a model.

In order to restrict the agent to only consider linear predictors, we assume

that the model is parameterized by a vector, 𝑤. In the example of fitting

a line using (2.8), this parameter vector is 𝑤 = (𝑚, 𝑏). The symbol 𝑤 is

often used because these parameters are sometimes called weights. More

formally, these parameters are called model parameters. For brevity, we

will call them “parameters.”

Incorporating parameters into our definition of 𝑓 , we obtain a parame-
terized model:

�̂�𝑖 = 𝑓𝑤(𝑥𝑖). (2.10)

Here, we write 𝑤 as a subscript of 𝑓 to indicate that different parameters

result in different models, each of which may provide a different way of

mapping inputs to label predictions. However, when thinking about how

to manipulate 𝑓𝑤 using algebra and calculus, note that writing 𝑓𝑤(𝑥𝑖) is
nearly

14
equivalent to writing 𝑓 (𝑥𝑖 , 𝑤). That is, 𝑓𝑤(𝑥𝑖) corresponds to a

function with two arguments, 𝑤 and 𝑥𝑖 .

Notice that model parameters differ from hyperparameters. Whereas

hyperparameters are set by a mechanism external to the agent (typically

a person), model parameters are learned by the agent based on its

observations (the available data). That is, hyperparameters change how
the agent adjusts its model parameters. In fact, we refer to the process of

an agent adjusting its parameters based on the available data as learning.

Hence, when an agent learns, it adjusts the parameters of its model based

on the data that it observes, while hyperparameters are set before the

agent learns and shape how the agent learns.

Notice that the nearest neighbor algorithms had hyperparameters, but

not model parameters. Algorithms like these, which do not use a fixed

parametric form for the model, are called nonparametric methods. By

contrast, algorithms that do assume a particular parametric form for the

model (a formula for how labels are generated from model parameters

𝑤) are called parametric methods.
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Also, notice that the choice of model parameterization—how changes

to the model parameters 𝑤 change the model’s predictions—is itself

a hyperparameter. For some problems we might guess that a simple

parameterized model like a line will be effective, while for other problems

we might guess that a more complicated parameterized model will be

needed. Either way, the decision of how to parameterize the model is

a decision generally made by the person applying a parametric ML

algorithm, and is therefore a hyperparameter.



1: The
⊺

symbol in 𝑎⊺𝑏 is called transpose—
this is not an exponent. Rather, this symbol

indicates that a vector or matrix should be

rotated by 90 degrees, turning the rows

into columns and the columns into rows.

If we assume that 𝑎 and 𝑏 are column

vectors, which we can think of as 𝑘 × 1

matrices for some 𝑘, then 𝑎⊺ converts 𝑎

into a 1 × 𝑘 matrix. So, 𝑎⊺𝑏 corresponds

to multiplying a 1 × 𝑘 matrix by a 𝑘 × 1

matrix, which is equal to

∑𝑘
𝑖=1

𝑎𝑖𝑏𝑖 .
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3.1 Linear Parametric Models

We will begin by focusing on linear models, which are models of the

form:

𝑓𝑤(𝑥𝑖) B𝑤1𝑥𝑖 ,1 + 𝑤2𝑥𝑖 ,2 + · · · + 𝑤𝑚𝑥𝑖 ,𝑚 (3.1)

=

𝑛∑
𝑗=1

𝑤 𝑗𝑥𝑖 , 𝑗 (3.2)

=𝑤 · 𝑥𝑖 (3.3)

=𝑤⊺𝑥𝑖 , (3.4)

where (3.3) and (3.4) are alternative ways of writing the same concept

(taking the sum of the products of the weights and features). These

alternate forms come from linear algebra, and this course does not
assume any familiarity with linear algebra. Still, we may in some cases

use these forms because they are shorter to write. So, although we will

not make use of techniques from linear algebra, we may make use of this

shorthand notation—particularly (3.4).
1

Including an Offset Feature

Notice that the linear model, 𝑓𝑤(𝑥𝑖) = 𝑤⊺𝑥𝑖 from (3.1), is not yet equiva-

lent to the �̂�𝑛+1 = 𝑚𝑥𝑛+1 + 𝑏 form of (2.8) because the former does not

include a 𝑦-intercept parameter (𝑏). That is, consider the case where

𝑚 = 1, so that 𝑓𝑤(𝑥𝑖) = 𝑤1𝑥𝑖 ,1. When 𝑥𝑖 ,1 = 0, this linear model always

predicts �̂�𝑛+1 = 0 regardless of how the model parameter is set; i.e., the

line always passes through the 𝑦-axis at a height of zero.

To include a 𝑦-intercept parameter, which specifies how high the line

should be when passing through the 𝑦-axis, we can change our data

set, appending a one to every feature vector. That is, we increment the

number of features, 𝑚 ← 𝑚 + 1, and define the new feature to be 1 for

every data point: 𝑥𝑖 ,𝑚 = 1 for all 𝑖 ∈ {1, . . . , 𝑛}.

With this change, the previous 𝑚 = 1 example now has 𝑚 = 2, and we

obtain:

𝑓𝑤(𝑥𝑖) =𝑤1𝑥𝑖 ,1 + 𝑤2𝑥𝑖 ,2 (3.5)

(3.6)

=𝑤1𝑥𝑖 ,𝑤 + 𝑤21 (3.7)

=𝑤1𝑥𝑖 ,1 + 𝑤2. (3.8)

So, 𝑤1 is the slope of the line and 𝑤2 is the 𝑦-intercept. We use this form

for 𝑓𝑤(𝑥𝑖) to avoid having to constantly handle the 𝑦-intercept parameter

as a special case: it is a model parameter like any other.
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2: For the curious reader, errors and resid-

uals differ when the labels in the training

data are themselves noisy. If 𝑦∗
𝑖

is the ac-

tual label for 𝑥𝑖 but 𝑦𝑖 is the label in the

training data, then the residual is 𝑦𝑖 − �̂�𝑖
while the error is 𝑦∗

𝑖
− �̂�𝑖 .

3: Recall that |𝑧 | is the cardinality (size)

of 𝑧 if 𝑧 is a set, but the absolute value of

𝑧 if 𝑧 is a real number.

3.2 Defining “Best Fit”

Once a parametric model has been chosen, like the linear model that we

are considering so far, the remaining challenge is to search for settings

of the model parameters that result in good predictions. That is, which

model parameters result in the “best fit” of the parameterized model to

the training data? In order to answer this question, we need to precisely

define what “best fit” means.

Intuitively, we might define the quality of a model based on how far its

predictions are from the labels. Let us define a function, 𝑙 : ℝ|𝑤 | → ℝ, so

that 𝑙(𝑤) is a measure of how bad the parametric model is when using

model parameters 𝑤. Because larger values of 𝑙(𝑤) correspond to worse

fits, we call 𝑙 a loss function. Once we have chosen a specific definition

for the loss function 𝑙, we can then search for the model parameters, 𝑤,

that minimize the loss function (i.e., the parameters that result in the best

fit).

First, we focus on precisely defining the loss function 𝑙, thereby defining

“best fit.” How good or bad a parametric model fits a data set will likely

depend on how far the predicted labels are from the labels in the data

set, so this quantity is worth naming. Let a residual, 𝑟𝑖 , be the difference

between the model’s prediction and the label in the data set:

𝑟𝑖 =𝑦𝑖 − �̂�𝑖 (3.9)

=𝑦𝑖 − 𝑓𝑤(𝑥𝑖). (3.10)

Sometimes people call these residuals errors, but technically a prediction’s

error is a slightly different quantity that we will not discuss here.
2

Notice that the choice of loss function is yet another hyperparameter. For

some applications, the choice of loss function may not be critical, like

when roughly fitting a line to data points for a noncritical application.

However, in other cases, the loss function must be carefully constructed.

For example, if the ML algorithm is predicting how far a landslide will

travel based on features of a hill in order to inform how far houses should

be built from a slope (a real use of regression [10] [10]: Jibson (2007), ‘Regression models

for estimating coseismic landslide

displacement’

), then underpredictions

are far more severe than overpredictions, and this difference in severity

should be incorporated into the loss function.

For now, we will construct a general purpose loss function that is not

customized to a specific application. At first, we might consider using

the sum of the residuals as the loss function:

𝑙(𝑤) =
𝑛∑
𝑖=1

𝑟𝑖 (3.11)

=

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖). (3.12)

However, this loss function is flawed: it encourages models with large

negative residuals. In general, negative residuals are just as bad as positive

residuals (over- and underpredicting are equally bad). One fix would be

to take the absolute value of the residuals to explicitly ignore the sign:
3
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4: The following comment is beyond the

scope of this introductory course, but

provided as a connection for the curious

reader. The least squares loss is more than

just a reasonable heuristic constructed as

we have shown. If one assumes that resid-

uals are normally distributed, then the

model parameters that maximize the prob-

ability of the observed labels are the model

parameters that minimize the least squares

loss. Using terminology that we have not

defined, the model parameters that min-

imize the least squares loss result in the

maximum likelihood model [11, Page 29].

5: A set with a single element is called a

singleton.

𝑙(𝑤) =
𝑛∑
𝑖=1

|𝑟𝑖 |. (3.13)

While this is a reasonable choice, a more common loss function penalizes

larger residuals more than smaller residuals. That is, what if a residual

of 2 is twice as bad as a residual of 1, but a residual of 4 is more than

twice as bad as a residual of 2? To account for this, we can use squared

residuals (which are also never negative) rather than the absolute value

of the residuals:

𝑙(𝑤) =
𝑛∑
𝑖=1

𝑟2

𝑖 (3.14)

=

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (3.15)

=

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑓𝑤(𝑥𝑖))2 . (3.16)

This loss function, called the least squares loss, is extremely popular.

Hereafter, unless otherwise specified, for regression algorithms we use

the symbol 𝑙 to refer to the least squares loss.
4

3.3 Optimization Perspective of Regression

Having defined a parameterized model 𝑓𝑤 and loss function 𝑙, we can

now formally define the problem of searching for model parameters, 𝑤∗,
which result in the best fit:

𝑤∗ ∈ arg min

𝑤

𝑙(𝑤). (3.17)

This usage of the
∗

superscript is common to indicate an optimized value

of a symbol and is pronounced “star,” as in “double-u star.”

To avoid confusion, we will review some common points of confusion

regarding (3.17). First, recall that min𝑤 𝑙(𝑤)would return the minimum

value that 𝑙(𝑤) takes for any value of𝑤. Similarly, arg min𝑤 𝑙(𝑤) returns a

𝑤 that causes 𝑙(𝑤) to achieve this minimum value. That is, arg min𝑤 𝑙(𝑤)
“is the model parameter vector that minimizes the loss function.”

I put the last sentence in quotes because, although it provides the correct

intuition, it is not actually correct. What if there are many values of 𝑤

that cause 𝑙(𝑤) to be minimized? To handle this situation, the arg min

operator returns a set containing all 𝑤 that cause 𝑙(𝑤) to be minimized.

In some cases there may be only one element in this set.
5

Nevertheless,

arg min returns a set, and so (3.17) uses the ∈ symbol, rather than =, to

indicate that 𝑤∗ is an element of this set, not the entire set of model

parameters. Returning to the last sentence of the previous sentence, we

can now state the proper claim: That is, arg min𝑤 𝑙(𝑤) is the set of all

model parameters that minimize the loss function.

The expression in (3.17) is a common type of expression called an

optimization problem. In general, optimization problems have the following
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form (here we temporarily redefine the symbols 𝑥,X, and 𝑓 ):

arg min

𝑥∈X
𝑓 (𝑥), (3.18)

where 𝑓 is called the objective function and X is the set of possible

values for 𝑥, called the feasible set.

So, we have converted regression problems using parametric models

into optimization problems. As you will see throughout this course,

nearly all ML problems (including regression, classification, and even

reinforcement learning problems) can be formulated as optimization

problems. In general, this optimization problem is of the form: find

model parameters that optimize (minimize or maximize) an objective

function that quantifies how good or bad model parameters are. The

many different ML problem settings, from regression to reinforcement

learning and even classification algorithms designed to avoid producing

racist and sexist behaviors, correspond to different types of objective

functions and assumptions about what is known about the objective

function and feasible set.

Soon we will discuss optimization algorithms for finding or approxi-

mating solutions to the optimization problem in (3.17). However, first

note that any algorithm that returns a 𝑤∗ satisfying (3.17) using the

least squares loss is called a least mean squares (LMS) algorithm. In

summary, an LMS algorithm is a regression algorithm that returns model

parameters that minimize the least squares loss:

𝑤∗ ∈ arg min

𝑤

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑓𝑤(𝑥𝑖))2 , (3.19)

and linear LMS additionally assumes a linear parametric model:

𝑤∗ ∈ arg min

𝑤

𝑛∑
𝑖=1

(
𝑦𝑖 −

𝑚∑
𝑗=1

𝑤 𝑗𝑥𝑖 , 𝑗

)
2

, (3.20)

where a 𝑦-offset parameter can be incorporated by appending a feature

to each 𝑥𝑖 that always takes the value one. The linear LMS fit to the base

GPA data set is depicted in Figure 3.1.

Figure 3.1: Like Figure 2.4, but with the

linear LMS fit plotted as a solid black line.

Recall that the magenta predictions cor-

respond to weighted 𝑘 nearest neighbor

with 𝑘 = 20 and 𝜎 = 50, the green pre-

dictions correspond to 𝑘-NN with 𝑘 = 10,

and the blue predictions correspond to

𝑘-NN with 𝑘 = 1.
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3.4 Evaluating a Model

Consider using an ML method like 𝑘-nearest neighbors to make predic-

tions for a real application, like predicting whether a tumor is benign

or malignant [12] [12]: Abdel-Zaher et al. (2016), ‘Breast

cancer classification using deep belief

networks’

or how far a landslide will travel. In these and most

other real applications, using a model that makes inaccurate predictions

could be costly or dangerous. So, we need a way to evaluate how good

the predictions of a model would be if the model were to be used to make

predictions for new and unseen data points.

We will start with a dangerous method for evaluating a model. Let

𝐷 = (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1
be the available data, which is used to train a model,

for example by finding 𝑤★ ∈ arg min𝑤

∑𝑛
𝑖=1
(𝑦𝑖 − 𝑓𝑤(𝑥𝑖))2 or by using 𝐷

as the data for weighted 𝑘-nearest neighbors. To evaluate the resulting

model, we might report the least squares loss of the model on 𝐷:

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2. (3.21)

This approach has two problems. The first, and more minor, is that

the least squares loss is not an easily interpreted value. For the GPA

prediction problem, would a loss of 7,000 be good or bad? To answer this

question one would need to know 𝑛. The GPA data set had 𝑛 = 43,303

points, and so a least squares loss of 7,000 equates to an averaged squared

residual of approximately 0.16, which is actually very good. To make

the reported loss easier for a person to interpret without knowing 𝑛 and

doing quick mental calculations, we might instead report the average
squared loss, which is also called the sample mean squared error (sample

MSE):

sample MSE =
1

𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2. (3.22)

Notice that the sample MSE reports the average squared residual. For

many people it is more natural to think about the magnitude of the

residual rather than the squared residual. We can obtain a quantity

scaled similarly to the magnitude of the average residual by taking the

square root of the sample MSE. This results in the sample root mean
squared error (sample RMSE):

sample RMSE =

√
1

𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2. (3.23)

Though there are many different statistics that can be used to measure

how accurate the predictions of a regression algorithm are, the sample

RMSE is by far the most common.

The second problem with the approach described above is far more

serious. Consider what would happen if the data set contains no duplicate

points and if we were to evaluate the weighted 𝑘-nearest neighbor

algorithm with 𝑘 = 1. For the 𝑖th point in the data set, the algorithm

would search for the single nearest neighbor, which would be the 𝑖th

point. It would then output the label for this point, which would be

precisely the correct label. So, the resulting residuals would all be zero!

Hence, the sample RMSE would be zero, suggesting that the model
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6: Though one should typically avoid

looking at the values of 𝑥𝑖 and 𝑦𝑖 when

determining whether to place the point

in 𝐷test or 𝐷train, there is one exception:

stratified sampling. Notice that randomly

deciding which points should be placed

in the training set and which should be

placed in the testing set could result in pre-

cisely the biased split that the aforemen-

tioned unscrupulous practitioner might

create. We therefore might want to en-

sure that the random split preserves some

properties of the data. For example, if each

data point corresponds to a person and 𝛼%

own a car, we might want to ensure that

roughly 𝛼% of the points in both 𝐷train

and 𝛼% of the points in 𝐷test correspond

to people who own cars. If the random

split happens to result in𝐷train containing

all of the points that correspond to people

who own cars and 𝐷test contains all of the

points that correspond to people who do

not own cars, that would likely not result

in an accurate evaluation. Stratified sam-

pling is a technique for ensuring that such

properties of𝐷 are preserved in𝐷train and

𝐷test.

always makes perfect predictions. Obviously this is not correct—when

applied to new data points not in 𝐷, the algorithm’s predictions will not

always be exactly correct.

The problem is that we are training and testing the ML algorithm using

the same data. This usually results in over-predictions of how good

the model’s predictions will be. This property is related to the topic of

overfitting, which we will cover later in the course. This property applies

to all ML algorithms, not just nearest neighbor algorithms. As another

example, consider an LMS algorithm using a linear parametric model. If

𝑚 = 1 and 𝐷 contains two data points, this corresponds to fitting a line

to two points. The best fit line will pass precisely through the two points

resulting in both residuals being zero. However, for new data points

not in 𝐷 the average residual would likely be far larger than zero. For

linear LMS this over-prediction of the accuracy of the model’s predictions

becomes less severe as the amount of data grows, but it never entirely

goes away.

To address this issue, practitioners should partition the available data

𝐷 into two sets, a training set 𝐷train and a testing set 𝐷test. The model

should be trained using 𝐷train only. For example, the best weights 𝑤★
for

a parametric model should be computed from 𝐷train and the predictions

of a weighted 𝑘-nearest neighbors model should be computed from𝐷train

only. To evaluate how good the resulting model is, one can compute the

sample RMSE using only the data in 𝐷test. Intuitively, using all of 𝐷 for

both training and testing is like giving the agent the exact test that will

be used to evaluate its performance, and so it can “cheat” by memorizing

the answers to the test without really understanding the concepts in a

way that allows it to apply its knowledge to future problems. As a result,

the agent’s score on the test is not representative of its actual ability

to solve future problems. By splitting 𝐷 into 𝐷train and 𝐷test and only

allowing the agent to observe 𝐷train prior to the test, which uses 𝐷test, we

prevent the agent from “cheating” in this way.

Lastly, one must be careful how the data points in𝐷 are assigned to𝐷train

and 𝐷test. An unscrupulous practitioner might cherry-pick which data

points are placed in each set, for example, placing points that are easier

to make accurate predictions for into 𝐷test. This would again result in an

over-estimation of the model’s performance. To prevent the partitioning

of 𝐷 into 𝐷train and 𝐷test from inserting bias in this way, it is common

practice to randomly select which points are placed into each set.
6

In summary, to evaluate a model, practitioners should partition the

available data 𝐷 into two sets, 𝐷train and 𝐷test, randomly determining

which points are each each set. Next, the model should be trained using

𝐷train only, and the sample RMSE from (3.23) should then be computed

and reported using 𝐷test only.

This raises the question: How much data should be placed in 𝐷train and

how much in 𝐷test? This is a hyperparameter (in this case a hyperparam-

eter that changes how the algorithm is evaluated, not what model the

algorithm produces). Common splits include placing 60% − 80% of the

data in 𝐷train and the remainder in 𝐷test, though the appropriate split

will depend on the exact setting. For example, if there is little data and

knowing precisely how accurate the model will be is more important
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than obtaining a slightly more accurate model (e.g., for safety critical

applications), one might place significantly more data in 𝐷test.
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4.1 Black Box Optimization . . . 26
4.2 Gradient Descent . . . . . . . 284.1 Black Box Optimization

Black box optimization (BBO) algorithms are designed to solve problems

of the form:

𝑤∗ ∈ arg min

𝑤

𝑙(𝑤), (4.1)

when little information about 𝑙 is available. They are called “black box”

because the objective function, 𝑙, is thought of as an opaque box that we

cannot open to see its inner workings; we can only provide inputs to it

and observe its outputs. That is, we can query the value of 𝑙(𝑤) for any

input 𝑤, and our goal is to find an input 𝑤∗ that results in the minimum

possible output, or at least a value close to the minimum.

There are many different BBO algorithms including genetic algorithms,

hill climbing, simulated annealing, the cross entropy method, the covari-

ance matrix adaptation evolutionary strategy (CMA-ES), finite difference

methods like simultaneous perturbation stochastic approximation, and

Bayesian optimization methods. Here we focus on a simple example: a

variant of hill climbing.

The idea behind hill climbing algorithms is to create a sequence of inputs

to the loss function, i.e., a sequence of model parameters, that gets “better”

with respect to the loss function as the sequence progresses. To discuss

sequences of model parameter vectors, we have to change our model

parameter notation: Let 𝑤0 , 𝑤1 , . . . be a sequence of model parameter

vectors, such that 𝑤0 is an arbitrary initial guess of model parameters

that might minimize the loss function. Given some model parameter

vector, 𝑤𝑘 , we will specify a procedure for computing the next vector in

the sequence, 𝑤𝑘+1
, such that 𝑙(𝑤𝑘+1

) < 𝑙(𝑤𝑘).

In our earlier discussion, the subscripts on𝑤 indicated a particular weight

within one vector of model parameters, while now 𝑤𝑘 is itself an entire

vector of model parameters. Therefore, we now write 𝑤𝑘,𝑗 to reference

the 𝑗th weight within the 𝑘th
vector of model parameters.

Intuitively, the hill climbing algorithm selects 𝑤𝑘+1
by first randomly

sampling potential new model parameters, 𝑤′, from around the current

model parameters 𝑤𝑘 . Next, it checks whether 𝑙(𝑤′) < 𝑙(𝑤𝑘). If so,

𝑤𝑘+1
= 𝑤′, and if not, it samples a new 𝑤′ and repeats the process.

Pseudocode for this variant of hill climbing is provided in Algorithm

4.1.

Notice that hill climbing has multiple hyperparameters: the initial vector,

the sampling distribution, and the stopping criterion. How would you set

these? One choice for 𝑤0 is the zero vector: 𝑤0, 𝑗 = 0 for all 𝑗 ∈ {1, . . . , 𝑚}.
There are many options for the sampling distribution, 𝑑, which changes

how the algorithm picks a point near 𝑤𝑘 to test next. For example, one

https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Hill_climbing
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Cross-entropy_method
https://en.wikipedia.org/wiki/CMA-ES
https://en.wikipedia.org/wiki/CMA-ES
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Simultaneous_perturbation_stochastic_approximation
https://en.wikipedia.org/wiki/Bayesian_optimization
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might use the continuous uniform distribution on some interval [−𝑐, 𝑐]:

𝑑 = 𝑈(−𝑐, 𝑐). (4.2)

Another option is a mean-zero normal distribution with variance 𝜎2
:

𝑑 = 𝑁(0, 𝜎2). (4.3)

In either of these cases, the chosen distribution 𝑑 incurs an extra hyper-

parameter, either 𝑐 or 𝜎2
.

Finally, the last hyperparameter of hill climbing is a stopping criterion,

stop, which is used to determine when the algorithm should stop trying

to find even better solutions. Common stopping criteria include:

1. Stopping after some allowed maximum time has passed.

2. Stopping when recent decreases in 𝑙(𝑤𝑘) are small.

3. Stopping when enough 𝑤′ have been tested without resulting in a

new 𝑤𝑘+1
.

Notice that all of these criteria introduce even more hyperparameters,

highlighted in red.

Algorithm 4.1: Hill Climbing

Input :Black box loss function 𝑙 : ℝ𝑚 → ℝ, dimension

𝑚 of domain of 𝑙.
Output :An approximation of an element of

arg min𝑤 𝑙(𝑤).
Hyperparameters : Initial model parameters 𝑤0, sampling

distribution 𝑑, stopping criterion stop.

1 𝑘 ← 0;

2 while stopping criterion stop not satisfied do
3 /* Sample a nearby point, one feature at a time. */
4 for 𝑗 ← 1 to 𝑚 do
5 𝜂 𝑗 ∼ 𝑑; // Sample noise.
6 𝑤′

𝑗
← 𝑤𝑘,𝑗 + 𝜂 𝑗 ; // Add noise to current point to

obtain candidate for next point.

7 end
8 /* Check if 𝑤′ is better than 𝑤𝑘. */
9 if 𝑙(𝑤′) < 𝑙(𝑤𝑘) then

10 /* 𝑤′ is better, so make it 𝑤𝑘+1
and increment 𝑘.

*/
11 𝑤𝑘+1

= 𝑤′;
12 𝑘 = 𝑘 + 1;

13 end
14 end
15 return 𝑤𝑘 ;

While BBO algorithms can be simple, like hill climbing, they can also

be quite sophisticated, like the popular CMA-ES algorithm [13] [13]: Hansen (2006), ‘The CMA evolution

strategy: a comparing review’

and its

many newer variants. However, by design, BBO algorithms do not use

information about the inner workings of the loss function. While this

makes BBO algorithms effective for optimization problems wherein one

does not have any additional information about 𝑙, in our case we know

the exact form of 𝑙 (think back to (3.16)). In the next section, we investigate

https://en.wikipedia.org/wiki/Continuous_uniform_distribution
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1: Though the precise definition of the

direction of steepest descent is beyond the

scope of this course, we describe it here

for the curious reader. Consider a circle of

radius 𝜖 around𝑤𝑘 . Let𝑤′ be the point on

this circle that causes 𝑙(𝑤′) to be as small

as possible. The direction from 𝑤𝑘 to 𝑤′ is

the vector𝑤′−𝑤𝑘 . If we consider the limit

of this direction as 𝜖→ 0 (in the limit as

the circle becomes infinitesimally small),

we obtain the direction of steepest descent.
This can be written mathematically as:

lim

𝜖→0

arg min

Δ∈ℝ𝑚 :∥Δ∥=1

𝑓 (𝑤𝑖 + 𝜖Δ), (4.4)

where ∥·∥ is called the 𝑙2 norm. We can

solve analytically for this direction by us-

ing a Taylor expansion to remove curva-

ture terms and Lagrange multipliers to

handle the constraint. Also, notice that

this direction is local in that it only consid-

ers the value of 𝑙 at points an infinitesimal

distance from 𝑤𝑘 .

how we can use our knowledge about 𝑙 to improve our hill climbing

algorithm so that it selects 𝑤′ more intelligently.

4.2 Gradient Descent

We know more than just how to query the value of 𝑙 for any input,𝑤—we

have an exact expression for 𝑙(𝑤). The idea behind gradient descent is

that we can use this additional knowledge about 𝑙 to do better than

randomly sampling a 𝑤′ close to 𝑤𝑘 and checking to see if it is better.

Instead, we can derive the exact direction of change to 𝑤𝑘 that will result

in the largest decrease in the loss function.

First, let us consider the direction of steepest descent of 𝑙 at 𝑤𝑘 . To

visualize this direction, consider the case where 𝑚 = 2. In this case 𝑤𝑖 =

(𝑤𝑘,1 , 𝑤𝑘,2), so we can think of the input as specifying the coordinates of

a point on the floor of a room, where a corner at the floor is (0, 0), and

𝑤𝑘,1 specifies how far to move down one wall and 𝑤𝑘,2 specifies how far

to move down the other wall. We can then visualize 𝑙 by taking every

possible input coordinate, 𝑤 = (𝑤𝑘,1 , 𝑤𝑘,2), computing 𝑙(𝑤), and plotting

a point at a height of 𝑙(𝑤) above the floor at the position 𝑤. An example

is provided in Figures 4.1 and 4.2. Some might equivalently visualize this

as a landscape with mountains and perhaps valleys.

Now, when the algorithm is at 𝑤𝑘 , it is at a position within the room,

which results in the surface having some height. The direction of steepest
descent of 𝑙 at 𝑤𝑘 is the direction that a ball would roll if placed at 𝑤𝑘

on this surface—the steepest downhill direction. This direction is a local
quantity.

1
That is, it only depends on the shape of 𝑙(𝑤) immediately

around𝑤𝑘 , not its value elsewhere. Before continuing with our discussion

of the direction of steepest descent, we briefly review gradients.

As you may recall from calculus classes, the gradient of 𝑙 at 𝑤𝑘 is itself

a vector of length 𝑚 (the same length as 𝑤𝑘), containing the partial

derivatives of 𝑙 with respect to each of the model parameters:

∇𝑙(𝑤𝑘) =
(
𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,1

,
𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,2

, . . . ,
𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,𝑚

)
. (4.5)

Figure 4.1: Example of what a loss func-

tion might look like, where the height of

the surface corresponds to the value of

the loss function at the specified location

𝑤𝑘 = (𝑤𝑘,1 , 𝑤𝑘,2). The actual shape of the

surface will depend on the data and cho-

sen loss function. Underneath the surface

is a contour plot, which is shown on its

own and described in Figure 4.2.

https://en.wikipedia.org/wiki/Infinitesimal
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Figure 4.2: Contour plot for the loss func-

tion depicted in Figure 4.1. This plot is con-

structed by selecting several levels (heights

of the function) and plotting all of the loca-

tions where the value of the loss function

(height) is one of these levels. That is, all of

the points of the same color form a level
set—the set of all the points where the

surface has some specific height. In this

contour plot the level sets are labeled with

their heights, though often these labels are

omitted.

Recall that
𝜕𝑙(𝑤𝑘 )
𝜕𝑤𝑘,𝑗

is the partial derivative of 𝑙(𝑤𝑘)with respect to𝑤𝑘,𝑗 . In other

words, it is how quickly 𝑙(𝑤𝑘) increases if 𝑤𝑘,𝑗 is increased. Intuitively, if

you imagine 𝑙(𝑤𝑘) as having all of the inputs fixed at 𝑤𝑘 except for one

element, 𝑤𝑘,𝑗 , which is still allowed to vary as an input, you would obtain

a new function that we will call 𝑔, which takes a real number as input

and produces a real number as output. For example, 𝑔(2) is the value of

𝑙(𝑤𝑘) if you replaced 𝑤𝑘,𝑗 with the value 2. The partial derivative
𝜕𝑙(𝑤𝑘 )
𝜕𝑤𝑘,𝑗

is simply the slope of this function, 𝑔, at the location 𝑤𝑘,𝑗 . So, just as the

slope of a function in one dimension tells us how quickly the function is

rising, the gradient tells us how quickly the function increases when you

change each of the inputs, from 𝑤𝑘,1 through 𝑤𝑘,𝑚 .

Given the gradient, which characterizes how the function changes locally

around 𝑤𝑘 as each of the inputs to 𝑙 is increased, it is straightforward to

compute the direction of steepest ascent (the steepest uphill direction): it

is the gradient! This may actually be counter intuitive at first. Imagine the

𝑚 = 2 setting again and the case where
𝜕𝑙(𝑤𝑘 )
𝜕𝑤𝑘,1

= 10 and
𝜕𝑙(𝑤𝑘 )
𝜕𝑤𝑘,2

= 1. Since

increasing 𝑤𝑘,1 increases the loss function more quickly than increasing

𝑤𝑘,2, you might think that we should focus all of our efforts on changing

𝑤𝑘,1, and so the direction of steepest ascent would be to increase 𝑤𝑘,1

and not change 𝑤𝑘,2. However, this is not the case. Take a piece of paper

and label the edges 𝑤𝑘,1 and 𝑤𝑘,2. Draw a dot in the middle, and label it

𝑤𝑘 . How, hold up the paper so that the slope along the 𝑤𝑘,1 edge is ten

times the slope along the 𝑤𝑘,2 edge. At the point 𝑤𝑘 , which direction is

the steepest uphill direction? You should notice that it is not just moving

in the direction 𝑤𝑘,1, but that it also involves moving slightly in the 𝑤𝑘,2

direction. Specifically, for every ten units moved in the 𝑤𝑘,1 direction, the

steepest uphill direction moves one unit in the 𝑤𝑘,2 direction.

Though it should be clear that the direction of steepest ascent does not

solely focus on the largest element of the gradient, it may not be obvious

that the gradient is the direction of steepest ascent. The proof of this

result is beyond the scope of this course (but it was likely covered in your

calculus courses, and we can discuss it during office hours if you are

curious).

While the gradient is the direction of steepest ascent, we aim to minimize

the loss function, and so we desire the direction of steepest descent.
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However, these directions are opposites, and so the direction of steepest

descent is simply the negative of the gradient.

Bringing these pieces together, we can now improve our hill climbing

algorithm by making it automatically select a point 𝑤′ by moving from

𝑤𝑘 in the direction of steepest descent. That is, we perform the following

update for all 𝑗 ∈ {1, . . . , 𝑚}:

𝑤𝑘+1, 𝑗 = 𝑤𝑘,𝑗 −
𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,𝑗

. (4.6)

However, recall that the direction of steepest descent is a local direction—

it only characterizes the shape of 𝑙 for inputs extremely close to 𝑤𝑘 . If

this update moves too far away from 𝑤𝑘,𝑗 , then it could result in the

algorithm stepping over a basin in the surface and landing farther up

on the other side! That is, the loss function could increase after one step

if the step is sufficiently large. To avoid this, we scale down the size of

the step using a step size 𝛼 ∈ ℝ. This new hyperparameter is generally a

small positive number. The resulting update including the step size is,

for all 𝑗 ∈ {1, . . . , 𝑚}:

𝑤𝑘+1, 𝑗 = 𝑤𝑘,𝑗 − 𝛼
𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,𝑗

. (4.7)

In practice, 𝛼 is not actually set to a small enough value to ensure that

increases in the loss function never occur. This is because very small

values of 𝛼 result in very slow downhill movement, while large steps

can result in overshooting. Picking a good value for 𝛼 balances these

trade-offs between the speed of improvement and the likelihood of

frequently stepping too far, thus increasing the loss function. Pseudocode

for the gradient descent algorithm is provided in Algorithm 4.2. The

stopping criteria options for gradient descent are similar to those for

hill climbing, though other possible stopping criteria include stopping

when the magnitude of the gradient is small, indicating that further

improvement will be slow and suggesting that the process might be

approaching a minimum (where the gradient is zero).

Algorithm 4.2: Gradient Descent

Input :Loss function 𝑙 : ℝ𝑚 → ℝ, dimension 𝑚 of

domain of 𝑙.
Output :An approximation of an element of

arg min𝑤 𝑙(𝑤).
Hyperparameters : Initial model parameters 𝑤0, step size 𝛼 ∈ ℝ>0,

stopping criterion stop.

1 𝑘 ← 0;

2 while stopping criterion stop not satisfied do
3 /* Compute next point in the sequence. */
4 for 𝑗 ← 1 to 𝑚 do
5 𝑤𝑘+1, 𝑗 = 𝑤𝑘,𝑗 − 𝛼 𝜕𝑙(𝑤𝑘 )

𝜕𝑤𝑘,𝑗
;

6 end
7 𝑘 = 𝑘 + 1;

8 end
9 return 𝑤𝑘 ;



Regression 4 5
5.1 Gradient Descent Review . . . 31
5.2 Gradient Descent for Least
Squares Linear Regression . . . 33

5.1 Gradient Descent Review

[In this review section we ignore the notation used so far and begin by

discussing general properties of functions 𝑓 of inputs 𝑥.]

Let 𝑥 be a vector in ℝ𝑚
and let 𝑓 : ℝ𝑚 → ℝ. That is, 𝑓 is a function that

takes a vector of length 𝑚 as input and produces a real number as output.

Recall that the gradient is the concatenation of the partial derivatives:

∇ 𝑓 (𝑥) = 𝑑𝑓 (𝑥)
𝑑𝑥

=

(
𝜕 𝑓 (𝑥)
𝜕𝑥1

,
𝜕 𝑓 (𝑥)
𝜕𝑥2

, . . . ,
𝜕 𝑓 (𝑥)
𝜕𝑥𝑚

)
. (5.1)

Recall that here 𝑥, ∇ 𝑓 (𝑥), and

𝑑𝑓 (𝑥)
𝑑𝑥

are all vectors with 𝑚 elements. Also,

each 𝑥𝑖 and each

𝜕 𝑓 (𝑥)
𝜕𝑥𝑖

is a single real number.

There are at least two ways of interpreting each of the partial derivatives

𝑑𝑓 (𝑥)
𝑑𝑥𝑖

, where 𝑖 ∈ {1, . . . , 𝑚}.

1. If all of the inputs except for 𝑥𝑖 are held constant and we view 𝑓 (𝑥)
only as only a function of 𝑥𝑖 , what is the slope?

2. How should 𝑥𝑖 be changed to increase 𝑓 (𝑥) as much as possible?

There are also at least two ways of interpreting ∇ 𝑓 (𝑥) or 𝑑𝑓 (𝑥)/𝑑𝑥.

1. It is the direction of steepest ascent of the function 𝑓 at the location

𝑥.

2. It is the direction to change 𝑥 to increase 𝑓 (𝑥) as much as possible.

This second interpretation is worth emphasizing, as we will return to

this interpretation again later in the course. In general, when you see an

expression
𝑑□
𝑑△ , you can think of this as an expression for how △ should

be changed in order to make □ larger. For example,

𝑑𝑓 (𝑥)
𝑑𝑥𝑖

is how 𝑥𝑖 should

be changed to make 𝑓 (𝑥) larger,

𝑑𝑓𝑤 (𝑥)
𝑑𝑤 𝑗

is how 𝑤 𝑗 should be changed to

make 𝑓𝑤(𝑥) larger, and

𝑑𝑓𝑤 (𝑥)
𝑑𝑥 𝑗

is how 𝑥 𝑗 should be changed to make 𝑓𝑤(𝑥)
larger.

With this intuition, the gradient descent algorithm produces the next

point, 𝑥𝑘+1
from the current point, 𝑥𝑘 , by taking a small step in the

opposite of the direction of steepest ascent—a small step in the direction

of steepest descent:

∀𝑗 ∈ {1, . . . , 𝑚}, 𝑥𝑘+1, 𝑗 = 𝑥𝑘,𝑗 − 𝛼
𝜕 𝑓 (𝑥𝑘)
𝜕𝑥𝑘,𝑗

. (5.2)

Or, in vector notation:

𝑥𝑘+1
= 𝑥𝑘 − 𝛼

𝜕 𝑓 (𝑥𝑘)
𝜕𝑥𝑘

. (5.3)
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In this course, we apply this technique to the loss function, 𝑙 rather than

𝑓 , which takes as input weights 𝑤𝑘 rather than 𝑥𝑘 .

To practice working with gradient descent, consider an example of trying

to find the minimum of the function

𝑓 (𝑧) = 17𝑧2

1
− 7𝑧1𝑧2 + 14𝑧2

2
, (5.4)

where 𝑧 = (𝑧1 , 𝑧2). Notice that here we have used 𝑧 as the input to 𝑓

rather than 𝑥. This is to point out that the symbol used as an input to 𝑓 is

merely a symbol. For example, when programming you might define a

function sum(int a, int b) which you later might call with x=5; y=7;

z=sum(x,y). The choice of 𝑎 and 𝑏 as the symbols used as the inputs

to sum is arbitrary, and the function sum can be called using different

symbols, like sum(x,y). The same goes for these math definitions—here

𝑧 is the symbol we chose to use when defining 𝑓 , but later we might refer

to 𝑓 (𝑥).

Now, consider running gradient descent starting from 𝑥0 = (5, 10) and

using a step size of 𝛼 = 0.01. What is the next point, 𝑥1? See if you can

work this out on your own before continuing reading. The first step is to

compute the gradient:

∇ 𝑓 (𝑧) = 𝑑𝑓 (𝑧)
𝑑𝑧

=

(
𝜕 𝑓 (𝑧)
𝜕𝑧1

,
𝜕 𝑓 (𝑥)
𝜕𝑧2

)
. (5.5)

Again, in the above expression you could choose to use any symbol as the

input to 𝑓 , even writing ∇ 𝑓 (,) and

𝜕 𝑓 (,)
𝜕,1

. The point is that we require

the gradient of 𝑓—the partial derivatives of 𝑓 with respect to each of its

inputs. We solve for each partial derivative:

𝜕 𝑓 (𝑧)
𝜕𝑧1

= 3𝑧1 − 7𝑧2 (5.6)

and

𝜕 𝑓 (𝑧)
𝜕𝑧2

= −7𝑧1 + 28𝑧2. (5.7)

So, the gradient of 𝑓 at 𝑧 = (𝑧1 , 𝑧2) is

∇ 𝑓 (𝑧) = (3𝑧1 − 7𝑧2 ,−7𝑧1 + 28𝑧2). (5.8)

Simply changing the symbol we use as input to 𝑓 from 𝑧 to 𝑥𝑘 , we obtain

the gradient:

∇ 𝑓 (𝑥𝑘) = (3𝑥𝑘,1 − 7𝑥𝑘,2 ,−7𝑥𝑘,1 + 28𝑥𝑘,2). (5.9)

This expression tells us the direction of steepest ascent of the function 𝑓

at any point 𝑥𝑘 . For example, the direction of steepest ascent of 𝑓 at the

location (1, 2) is (−11, 49). This is a “direction” in that we should decrease

the first element (since −11 is negative) and increase the second element

(since 49 is positive). Furthermore, for every 11 units we decrease the first

element, we should increase the second element by 49. So, a small step in

the direction (−11, 49) from the point (1, 2) could result in a new point

like (1+ 0.01×−11, 2+ 0.01× 49) = (0.89, 2.49). However, this would be

a step in the direction of the gradient—a step to increase 𝑓 .
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In this example problem, we are running gradient descent not ascent.
Starting from the location (5, 10), can you work out the direction of

steepest descent? The answer to this question will be given soon.

The gradient descent update is:

𝑥𝑘+1,1 =𝑥𝑘,1 − 𝛼 (34𝑥𝑘,1 − 7𝑥𝑘,2) (5.10)

𝑥𝑘+1,2 =𝑥𝑘,2 − 𝛼 (−7𝑥𝑘,1 + 28𝑥𝑘,2) . (5.11)

Plugging in 𝑥0 = (5, 10) and 𝛼 = 0.01, we can solve for 𝑥1:

𝑥1,1 =5 − 0.01((34 × 5) − (7 × 10)) = 4 (5.12)

𝑥1,2 =10 − 0.01((−7 × 5) + (28 × 10)) = 7.55. (5.13)

So, starting from 𝑥0 = (5, 10), the direction of steepest descent of 𝑓 is

(−100,−245), and a small step in this direction using a step size of 𝛼 = 0.01

results in 𝑥1 = (4, 7.55). Can you run one more iteration of gradient

descent? If you did so properly, you should get 𝑥2 = (3.1685, 5.716).

5.2 Gradient Descent for Least Squares Linear
Regression

To complete the least squares regression algorithm using a linear model,

we must compute the partial derivatives, 𝜕𝑙(𝑤𝑘)/𝜕𝑤𝑘,𝑗 used in Algorithm

4.2:

𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,𝑗

=
𝜕

𝜕𝑤𝑘,𝑗

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (5.14)

=
𝜕

𝜕𝑤𝑘,𝑗

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖))2 (5.15)

=

𝑛∑
𝑖=1

2(𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖))
𝜕

𝜕𝑤𝑘,𝑗
(𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖)) (5.16)

= −
𝑛∑
𝑖=1

2(𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖))
𝜕

𝜕𝑤𝑘,𝑗
𝑓𝑤𝑘 (𝑥𝑖) (5.17)

= −
𝑛∑
𝑖=1

2(𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖))
𝜕

𝜕𝑤𝑘,𝑗

𝑚∑
𝛽=1

𝑤𝑘,𝛽𝑥𝑖 ,𝛽 (5.18)

= −
𝑛∑
𝑖=1

2(𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖))
𝜕

𝜕𝑤𝑘,𝑗
𝑤𝑘,𝑗𝑥𝑖 , 𝑗 (5.19)

= −
𝑛∑
𝑖=1

2(𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖))𝑥𝑖 , 𝑗 . (5.20)

Note that some sources include a factor of 1/2 in the least squares

loss function, specifically so that it cancels with the 2 in these partial

derivatives. This scaling factor scales the entire gradient, and so it can

actually be viewed as a modification of the step size.

Bringing together the pieces that we have developed, we obtain Algorithm

5.1, which uses gradient descent to search for weights that minimize

the least squares loss function. Note that this algorithm hard-codes

some hyperparameters, like the decision to use a linear model and the
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least squares loss function. Do you think these should be viewed as

hyperparameters of this algorithm?

Algorithm 5.1: Linear Least Squares Regression Using Gradient

Descent

Input :Data set (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1
, where each 𝑥𝑖 ∈ ℝ𝑚

and

𝑦𝑖 ∈ ℝ, additional input 𝑥𝑛+1.

Output :A prediction, �̂�𝑛+1, of the label for 𝑥𝑛+1.

Hyperparameters : Initial input 𝑤0, step size 𝛼 ∈ ℝ>0, stopping

criterion stop.

1 𝑘 ← 0;

2 while stopping criterion stop not satisfied do
3 /* Compute next point in the sequence. */
4 for 𝑗 ← 1 to 𝑚 do
5 𝑤𝑘+1, 𝑗 = 𝑤𝑘,𝑗 + 𝛼

∑𝑛
𝑖=1

2(𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖))𝑥𝑖 , 𝑗 ;
6 end
7 𝑘 = 𝑘 + 1;

8 end
9 return 𝑓𝑤𝑘 (𝑥𝑛+1);
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6.1 Convergence of Gradient Descent

Recall that the direction of steepest descent is a local direction. When

standing on the side of a valley, if too large of a step is taken in the

direction of steepest descent, one might step all the way over the valley

and up the other side, resulting in upwards movement—an increase

in the loss function. To counter this, we suggested that the step size

should be small. However, what if the steps are too small? Recall that the

gradient approaches zero as the solution approaches a local optimum.

Since the step size is multiplied by the gradient, if the step size is small

and the gradient converges to zero, will the steps shrink so fast that the

algorithm is unable to reach the goal?

Convergence proofs aim to answer this question, providing us with condi-

tions under which gradient descent converges. There are many different

proofs that gradient descent converges, with different required condi-

tions and different types of convergence guarantees (which answer the

question: converges to what?).

Common conditions for convergence include various subsets of the

following conditions:

▶ The function 𝑙 must be differentiable everywhere, since otherwise

𝜕𝑙(𝑤𝑘 )
𝜕𝑤𝑘,𝑗

may not be defined.

▶ The function 𝑙 must be Lipschitz continuous with constant 𝐿.

Given the above condition, this equates to requiring the slope of 𝑙

to be at most 𝐿.

▶ The step size is sufficiently small. For example, one condition is

that 𝛼 < 1/𝐿, where 𝐿 is the Lipschitz constant discussed above.

An alternative is to decay the step size, 𝛼, after each step. Let 𝛼𝑘
be the step size during the 𝑘th

step (iteration) of gradient descent.

Then, a common assumption is that the step size sequence is square

summable (which ensures that the step size decays to be sufficiently

small):

∞∑
𝑘=1

𝛼2

𝑘
< ∞, (6.1)

but also that the step size sequence is not summable (which ensures

that the step sizes are big enough to allow the algorithm to move

as far as needed to reach an optimum):

∞∑
𝑘=1

𝛼𝑘 = ∞. (6.2)

A common step size sequence that is square summable but not

summable is 𝛼𝑘 =
1

𝑘
.

▶ The gradient, ∇𝑙, is Lipschitz continuous.
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▶ The loss function, 𝑙, is convex, quadratic, strongly convex, or satisfies

some other similar property.

Before giving examples of common convergence guarantees, recall that

in this setting with a smooth objective function, a global minimum is any

weight vector that actually minimizes the loss function—any element of

arg min𝑤 𝑙(𝑤). A local minimum is any weight vector from which there

are no descent directions—all directions of change to the weights result

in a local increase (or no change) to the objective function. That is, 𝑤 is a

local minimum of 𝑙 if ∇𝑙(𝑤) is the zero vector. Notice that every global

minimum is a local minimum, but not every local minimum is necessarily

a global minimum. Also, there can be multiple global minima.

Common types of convergence guarantees include:

▶ Convergence to a global minimum𝑤∗, i.e.,𝑤𝑘 → 𝑤★ ∈ arg min𝑤 𝑙(𝑤).
▶ Convergence to a local minimum, i.e., ∇𝑙(𝑤𝑘) → 0.

▶ Convergence to a local minimum (∇𝑙(𝑤𝑘) → 0) or divergence of

the loss function to −∞, i.e., 𝑙(𝑤𝑘) → −∞.

For example, in our case the gradient of the loss function is Lipschitz

continuous and the loss function is bounded below by zero. So, if the step

size sequence is square summable but not summable, then ∇𝑙(𝑤) → 0

[14] [14]: Bertsekas et al. (2000), ‘Gradient

convergence in gradient methods with

errors’

. Since the least squares loss function using a linear parametric model

is convex, this local minimum is necessarily a global minimum, and so

we have that 𝑤𝑘 → 𝑤★ ∈ arg min𝑤 𝑙(𝑤).

6.2 Convergence Intuition

Some of the assumptions might appear mystical. In this section we show

how Lipschitz assumptions and assumptions relating the step size to the

Lipschitz constant can occur. However, we do not provide a complete

convergence proof.

Consider the one-dimensional setting (𝑚 = 1). We make the following

assumptions

1. 𝑙 is continuous and twice differentiable. That is,
𝜕2 𝑙(𝑤)
𝜕𝑤2

exists for all

𝑤.

2. ∇𝑙(𝑤) is Lipschitz with constant 𝐿. That is, the rate of change of

the gradient (first derivative) is bounded by 𝐿. Put differently, the

magnitude of the slope of the slope is bounded by 𝐿. Saying the

same thing one other way, for all 𝑤,

��� 𝜕2 𝑙(𝑤)
𝜕𝑤2

��� ≤ 𝐿, where | · | denotes

absolute value.

3. 𝛼 = 1/𝐿.

We will provide an intuitive argument (not a formal proof) that the

gradient descent update:

𝑤𝑘+1
= 𝑤𝑘 − 𝛼∇𝑙(𝑤𝑘), (6.3)

cannot cause an increase in the loss function. That is, it cannot occur that

𝑙(𝑤𝑘+1
) > 𝑙(𝑤𝑘). This alone is not a complete proof of convergence to a

local or global optimum—for example setting 𝛼 = 0 also satisfies this
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property but clearly does not result in convergence to a local or global

optimum.

We consider two cases:

▶ Case 1: ∇𝑙(𝑤𝑘) = 0. In this case the update 𝑤𝑘+1
= 𝑤𝑘 − 𝛼∇𝑙(𝑤𝑘)

degenerates to 𝑤𝑘+1
= 𝑤𝑘 , and so 𝑙(𝑤𝑘+1

) = 𝑙(𝑤𝑘), satisfying the

desired condition. Intuitively, this says that, if gradient descent is

already at a local optimum it will not move off of the local optimum.

▶ Case 2: ∇𝑙(𝑤𝑘) ≠ 0. Recall that −∇𝑙(𝑤𝑘) is a descent direction. This

means that a “small enough” step in this direction will decrease

the loss function. However, how small is “small enough”?

First, notice that for a step to be “too big,” resulting in the loss

function increasing, the step must be big enough that somewhere

between 𝑤𝑘 and 𝑤𝑘+1
the gradient changed sign. If we think of the

function as being a surface and 𝑤𝑘 as being a point on the side of a

valley, the downhill step could be too big, taking us up the other

side of the valley. However, for this to happen the step must cross

the bottom of the valley.

This means that for 𝑙(𝑤𝑘+1
) to be greater than 𝑙(𝑤𝑘), between

𝑤𝑘 and 𝑤𝑘+1
the slope must change sign (it might change sign mul-

tiple times—stepping over multiple valleys, but it must change sign

at least once). Notice that the assumption that ∇𝑙(𝑤𝑘) is Lipschitz

with constant 𝐿 means that the maximum rate of change of the

slope is 𝐿. If the current slope (gradient) is ∇𝑙(𝑤𝑘), and the slope

can change at a rate of at most 𝐿, how far can we move away from

𝑤𝑘 before the gradient could be reduced all the way to zero? The

answer is |∇𝑙(𝑤𝑘)|/𝐿.

Notice that with 𝛼 = 1/𝐿, the gradient descent update is:

𝑤𝑘+1
= 𝑤𝑘 −

∇𝑙(𝑤𝑘)
𝐿

. (6.4)

Hence, the change from𝑤𝑘 to𝑤𝑘+1
is precisely∇𝑙(𝑤𝑘)/𝐿—precisely

the distance necessary for it to be possible for the magnitude of

the slope to be reduced to zero (but not far enough for it to cross

zero). So, with the step size that we use it is not possible for the

gradient to change sign, and so we could not have stepped past a

local optimum.
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7.1 Objective Function Scaling

Consider again the least squares loss function:

𝑙(𝑤) =
𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑓𝑤(𝑥𝑖)

)
2

, (7.1)

and think about the GPA example wherein student GPAs are predicted

from entrance exam scores. For this use case, is a loss of 100 good or

bad? That is, if we have model parameters 𝑤 such that 𝑙(𝑤) = 100, are

the model parameters good or bad?

To answer this question, we need to know 𝑛, the number of points. If

𝑛 = 10, then 𝑙(𝑤) corresponds to an average squared residual of 10, which

is enormous given that GPAs are on a 4.0 scale. However, if 𝑛 = 100,000,

then the average squared residual is 0.001, which is minuscule and means

that the predictions are outstanding.

Also consider the gradient descent update:

∀𝑗 ∈ {1, 2, . . . , 𝑚}, 𝑤𝑘+1, 𝑗 =𝑤𝑘,𝑗 − 𝛼
𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,𝑗

(7.2)

=𝑤𝑘,𝑗 − 𝛼
𝑛∑
𝑖=1

𝜕

𝜕𝑤𝑘,𝑗

(
𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖)

)
2

. (7.3)

This form shows that the magnitude of the gradient scales with the

number of points, 𝑛. Even though the magnitude of the gradient changes,

the desired length of a step from 𝑤𝑘 to 𝑤𝑘+1
does not change with the

magnitude of the loss function. So, when 𝑛 is large, we will need to use a

smaller step size to counteract the larger gradients.

To make the magnitude of the loss function more intuitive (without

having to think about 𝑛), and to avoid having to consider 𝑛 when picking

a step size, we often rescale the loss function. For the least squares loss,

we might compute the average squared residual rather than the sum of

the squared residuals:

𝑙(𝑤) = 1

𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 , (7.4)

or, including the 1/2 factor that cancels with the exponent when taking

the gradient,

𝑙(𝑤) = 1

2𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2. (7.5)

With either of these rescaled loss functions, is a loss of 𝑙(𝑤) = 10 good or

bad for the GPA prediction example? Clearly it is bad, as it corresponds

to a mean residual of more than 3.0 per student, which is huge given
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that GPAs are on a 4.0 scale. Similarly, regardless of the value of 𝑛, a loss

of 𝑙(𝑤) = 0.001 would correspond to model parameters 𝑤 that result in

extremely accurate GPA predictions.

Remember that the choice of loss function is a hyperparameter. There are

no wrong choices—different choices will result in the algorithm behaving

differently, and it is up to you to set the hyperparameters to obtain the

behavior you want. Also, notice that these changes simply rescale the

loss function and its gradient, which is equivalent to rescaling the step

size in (7.2).

7.2 Input Normalization

Consider the gradient descent update for the least squares objective in

(7.2). Using a linear parametric model, this update becomes:

∀𝑗 ∈ {1, 2, . . . , 𝑚}, 𝑤𝑘+1, 𝑗 = 𝑤𝑘,𝑗 + 𝛼2

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖)

)
𝑥𝑖 , 𝑗 . (7.6)

Notice the red term, 𝑥𝑖 , 𝑗 , which corresponds to the 𝑗th feature of the 𝑖th

input. What happens if the 𝑗th feature is rescaled by a factor of 2? To

obtain the same predictions from the linear parametric model, the weight

on this feature would be halved. However, this is not the only difference:

the magnitude of the update for the 𝑗th feature would also be doubled

(the update is scaled by this red term), and so the step size is effectively

twice as large! Similarly, if the 𝑗th feature is scaled to be small, then the

step size has effectively been shrunken. To avoid these scaling issues, we

might rescale the inputs, just like we did with the loss function.

However, the input scaling is more nefarious than the scaling of the loss

function as a whole: what happens if one feature is scaled to be large and

another is scaled to be small? Unlike the other rescalings that we have

discussed so far, this scaling issue cannot be repaired by changing the

step size. A step size that is small enough for the weight multiplied by

the input feature that has a large magnitude will be far too small of a

step for the weight multiplied by other input feature, which has a small

magnitude. That is, one single step size will not be effective. While this

can be remedied by using different step sizes for each weight, 𝑤 𝑗 , we will

then have 𝑚 step size hyperparameters rather than just one, making the

algorithm even harder to tune.

So, instead of using different step sizes for each weight, we normalize all

of the input features so that they are of roughly the same scale. This way,

one step size should be effective for all of the weights. This raises the

question: how should we normalize input features so that they are all

roughly the same magnitude? Yet again, this decision is a hyperparameter.

Two common choices are:

1. Normalize the inputs so that the average value of the 𝑗th input

feature is zero and the standard deviation is one. This is achieved by

taking the original value of the input feature, subtracting the average

value of the feature, and dividing by the standard deviation of the

feature. This procedure is provided as pseudocode in Algorithm

7.1.
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2. Normalize the inputs to be in some range, [𝑎, 𝑏], where usually

𝑏 = 1 and 𝑎 ∈ {−1, 0}. If 𝑥min

𝑗
and 𝑥max

𝑗
are lower and upper bounds

on the 𝑗th input feature, then this normalization (with 𝑎 = 0) can

be achieved with the following change to each 𝑥𝑖 , 𝑗 :

𝑥𝑖 , 𝑗 ←
𝑥𝑖 , 𝑗 − 𝑥min

𝑗

𝑥max

𝑗
− 𝑥min

𝑗

. (7.7)

Algorithm 7.1: Input normalization to mean zero, variance one.

Input :Data set inputs (𝑥𝑖)𝑛𝑖=1
, where each 𝑥𝑖 ∈ ℝ𝑚

and

𝑛 ≥ 2.

Output :Modified data set where each feature has mean

zero and variance one.

Hyperparameters :None!

1 for 𝑗 = 1 to 𝑚 do
2 /* Compute the average of the 𝑗th feature. */

3 �̄� 𝑗 ← 1

𝑛

∑𝑛
𝑖=1
𝑥𝑖 , 𝑗 ;

4 /* Compute the variance of the 𝑗th feature. */

5 �̂�2

𝑗
← 1

𝑛−1

∑𝑛
𝑖=1
(𝑥𝑖 , 𝑗 − �̄� 𝑗)2;

6 end
7 for 𝑖 = 1 to 𝑛 do
8 for 𝑗 = 1 to 𝑚 do
9 /* Normalize the 𝑗th feature of the 𝑖th input. */

10 𝑥𝑖 , 𝑗 ←
𝑥𝑖 , 𝑗−�̄� 𝑗√

�̂�2

𝑗

;

11 end
12 end
13 /* Return the normalized inputs. */
14 return 𝑥1 , . . . , 𝑥𝑛 ;

7.3 Basis Functions

You might be thinking: linear parametric models are too simple to be

useful. For many interesting regression problems, we should not assume

that the predictions scale linearly with the input. However, this argument

is flawed because linear parametric models are linear functions of the
model parameters, but are not necessarily linear functions of the input!

For example, in the 1𝐷 case (i.e., 𝑚 = 1) the following model is a linear
parametric model:

𝑓𝑤𝑘 (𝑥𝑖) = 𝑤𝑘,1𝑥
3

𝑖 ,1 + 𝑤𝑘,2𝑥
2

𝑖 ,1 + 𝑤𝑘,3𝑥𝑖 ,1 + 𝑤𝑘,4. (7.8)

However, this parametric model can represent any third degree polyno-

mial, not just lines!

A function 𝑓 (𝑥) is linear if its derivative is a constant, i.e., the value of

𝜕 𝑓 (𝑥)/𝜕𝑥 does not depend on 𝑥 [wiki]. For the parametric model in (7.8),

the derivative of 𝑓𝑤𝑘 (𝑥𝑖) with respect to 𝑥𝑖 is 3𝑤𝑘,1𝑥
2

𝑖 ,1
+ 2𝑤𝑘,2𝑥𝑖 ,1 + 𝑤𝑘,3,

which depends on the value of 𝑥𝑖 ,1, and so 𝑓𝑤𝑘 (𝑥𝑖) is not linear with

respect to 𝑥𝑖 . However, the derivative of 𝑓𝑤𝑘 (𝑥𝑖) with respect to 𝑤𝑘 is the

vector (𝑥3

𝑖 ,1
, 𝑥2

𝑖 ,1
, 𝑥𝑖 ,1 , 1), which does not depend on the value of 𝑤𝑘 , and

https://en.wikipedia.org/wiki/Linear_function
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1: For a description of the Fourier basis see

this paper [15]. Note that this paper dis-

cussed value function approximation, which

is a topic that we will cover in the second

part of this course, which covers reinforce-

ment learning. However, the basis func-

tions presented apply to both supervised

and reinforcement learning. The value func-
tion approximation in the referenced paper

corresponds to the parametric model here.

so 𝑓𝑤𝑘 (𝑥𝑖) is linear with respect to 𝑤𝑘 . So, even though this parametric

model can represent more than just lines, it is still called a linear model.

Another perspective of this same idea is that we could write a program

that preprocesses the data. In the example above with 𝑚 = 1 and the

parametric model in (7.8), this program could read in the data set and

output a new data set with 𝑚 = 4, where the first feature in the new data

set is the cube of the only feature from the original data set, the second

feature is the square, etc. Using this new data set and the perspective

from before this section, wherein linear parametric models have one

weight per input feature (and perhaps a 𝑦-intercept weight), we obtain

precisely the parametric model in (7.8).

To formalize this notion of expanding the set of features used by the

linear parametric model, we use𝑚 to denote the number of input features

in the original data set and 𝑚′ to denote the number of features in the

data set after it has been preprocessed. It is not uncommon for 𝑚′ to be

much larger than 𝑚 (e.g., 𝑚 = 10 and 𝑚′ = 10,000). In these cases, the

preprocessed data set might be enormous (in terms of memory usage) in

comparison to the original data set. To avoid this, we can use the original

data set without any preprocessing by applying the preprocessing to the

input, 𝑥𝑖 , any time that it is used.

That is, let 𝜙 : ℝ𝑚 → ℝ𝑚′
be a function that takes as input a vector

from the original data set, 𝑥𝑖 , and produces as output a vector of 𝑚′

features to use with the linear parametric model. To help remember

this symbol, recall that 𝜙 is pronounced fee, as in features. Also, to

differentiate between the inputs before applying 𝜙 and those after, we

call 𝑥𝑖 the input vector and 𝜙(𝑥𝑖) the feature vector.

Incorporating 𝜙 into the algorithms that we have developed thus far is

trivial: simply replace all occurrences of 𝑥𝑖 with 𝜙(𝑥𝑖), and 𝑚 with 𝑚′.

The function 𝜙 is usually chosen to be nicely scaled. As a result, input

normalization is typically performed prior to applying 𝜙, or 𝜙 can apply

an input normalization scheme itself. For example, the Fourier basis is

one option for 𝜙 that typically assumes the inputs have been normalized

to the interval [−1, 1] or [0, 1], depending on the form of the Fourier

basis.

How should 𝜙 be selected? You guessed it—it is yet another hyperpa-

rameter. Sometimes 𝜙 is chosen together by a team of machine learning

researchers and experts in the application area (e.g., experts in medicine

for medical applications). In other cases, fixed application-independent

choices of 𝜙 (like the polynomial basis or Fourier basis)
1

can be effective.

However, common choices for 𝜙 like the polynomial basis and Fourier

basis have their own hyperparameters that set how large 𝑚′ is. Often this

hyperparameter is called the degree (polynomial basis) or order (Fourier

basis). In the coming chapters, we will discuss neural networks, which

can be thought of as a way for the agent to learn 𝜙.

When using a linear parametric model, 𝜙 is called a basis (hence why

the two examples were the polynomial basis and Fourier basis). Though

the precise definition of a basis is beyond the scope of this course, you

can think of a basis as the coordinate frame for a space—from the space

of real numbers to the space of all colors, for example. In our case, 𝜙 is

https://people.cs.umass.edu/~pthomas/papers/Konidaris2011a.pdf
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the “coordinate frame” for the space of all possible functions that the

parametric model can represent.

More precisely, if a basis has elements 𝑥, 𝑦, and 𝑧, then the space

that it parameterizes is the set of all linear combinations of 𝑥, 𝑦, and

𝑧. That is: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 for any real-valued 𝑎, 𝑏, and 𝑐. For exam-

ple, (0, 0, 1), (0, 1, 0), (1, 0, 0) is a basis for 3D space. The point (3, 4, 5)
is 5 × (0, 0, 1) + 4 × (0, 1, 0) + 3 × (1, 0, 0) (where here × denotes that

the constant is multiplied by each element of the vector). Notice that

(0, 0, 2), (0, 1, 0), (3, 0, 0) is also a basis for 3D space. Even more mind-

bending, (2, 1, 0), (0, 1, 0), (0, 3,−1) is also a basis for 3D space!

Consider the case where 𝑚 = 1 and where we are using the polynomial

basis of degree 2, i.e., 𝜙(𝑥𝑖) = (𝑥2

𝑖 ,1
, 𝑥𝑖 ,1 , 1). One can view 𝑓𝑤𝑘 (𝑥𝑖) as taking

a linear combination of the three functions 𝑥2

𝑖 ,1
, 𝑥𝑖 ,1, and 1. Visually, any

function represented by 𝑓𝑤𝑘 (𝑥𝑖) will be the sum of these three functions,

each rescaled by the corresponding weights, 𝑤𝑘,1 , 𝑤𝑘,2 , and 𝑤𝑘,3.



1: Long ago, I took a course on compu-

tational neuroscience, and for the course

project, my group used evolutionary algo-

rithms to search for dendritic morpholo-

gies that enable a single simulated neu-

ron to solve a supervised learning task.

Though this use of a neuron likely does

not mirror biology, it was an example of

how dendritic morphology alone can re-

sult in significant amounts of computa-

tion within a single neuron. Note: We used

a neuron model called a Hodgkin-Huxley
model, which is more realistic than the

models we will use in this course. To learn

about these more sophisticated neuron

models, see this book [17].
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In the previous chapter, we discussed how basis functions can be used

to allow linear models to represent nonlinear functions of the input. We

now take a different approach to representing nonlinear functions of the

input: using nonlinear models. We will begin with a simple model called

a perceptron, which is an extremely crude simulation of a single neuron.

Next, we will discuss how multiple perceptrons can be connected into a

network, called an artificial neural network.

8.1 Biological Inspiration

Recall that neurons can roughly be thought of as having three main

components: dendrites, a cell body, and an axon. These three main parts

are depicted in Figure 8.1. The dendrites serve as the input to the neuron,

receiving signals from other neurons and conveying them to the cell

body. The cell body, or soma, processes these inputs. Lastly, the axon

can be thought of as the output of the neuron, connecting to the inputs

(dendrites) of other neurons.

Every so often the neuron spikes (more technically, this spiking is called

an action potential). The rate at which these action potentials occur can

increase or decrease depending on the recent activation patterns received

by the dendrites. Many different properties of the neuron control which

activation patterns of the inputs result in frequent action potentials, e.g.,

dendritic morphology (the physical shape and structure of dendrites).
1

One can think of these various properties as model parameters. Evolution

and animal learning have achieved the remarkable result of tuning these

model parameters so that a large network of neurons produces intelligent

behavior.

If our linear parametric models are too simple to represent complicated

functions, but we know that collections of neurons can produce human-

level intelligence, this suggests that we might try to mimic nature: creating

parametric models inspired by the brain and neurons. Before creating

a network of simulated neurons, we focus on how we might create

a parametric model that resembles a single neuron. There are many

simplified models of neurons that resemble real neurons to various

degrees. In this course, our goal is not to study neurons, and so we

will not attempt to create or use the most realistic model of a neuron.

Rather, we will use one of the crudest neuron models—one so crude that

I would suggest not even thinking of it as a model of a neuron, but rather

as a parametric model inspired by neurons. Though this model barely

resembles real neurons, it can be efficiently implemented on modern

computer hardware and is the parametric model used by many of the

most sophisticated ML systems today.

https://www.izhikevich.org/publications/dsn.pdf
https://en.wikipedia.org/wiki/Action_potential
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Figure 8.1: Diagram of a neuron [16]. We

focus on three high-level structures: the

dendrites, cell body, and axon.

8.2 Perceptron Parametric Model

With this model, called a perceptron, we use real numbers to characterize

the output of the neuron. Intuitively, you can think of this number as

encoding the frequency of action potentials (how rapidly the neuron is

firing). Using this perspective, the input to a perceptron is a vector with

each element corresponding to the firing rate of a neuron connected to

the input (dendrite) of the current neuron. In our case, we will use just

one perceptron, and so the inputs will be the vector of input features,

𝑥𝑖 ∈ ℝ𝑚
, and the output of the neuron will be the prediction, �̂�𝑖 , of the

label 𝑦𝑖 .

Formally, the perceptron operates as follows. First, the vector of inputs is

transformed into a single real number using a linear combination. That

is:

in𝑖 =

𝑚∑
𝑗=1

𝑤𝑘,𝑗𝑥𝑖 , 𝑗 , (8.1)

where 𝑤𝑘 is a vector of model parameters just like before, scaling the

impact that the 𝑗th input has on the perceptron’s activation. This should

look familiar—this is just the regular linear parametric model that we

have dealt with so far!

Next, the neuron must determine whether or not it will fire. One way

to do this would be to pick a threshold, 𝜏. If in𝑖 ≥ 𝜏, then the neuron

fires (outputting a 1), otherwise the neuron does not fire (it outputs 0).

However, this view requires us to reason about another parameter, 𝜏. To

avoid this, we use the same trick that we used to include a 𝑦-intercept in

our linear models: we create an additional input, 𝑥𝑖 ,𝑚+1, that is always

one. If we then test whether in𝑖 ≥ 0 rather than in𝑖 ≥ 𝜏, we are effectively

using −𝑤𝑘,𝑚+1
as the threshold, 𝜏. Hereafter, we assume this additional

input is included, and that 𝑚 is the total number of inputs (including

this additional input).

The above logic can be represented without an if-else statement using

the Heaviside function 𝐻 : ℝ→ 0, 1, which is zero for negative num-

bers, and one for nonnegative numbers (positive numbers and zero), as
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Figure 8.2: Heaviside function [wiki].

2: The Heaviside function is one example

of a step function.

depicted in Figure 8.2.
2

That is:

𝐻(𝑥) =
{

1 if 𝑥 ≥ 0

0 otherwise.

(8.2)

Let 𝑎𝑖 be the output of the perceptron (this is the same as 𝑓𝑤𝑘 (𝑥𝑖)when

there is only one perceptron, but when we have many perceptrons we

will need to differentiate between the output of an internal perceptron

and the output of the model). We then have that

𝑎𝑖 =𝐻(in𝑖) (8.3)

=𝐻

(
𝑚∑
𝑗=1

𝑤𝑘,𝑗𝑥𝑖 , 𝑗

)
(8.4)

=

{
1 if

∑𝑚
𝑗=1
𝑤𝑘,𝑗𝑥𝑖 , 𝑗 ≥ 0

0 otherwise.

(8.5)

In general, the function applied to in𝑖 (the weighted sum of inputs) to

obtain 𝑎𝑖 (the final output of the perceptron) is called the activation
function. One problem with using the Heaviside function as an activation

function is that it does not work well with gradient descent. Its gradient

is zero everywhere (not a very useful gradient!) except at zero, where the

gradient is undefined (even less useful!).

One way to overcome this limitation is to smooth out the activation

function: rounding the corners and slanting the flat lines so that the

gradient always exists and is never zero. There are many such functions.

Sigmoids are a class of functions that are shaped like a rounded version

of the Heaviside function—almost an “S” shape. The logistic function,

𝜎 : ℝ → ℝ is one such sigmoid. In fact, the logistic function is so

commonly used that it is sometimes called the sigmoid function. In the

remainder of this text, we will refer to the logistic function as the sigmoid

function, though keep in mind that technically sigmoids are a class (set)

of functions, not just the logistic function.

The sigmoid function (logistic function), 𝜎, is defined as:

𝜎(𝑥) = 1

1 + 𝑒−𝑥 , (8.6)

https://en.wikipedia.org/wiki/Heaviside_step_function


8 Perceptron 46

Figure 8.3: The sigmoid function (techni-

cally, the logistic function, which is one

example of a sigmoid function).

Figure 8.4: Diagram of the perceptron

parametric model. The left side, marked

with Σ, computes a weighted sum of the

input, while the right side, marked with

a sigmoid shape, puts this weighted sum

through an activation function to deter-

mine the final output of the perceptron.

This figure is inspired by a figure from a

popular textbook [18].

and is depicted in Figure 8.3. Notice that using the sigmoid instead of

the Heaviside function, the output of the perceptron can span the range

[0, 1], rather than only taking the extreme values of 0 or 1.

Incorporating the sigmoid function into the perceptron, we obtain the

final equations for specifying a perceptron model:

𝑓𝑤𝑘 (𝑥𝑖) =𝑎𝑖 (8.7)

𝑎𝑖 =𝜎(in𝑖) (8.8)

in𝑖 =

𝑚∑
𝑗=1

𝑤𝑘,𝑗𝑥𝑖 , 𝑗 , (8.9)

where 𝜎 is defined in (8.6). Recall that 𝑓𝑤𝑘 (𝑥𝑖) = 𝑎𝑖 for now since there is

only one perceptron—later, with many perceptrons, 𝑎𝑖 will correspond to

the output of the perceptrons, which may not be the output of the para-

metric model. Figure 8.4 depicts the general structure of the perceptron

model. Written in one big equation, this gives:

𝑓𝑤𝑘 (𝑥𝑖) =
1

1 + 𝑒−
(∑𝑚

𝑗=1
𝑤𝑘,𝑗𝑥𝑖 , 𝑗

) . (8.10)

8.3 Gradient Descent using a Perceptron
Parametric Model

To perform gradient descent on the least squares loss function, we must

derive an expression for
𝜕𝑙(𝑤𝑘 )
𝜕𝑤𝑘,𝑗

. In this section, we will derive an expression

for this partial derivative, leveraging the chain rule. Recall that the least
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3: For a derivation of the derivative of the

sigmoid, see this Wikipedia page.

squares loss function is:

𝑙(𝑤𝑘) =
𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖)

)
2

. (8.11)

One way to differentiate this function would be to expand it completely

and then differentiate:

𝑙(𝑤𝑘) =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝜎(in𝑖))2 (8.12)

=

𝑛∑
𝑖=1

(
𝑦𝑖 −

1

1 + 𝑒− in𝑖

)
2

(8.13)

=

𝑛∑
𝑖=1

(
𝑦𝑖 −

1

1 + 𝑒−
∑𝑚
𝑗=1

𝑤𝑘,𝑗𝑥𝑖 , 𝑗

)
2

. (8.14)

While we could differentiate this expression directly, it would be quite

tedious. Instead, we will break the derivative of 𝑙(𝑤𝑘) into chunks that

are easier to differentiate, leveraging the chain rule. This strategy will

be even more important when we have many perceptrons connected

together in a network.

First, we determine how to write the partial derivative of the loss function

in terms of the derivative of the parameterized model:

𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,𝑗

=
𝜕

𝜕𝑤𝑘,𝑗

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖)

)
2

(8.15)

= − 2

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖)

) 𝜕

𝜕𝑤𝑘,𝑗
𝑓𝑤𝑘 (𝑥𝑖). (8.16)

Next, we solve for the partial derivative of the parameterized model (note

that the red terms are the same):

𝜕

𝜕𝑤𝑘,𝑗
𝑓𝑤𝑘 (𝑥𝑖) =

𝜕 𝑓𝑤𝑘 (𝑥𝑖)
𝜕 in𝑖

𝜕 in𝑖

𝜕𝑤𝑘,𝑗
, (8.17)

by the chain rule. We can obtain expressions for the two terms on the

right hand side as follows:

𝜕 𝑓𝑤𝑘 (𝑥𝑖)
𝜕 in𝑖

=
𝜕

𝜕𝑤𝑘,𝑗
𝜎(in𝑖) (8.18)

=𝜎(in𝑖)(1 − 𝜎(in𝑖)), (8.19)

since the derivative of 𝜎(𝑥) is 𝜎(𝑥)(1 − 𝜎(𝑥)).3 For the blue term:

𝜕 in𝑖

𝜕𝑤𝑘,𝑗
=

𝜕

𝜕𝑤𝑘,𝑗

𝑚∑
𝛽=1

𝑤𝑘,𝛽𝑥𝑖 ,𝛽 (8.20)

=𝑥𝑖 , 𝑗 . (8.21)

The derivation of the blue term above should be familiar—it is the

derivative of a linear parametric model.

Putting the yellow and blue terms together to obtain a complete expres-

sion for the red term (the partial derivative of the parametric model with

https://en.wikipedia.org/wiki/Logistic_function#Derivative
https://en.wikipedia.org/wiki/Chain_rule
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respect to the 𝑗th weight), we obtain:

𝜕

𝜕𝑤𝑘,𝑗
𝑓𝑤𝑘 (𝑥𝑖) = 𝜎(in𝑖)(1 − 𝜎(in𝑖))𝑥𝑖 , 𝑗 . (8.22)

Recall that the slope of a line is a constant—it does not depend on

the position on the line. Similarly, the slope of a linear function is a

constant. Notice that the derivative of the perceptron model does depend

on 𝑤𝑘 , since in𝑖 is a function of 𝑤𝑘 . Hence, the perceptron is not a linear

parametric model (recall that linearity of a model is determined based

on whether it is a linear function of the model parameters, not based on

whether it is a linear function of the inputs).

While one might implement the derivative of the loss function with

separate functions for the red, yellow, and blue terms, we can put the

pieces together to obtain a complete expression for the partial derivative

of the loss function with respect to the 𝑗th weight:

𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,𝑗

= −2

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖)

)
𝜎(in𝑖)(1 − 𝜎(in𝑖))𝑥𝑖 , 𝑗 . (8.23)

Plugging this into the gradient descent update, we obtain the following

update for the model parameters:

𝑤𝑘+1, 𝑗 = 𝑤𝑘,𝑗 + 𝛼2

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑓𝑤𝑘 (𝑥𝑖)

)
𝜎(in𝑖)(1 − 𝜎(in𝑖))𝑥𝑖 , 𝑗 . (8.24)
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In the last chapter, we presented a nonlinear parametric model that

is a crude simulation of a neuron; we called this a perceptron. In this

chapter, we study a more sophisticated nonlinear parametric model:

a network of perceptrons. These networks are called artificial neural
networks (ANNs) as they can be viewed as extremely crude models

of networks of neurons. When dealing with ANNs, we will call an

individual perceptron within the network a node, since the network

can be viewed as a graph with perceptrons as nodes and input/output

connections as edges. Alternatively, nodes are sometimes called units.

There are many ways that perceptrons can be connected together to form

a network (graph), and the structure of a network is called its network
architecture.

We will focus on a network architecture wherein the nodes are arranged

in layers and each node in a layer takes as input the output of all of the

nodes in the previous layer, as depicted in Figure 9.1. This architecture is

called a fully connected feedforward network architecture. The nodes

in the input layer are special—their output values are set to the values

of the inputs, 𝑥𝑖 ,1 , . . . , 𝑥𝑖 ,𝑚 . The output of the output layer, which has

a single node, is the output of the parametric model, i.e., 𝑓𝑤𝑘 (𝑥𝑖). The

layers between the input and output layers are called hidden layers. The

network is “fully connected” in that each node in a layer takes as input the

output of all nodes in the previous layer. The network is “feedforward”

in that there are no backwards connections (the graph is acyclic). Network

architectures with backwards connections (networks that form cyclic

graphs) are called recurrent networks.

The choice of network architecture is yet another hyperparameter. Even

if you select fully connected feedforward networks, you must still select

the number of hidden layers, the number of nodes in each hidden layer

(which may vary per layer), and the activation function to use for each

node.

Figure 9.1: Fully connected feedforward

network architecture with four layers. Ar-

rows indicate that the output of a node is

an input to another node. To avoid draw-

ing large numbers of arrows and nodes,

layers are often depicted using just the rect-

angles with arrows between the rectangles

(often without even the circles) indicating

fully connected layers, like in the right

portion of this diagram.
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1: Our notation differs from that of Russell

and Norvig, who denote the activation

function by 𝑔.

9.1 New Notation

Before proceeding, we will establish a new indexing notation for model

parameters (weights). Consider how we might reference one particular

weight in one particular node during one particular iteration of gradient

descent. This might use four indices—something like 𝑤 𝑙 ,𝑜
𝑘,𝑗

might denote

the 𝑗th weight of the 𝑜th
perceptron in the 𝑙th layer at the 𝑘th

iteration of

gradient descent, reserving the symbol 𝑖 for indexing which data point

the network is run on. While this works, it becomes difficult to track all

of the various indices.

Instead, we adopt the notation of Russell and Norvig [18] [18]: Russell et al. (2003), Artificial
Intelligence: A Modern Approach

. First, we

consider a single specific input vector, 𝑥 ∈ ℝ𝑚
, freeing up the symbol

“𝑖”. That is, 𝑥 ∈ ℝ𝑚
, and 𝑥 𝑗 now denotes the 𝑗th element of the input 𝑥.

Next, we consider some current layer and its previous layer, without using

a symbol or index to specify the actual layer number, and we use 𝑖 to

indicate indices related to the previous layer and 𝑗 to indicate indices

related to the current layer. We can then write 𝑤𝑖 , 𝑗 to denote the weight

from the 𝑖th node in the previous layer to the 𝑗th node in the current layer.

Next, we write 𝑎𝑖 and 𝑎 𝑗 to denote the outputs of the 𝑖th node in the

previous layer and 𝑗th node in the current layer respectively. Finally, we

add an additional 0
th

node to each layer that always outputs one, which

serves as a threshold (𝑦-intercept) parameter.

With this new notation, any particular perceptron in the network can be

characterized by the equations:

in𝑗 =

𝑚∑
𝑖=0

𝑤𝑖 , 𝑗𝑎𝑖 (9.1)

𝑎 𝑗 = 𝜎(in𝑗), (9.2)

where 𝜎 is the activation function—recall that we will use the sigmoid

(logistic function).
1

The input to the network is handled via a special

case, where the outputs of the nodes in the input layer are defined to be

the inputs: 𝑎 𝑗 = 𝑥 𝑗 for the input layer. Figure 9.2 depicts a perceptron

with this new notation.

Figure 9.2: Diagram of a perceptron para-

metric model using the new notation. The

inputs, 𝑎𝑖 , are the outputs of perceptrons

in the previous layer, and the output 𝑎 𝑗 is

the output of the entire parametric model

if the perceptron is in the output layer, or

it is one of the inputs to perceptrons in the

next layer if the perceptron is in a hidden

layer.

9.2 Forward Pass

The process of running all of the perceptrons in an ANN to determine the

output for some input, 𝑥 ∈ ℝ𝑚
, is called a forward pass. A forward pass

for a fully connected feedforward network is straightforward: the input

nodes are initialized to the input vector, and then all of the perceptrons
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in the hidden layers and output layer are run in order. Pseudocode for

this procedure is provided in Algorithm 9.1.

Algorithm 9.1: Forward pass

Input : Input vector 𝑥, model parameters 𝑤.

Output :Output of the parametric model, 𝑓𝑤(𝑥).
Hyperparameters :Network architecture (number of layers, how

layers are connected, activation functions, etc.).

Here we assume a fully connected feedforward

network.

1 /* Load input layer */
2 for each input 𝑥 𝑗 in 𝑥 do
3 𝑎 𝑗 ← 𝑥 𝑗 ;
4 end
5 /* Run Hidden Layers */
6 for each hidden layer do
7 for each node 𝑗 in current hidden layer do
8 in𝑗 =

∑
𝑖 𝑤𝑖 , 𝑗𝑎𝑖 // 𝑖 sums over nodes in previous layer

9 𝑎 𝑗 ← 𝜎(in𝑗);
10 end
11 end
12 /* Return prediction of the label for 𝑥 */
13 return output of the single node in the output layer;



1: We do not reproduce this derivation

here, since this point is best understood

using our old notation, and this chapter

uses the new notation established in the

previous chapter.

Backpropagation 10
Recall from (8.16) that the gradient of the least squares loss can be written

in terms of the partial derivatives of the output of the parametric model

with respect to each weight (the red term in (8.16)).
1

So, in order to run

gradient descent using an ANN as the parametric model, we must derive

an expression for the partial derivative of the output of the network with

respect to any particular weight, 𝑤𝑖 , 𝑗 . We can express this derivative

using the chain rule as:

𝜕 𝑓𝑤(𝑥)
𝜕𝑤𝑖 , 𝑗

=
𝜕 𝑓𝑤(𝑥)
𝜕 in𝑗

𝜕 in𝑗

𝜕𝑤𝑖 , 𝑗
. (10.1)

The first (pink) term is a special term that we will reference repeatedly

later, and so we give it its own symbol:

Δ𝑗 =
𝜕 𝑓𝑤(𝑥)
𝜕 in𝑗

. (10.2)

Going back to (10.1) and applying the chain rule to Δ𝑗 (the pink term),

we obtain:

𝜕 𝑓𝑤(𝑥)
𝜕𝑤𝑖 , 𝑗

=
𝜕 𝑓𝑤(𝑥)
𝜕𝑎 𝑗

𝜕𝑎 𝑗

𝜕 in𝑗︸         ︷︷         ︸
=Δ𝑗

𝜕 in𝑗

𝜕𝑤𝑖 , 𝑗
. (10.3)

The latter two terms should be straightforward given the derivatives that

we have worked out previously:

𝜕𝑎 𝑗

𝜕 in𝑗
=

𝜕

𝜕 in𝑗
𝜎(in𝑗) (10.4)

=𝜎(in𝑗)(1 − 𝜎(in𝑗)), (10.5)

assuming 𝜎 is the logistic function (sigmoid). Next, the yellow term:

𝜕 in𝑗

𝜕𝑤𝑖 , 𝑗
=𝑎𝑖 . (10.6)

The tricky term is then the red term, 𝜕 𝑓𝑤(𝑥)/𝜕𝑎 𝑗 . Recall that this term

represents the rate that the output of the parametric model, 𝑓𝑤(𝑥), will

change if the output of the current node, 𝑎 𝑗 , increases.

To see how to compute this term, first consider the case where the next

layer only includes one node, as depicted in Figure 10.1. Notice that here

we use 𝑘 to index terms in the next layer (while still using 𝑗 to index terms

from the current later and 𝑖 to index terms in the previous layer). Using

the chain rule, we can break the red term into two partial derivatives:

𝜕 𝑓𝑤(𝑥)
𝜕𝑎 𝑗

=
𝜕 𝑓𝑤(𝑥)
𝜕 in𝑘︸  ︷︷  ︸

(a)

𝜕 in𝑘

𝜕𝑎 𝑗︸︷︷︸
(b)

. (10.7)
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2: Notice that the output layer is an excep-

tion: For the output layer the red term is

one, since 𝑓𝑤(𝑥) is 𝑎 𝑗 .

If we were to update the nodes in the reverse of the order that the nodes

were run (from the output layer back to the input), then the (a) term is

one that we would already have computed: it is Δ𝑘 (the pink term in

(10.1), but for the node in the next layer rather than the current layer).

So, if we compute these partial derivatives backwards, from the output

to the input, we would already have computed the term (a), so we can

simply store its value when we computed it, allowing us to look up its

value when updating the current node.
2

This leaves term (b):

𝜕 in𝑘

𝜕𝑎 𝑗
= 𝑤 𝑗 ,𝑘 . (10.8)

Figure 10.1: Simplified network structure

wherein the current node’s output is only

used by one node in the subsequent layer.

Revisiting (10.3), we can now plug in the expressions for each term

(keeping the same colors for each term) to obtain:

𝜕 𝑓𝑤(𝑥)
𝜕𝑤𝑖 , 𝑗

=
𝜕 𝑓𝑤(𝑥)
𝜕 in𝑘︸  ︷︷  ︸
=Δ𝑘

𝑤 𝑗 ,𝑘𝜎(in𝑗)(1 − 𝜎(in𝑗))

︸                               ︷︷                               ︸
=Δ𝑗

𝑎𝑖 . (10.9)

However, we derived this using the simplifying assumption that the

output of the current node is only used by a single node in the next layer.

In multilayer networks, the output of one node is frequently used as an

input to multiple other nodes in the network, as depicted in Figure 10.2. In

this case, the output of the current node influences 𝑓𝑤(𝑥) through every

node in the next layer.

Figure 10.2: Network structure wherein

the current node’s output is only used by

two nodes in the subsequent layer. The

output of the current node, 𝑎 𝑗 , impacts the

output of the network through both of the

subsequent nodes. So, the impact that 𝑎 𝑗
has on 𝑓𝑤(𝑥) (the network output) is the

sum of its impact through nodes in the

next layer. This trend carries over to any

number of nodes in the next layer—not

just two.

That is,

𝜕 𝑓𝑤(𝑥)
𝜕𝑎 𝑗

=
∑
𝑘

𝜕 𝑓𝑤(𝑥)
𝜕 in𝑘

𝑤 𝑗 ,𝑘 , (10.10)
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3: We have stated (10.10) and provided in-

tuition for its meaning, but have not given

a complete derivation from first principles.

For the interested reader, this derivation

can be found on page 745 of the third

edition of Russell and Norvig’s book [18].

where the summation over 𝑘 indicates summation over all nodes in the

next layer. That is, the impact that a change to 𝑎 𝑗 has on 𝑓𝑤(𝑥) is the sum

of the impacts that changes to 𝑎 𝑗 will have on 𝑓𝑤(𝑥) via each of the nodes

in the next layer.
3

Using this form for the red term, we can finally express (10.3) in expanded

form as:

𝜕 𝑓𝑤(𝑥)
𝜕𝑤𝑖 , 𝑗

=
∑
𝑘

𝜕 𝑓𝑤(𝑥)
𝜕 in𝑘︸  ︷︷  ︸
=Δ𝑘

𝑤 𝑗 ,𝑘𝜎(in𝑗)(1 − 𝜎(in𝑗))

︸                                    ︷︷                                    ︸
=Δ𝑗

𝑎𝑖 . (10.11)

Plugging this into the gradient descent update (see (8.16))

𝑤𝑖 , 𝑗 ← 𝑤𝑖 , 𝑗 + 𝛼2

∑
(𝑥,𝑦) in data set

(𝑦 − 𝑓𝑤(𝑥))
𝜕 𝑓𝑤(𝑥)
𝜕𝑤𝑖 , 𝑗

, (10.12)

results in gradient descent on the least square objective using a neural

network as the parametric model.

However, consider what happens when there are many (millions) of

points in the data set: Each step of gradient descent will require a large

amount of computation, making training slow. When training ANNs, it is

therefore common to use a variant of gradient descent called incremental
gradient methods. In this variant of gradient descent, the weights are

updated using an estimate of the gradient computed from a single data

point. That is, for each data point (𝑥, 𝑦) in the data set, for each weight

𝑤𝑖 , 𝑗 in the network,

𝑤𝑖 , 𝑗 ← 𝑤𝑖 , 𝑗 + 𝛼2(𝑦 − 𝑓𝑤(𝑥))
𝜕 𝑓𝑤(𝑥)
𝜕𝑤𝑖 , 𝑗

. (10.13)

That is, rather than summing over all of the “(𝑥, 𝑦) in data set,” the

algorithm uses a single (𝑥, 𝑦) pair (input-label pair) to perform the

weight update and loops over the data set (perhaps multiple times)

to select which training point to use. Intuitively, you can think of this

approach as using estimates of the gradient of the loss function to perform

each weight update. The convergence properties of this gradient descent

variant are nearly identical to those of regular gradient descent [14] [14]: Bertsekas et al. (2000), ‘Gradient

convergence in gradient methods with

errors’

.

Even with the improved efficiency of incremental gradient descent, we

should be careful to compute the updates in an efficient way. This is

achieved by computing each Δ𝑗 term once, and storing its value for

reference later. The algorithm for efficiently computing these derivatives

is called backpropagation because the gradient information is propagated

backwards through the network via the storedΔ𝑗 terms. Furthermore, the

gradient update loops over the layers in reverse order, and so this process

is sometimes called a backwards pass. Pseudocode for backpropagation

is provided in Algorithm 10.1.
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Algorithm 10.1: Gradient descent on least squares loss using a fully

connected feedforward neural network and backpropagation for

gradient computation. Recall from Section 8.2 that each perceptron

implements a threshold for firing by including an extra input that is

always equal to one.

Input :Data set consisting of many input-label pairs,

(𝑥, 𝑦)
Output :Weights, 𝑤, that approximately minimize the

least squares loss for a fully connected

feedforward artificial neural network, with the

logistic function as the activation function.

Hyperparameters :Number of hidden layers, number of nodes in

each hidden layer, initial weight distribution 𝑝,

step size 𝛼 ∈ ℝ>0, stopping criterion stop.

1 // Initialize weights 𝑤 by sampling i.i.d. from 𝑝
2 for each weight 𝑤𝑖 , 𝑗 in 𝑤 do
3 𝑤𝑖 , 𝑗 ∼ 𝑝;

4 end
5 while stopping criterion stop not satisfied do
6 /* Train on each point in the data set once */
7 for each data point (𝑥, 𝑦) in the data set do
8 /* Get the predicted label using Algorithm 9.1 */
9 �̂� = ForwardPass(𝑥, 𝑤);

10 /* Run a backward pass to obtain Δ𝑗 values. Start
by computing Δ𝑗 for the output layer as a
special case (recall that the red term in (10.3)

is one in this case). */
11 for each node 𝑗 in the output layer do
12 Δ𝑗 ← 𝜎(in𝑗)(1 − 𝜎(in𝑗));
13 end
14 /* Loop over the layers in reverse order,

computing the Δ𝑗 values for all nodes. */
15 for each hidden layer from the last (near output) to first (near input)

do
16 for each node 𝑗 in the current layer do
17 /* The summation over 𝑘 below is over nodes

in the next layer. */
18 Δ𝑗 ←

∑
𝑘 Δ𝑘𝑤 𝑗 ,𝑘𝜎(in𝑗)(1 − 𝜎(in𝑗));

19 end
20 end
21 /* Perform incremental gradient step: (10.13). */
22 for each weight 𝑤𝑖 , 𝑗 in 𝑤 do
23 𝑤𝑖 , 𝑗 ← 𝑤𝑖 , 𝑗 + 2𝛼(𝑦 − �̂�)Δ𝑗𝑎𝑖 ;
24 end
25 end
26 end
27 return 𝑤;
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Recall the partial derivative of the model output with respect to a

particular weight in an ANN (this is a reproduction of (10.11)):

𝜕 𝑓𝑤(𝑥)
𝜕𝑤𝑖 , 𝑗

=
∑
𝑘

𝜕 𝑓𝑤(𝑥)
𝜕 in𝑘︸  ︷︷  ︸
=Δ𝑘

𝑤 𝑗 ,𝑘𝜎(in𝑗)(1 − 𝜎(in𝑗))

︸                                    ︷︷                                    ︸
=Δ𝑗

𝑎𝑖 . (11.1)

Notice again that the expression for Δ𝑗 is written in terms of Δ𝑘 (Δ𝑘

is the Δ𝑗 terms from the next layer in the network toward the output).

What happens to the magnitude of Δ𝑗 as we progress farther and farther

back within the network toward the input? In (11.1), 𝜎(in𝑗) is between

zero and one, and so the blue term is maximized when 𝜎(in𝑗) = 0.5,

resulting in the blue term being 0.25. As a consequence, Δ𝑗 tends to have

a smaller magnitude than Δ𝑘 (even though Δ𝑗 sums over multiple Δ𝑘).

As this progresses back through the network, the values of Δ𝑗 continue

to shrink.

This means that the partial derivative, 𝜕 𝑓𝑤(𝑥)/𝜕𝑤𝑖 , 𝑗 tends to be much

smaller for weights 𝑤𝑖 , 𝑗 near the input layer. This tendency is called

vanishing gradients because, as we progress further and further back

within the network (towards the input layer), the gradients “vanish”—

decreasing in magnitude towards zero. This causes issues with the

gradient descent update: weights near the input layer hardly change, and

so the network learns slowly. This should also make sense intuitively:

weights near the output of the network likely have a larger influence on

the output of the network, and so the derivative of the network output

with respect to those weights will be relatively large. Similarly, weights

near the input of the network likely have a smaller influence on the

output of the network (since their output is filtered through the entire

remainder of the network), and so the derivative of the network output

with respect to the weight there will be relatively small.

A first thought might be to fix this by increasing the step size. However,

the gradient is not poorly scaled near the output layer, and so a large step

size will result in too big of a step for weights near the output layer. Two

of the most common and effective fixes for this issue are 1) changing the

activation function and 2) using an adaptive step size. We will discuss

adaptive step sizes later within this chapter. With regard to changing

the activation function: notice that the troublesome terms that make the

values of Δ𝑗 shrink as we progress farther back within the network are

the blue terms in (11.1). These terms correspond to 𝜕𝜎(in𝑗)/𝜕 in𝑗 . That is,

they come from the derivative of the activation function!
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This suggests an idea: could we swap out the sigmoid activation function

for one where this partial derivative is not always less than 0.5? One

popular alternative activation function, the rectified linear unit (ReLU),

achieves exactly this:

𝑔(𝑥) =
{

0 if 𝑥 ≤ 0

𝑥 otherwise.

(11.2)

While we could easily spend multiple lectures discussing just activation

functions, here we simply point out that the derivative of the ReLU

activation function is often one (though sometimes zero) and that this

has been found to be an effective strategy for mitigating the problem of

vanishing gradients.
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This lecture covers many topics at a high level, providing you with

exposure to topics that you will learn more about if you pursue continued

machine learning education.

12.1 Weight Initialization

While we have focused heavily on how the weights (model parameters) of

an ANN can be updated, we grazed over the question of how the weights

should be initialized. It turns out that the way that weights are initialized

can have a significant impact on how well the network will be able to

learn. If weights are too large, then (even with the problem of vanishing

gradients!) the gradients tend to be large, resulting in divergence of the

network (sometimes called exploding gradients). If the weights are too

small, then it can exacerbate the problem of vanishing gradients—notice

that weight terms show up in the expression for Δ𝑗 in (11.1)—and so if

the weights are all small (significantly less than one), it will also cause

vanishing gradients!

While there are many options for initializing the weights of an ANN, here

we present two of the most well-known to give you a taste for what these

weight initialization schemes look like. First, Xavier initialization [19] [19]: Glorot et al. (2010), ‘Understanding

the difficulty of training deep feedforward

neural networks’

aims to achieve two properties: the mean activation (in𝑗) should be zero

and the variance of the activations should be the same across all layers.

A scheme that achieves these two properties, and which has come to

be known as Xavier initialization, is to sample each weight in layer 𝑙

from a normal distribution with mean zero and variance 1/𝑛𝑙−1
, where

𝑛𝑙−1
is the number of nodes in the previous layer. This means that a node

that has many inputs will be initialized with smaller weights, on average,

than a node with fewer inputs.

Subsequently, He initialization [20] [20]: He et al. (2015), ‘Delving deep

into rectifiers: Surpassing human-level

performance on imagenet classification’

was proposed as an alternative

to Xavier initialization and tends to be particularly effective when us-

ing ReLU activation functions. He initialization is identical to Xavier

initialization, except that the weights have variance 2/𝑛𝑙−1
rather than

1/𝑛𝑙−1
.

12.2 Adaptive Step Sizes

Selecting a value for the step size hyperparameter, 𝛼, in the backprop-

agation algorithm can be quite challenging. For example, in the last

two sections, we discussed different ways that the magnitude of the

step size may need to be different for different weights in the network.

Additionally, independent of any scaling issues of different weights, the

shape of the loss function can cause issues. That is, the slope of the loss
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function may be large (steep) for some settings of the model parameters

and small (shallow) for others. Because the gradient update,

𝑤𝑘+1,𝑘 ← 𝑤𝑘,𝑗 − 𝛼
𝜕𝑙(𝑤𝑘)
𝜕𝑤𝑘,𝑗

, (12.1)

includes multiplication by
𝜕𝑙(𝑤𝑘 )
𝜕𝑤𝑘,𝑗

, when the gradient is small (slope is

shallow), the algorithm will make very small changes to the model

parameters, and when the gradient is large (slope is steep), the algorithm

will make very large changes to the model parameters.

Adaptive step size methods are algorithms for automatically changing

the length of a gradient descent step (and sometimes even the direction

of the step!) with the goal of making it easier to tune the step size

hyperparameter and/or to speed up the learning process by allowing

for larger steps across parts of the loss function where the gradient is

relatively small (the slope is shallow). There are many different adaptive

step size techniques, which range from simple approaches that introduce

a notion of momentum to more sophisticated approaches that reason

about the curvature of the loss function. Perhaps the most common

adaptive step size methods are adaptive gradient (AdaGrad), root mean

square propagation (RMSProp), and adaptive moment estimation (Adam).

While a review of these methods is beyond the scope of this course, this

Wikipedia page provides a nice summary for the curious reader.

12.3 Classification

Classification problems are like regression problems, but where the set

of possible labels (values for each 𝑦𝑖) is finite, and typically the labels

do not correspond to numbers. For example, consider the problem of

predicting whether or not an image is a picture of a cat—in this case, the

output of the model would be “yes” or “no”. Similarly, a system that

maps images of handwritten letters to the corresponding letter would

have labels {𝑎, 𝑏, . . . , 𝑧}.

This raises the question: how can we modify our parametric models,

like ANNs, so that they output values like “a”, “b”, “yes”, or “no”? The

most common strategy is to change the model to have one output per

label, and to drop the activation function from the output layer of the

network (so that the outputs range from −∞ to∞ rather than from 0 to 1.

Next, we might define the output of the parametric model to be the label

corresponding to the output with the largest value. That is, if the third

output corresponds to the label “c” and the third output is the largest of

the outputs, then the model’s prediction is “c”.

A problem with this approach is that the max operator is not differentiable,

and so the derivative of the model output with respect to any particular

weight may not exist (and when it does exist, it is zero!). This precludes

the use of backpropagation or gradient descent to train the parametric

model.

One way to overcome this limitation is to replace the maximum with

a softened form of maximum called softmax. Softmax is essentially

a randomized version of the regular max operator. Specifically, if the

https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum
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outputs of the network are 𝑎1 , 𝑎2 , . . . , 𝑎𝑚 , then the label actually output

by the network is sampled according to:

Pr

(
The 𝑗th label is output

)
=

𝑒 𝑎 𝑗∑
𝑗′ 𝑒

𝑎 𝑗′
. (12.2)

You can think of the exponentiation as mapping each 𝑎 𝑗 (which may be

any real number) to 𝑒 𝑎 𝑗 , which is positive. Next, to make the positive

numbers into probabilities, they must be normalized so that they sum to

one—this is the purpose of the denominator in (12.2).

Notice that the use of softmax changes the parametric model in a fun-

damental way: it now includes some stochasticity (randomness). When

presented with the same input multiple times, it can produce various

different outputs.

The remaining challenge to tackle for classification setting is to define

a loss function that characterizes how (in)accurate a parametric model

is. There are many choices of loss functions, just like in the regression

setting. One common choice is the cross entropy loss.

We will present this loss function in a simplified but very common setting:

binary classification. Binary classification problems are classification

problems where there are two possible labels. Typically these labels are

either 0 and 1 or −1 and 1. Binary classification problems are common

when determining whether or not the input has a property of interest,

like whether an image of a tumor corresponds to a benign or malignant

tumor, or whether an image taken from a car includes a pedestrian or

not.

In the binary classification setting, the cross entropy loss can be written

as:

𝑙(𝑤) = − 1

𝑛

𝑛∑
𝑖=1

ln (Pr ( 𝑓𝑤(𝑥𝑖) = 𝑦𝑖)) (12.3)

While we will not present a detailed derivation of this loss function from

first principles, notice that it makes sense intuitively. Pr( 𝑓𝑤(𝑥𝑖) = 𝑦𝑖) is the

probability that the parametric model produces the correct label for the

𝑖th point in the data set. The
1

𝑛

∑𝑛
𝑖=1

simply averages over all of the data

points, and the negative in the front indicates that larger probabilities

of producing the correct label correspond to smaller loss. Finally, the ln

operator is monotonic, and so it simply changes the emphasis on how

important it is to achieve various probabilities of the correct label. That

is, ln(𝑥) ≈ 𝑥 − 1 when 𝑥 ≈ 1, but when 𝑥 → 0, ln(𝑥) → −∞. Hence, if

the probability of giving the correct label is near zero for one point, it

produces a massive loss relative to the loss incurred when the correct

label is given a reasonably large (but not close to one) probability for

multiple points.

12.4 Generalization Bounds

We know what loss the models that we train achieve on the available

training data. However, even when the loss is low on the available data,

why do we expect the model to be useful for making predictions for

points that are not in the training data? Could it be that the training data
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1: Technically this is not convergence, but

a probabilistic form of convergence. Differ-

ent assumptions about the random vari-

able (like whether or not it has finite vari-

ance) produce different forms of proba-

bilistic convergence, like almost sure con-

vergence or convergence in probability.

2: It does not matter which 𝑖 ∈ {1, . . . , 𝑛}
is used in the definition of 𝜇 because all

of the 𝑍𝑖 are identically distributed and

therefore have the same expected value.

3: Often the constant 𝑐 is called 𝑡 when

discussing Hoeffding’s inequality.

4: More precisely this inequality requires

𝑍1 , . . . , 𝑍𝑛 to be i.i.d. random variables

where Pr(𝑍1 ∈ [𝑎, 𝑏]) = 1 for some con-

stants 𝑎 and 𝑏, and our expression uses

𝑟 = 𝑏 − 𝑎. The most general form of Ho-

effding’s inequality slightly loosens these

requirements by only requiring the ran-

dom variables to be independent, but not

necessarily identically distributed.

we have are not actually representative of the data the model will face

when deployed in the real world? Why do we expect a model trained

from some data to be effective for any other data, when we know that

future data points will be different from the training points (e.g., we are

unlikely to see the exact same handwritten letter twice).

Without any additional knowledge about how the training data was

collected, we cannot say anything about how effective the trained model

will be when applied to new data points. However, we can reason about

how effective our trained model will be if we assume that the training

data was sampled probabilistically. This view of the training data as a

random sample from some population lies at the foundation of ML and

is the reason that ML and statistics are so closely related. To see why, we

briefly discuss a concept from statistics before returning to discuss how

this concept allows us to reason about how effective a trained model will

be for data points not in the training data.

Hoeffding’s Inequality

You likely have heard of the law of large numbers, which states that

(under certain mild conditions) if you take many independent samples

from some distribution and average the samples, this sample average

will “converge”
1

to the actual mean of the distribution as you obtain

more and more samples. Hoeffding’s inequality is an inequality that

characterizes how unlikely it is that the sample mean will deviate from

the actual mean by a given amount.

To present Hoeffding’s inequality, we begin with a few definitions.

Let 𝑍1 , . . . , 𝑍𝑛 be 𝑛 independent and identically distributed random

variables (𝑛 independent samples from some distribution). Let �̄�𝑛 =
1

𝑛

∑𝑛
𝑖=1
𝑍𝑖 be the sample mean of these 𝑛 samples. Lastly, let 𝜇 = E[𝑍𝑖]

be the actual mean of the distribution.
2

Hoeffding’s inequality characterizes how unlikely it is that the sample

mean, �̄�𝑛 , differs from the actual mean, 𝜇, by more than some constant,

𝑐 ∈ ℝ>0. That is, it provides an upper bound on the probability that

|�̄�𝑛 − 𝜇| ≥ 𝑐. Specifically, Hoeffding’s inequality states that:
3

Pr

(
|�̄�𝑛 − 𝜇| ≥ 𝑐

)
≤ 2𝑒

− 2𝑛𝑐2

𝑟2 , (12.4)

where 𝑟 is the range of each 𝑍𝑖—the range of possible values of 𝑍𝑖 .
4

Now, consider our loss function (using our old notation):

𝑙(𝑤𝑘) =
1

𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2. (12.5)

This loss function is computed from the available data—𝑛 samples from

some larger population. If these 𝑛 samples are sampled i.i.d. from the

population, then we can apply Hoeffding’s inequality with 𝑍𝑖 being

(𝑦𝑖 − �̂�𝑖)2 from (12.5). This gives:

Pr (|𝑙(𝑤𝑘) − 𝜇| ≥ 𝑐) ≤ 2𝑒
− 2𝑛𝑐2

𝑟2 , (12.6)

https://en.wikipedia.org/wiki/Convergence_of_random_variables#Almost_sure_convergence
https://en.wikipedia.org/wiki/Convergence_of_random_variables#Almost_sure_convergence
https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_probability
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5: For example, if 𝑦𝑖 ∈ [0, 1] and �̂�𝑖 ∈
[0, 1] (like when using a sigmoid in the

last layer of an ANN), 𝑟 = 1, since the

largest possible residual is 1, and 1
2 = 1.

where 𝜇 is the expected loss (the true loss over the entire population),

𝑐 is any positive constant, and 𝑟 is the range of the squared losses.
5

This expression indicates that term on the right is an upper bound

for the probability that the quality of predictions (measured using the

loss function) on the entire population differs from the that on the

available data by 𝑐 or more. Notice that the term on the right decreases

as 𝑛 increases, indicating that as we obtain more data we can become

increasingly confident that our model will be accurate when applied to

new (possibly previously unseen) data points.

Hence (12.6) provides a sort of generalization bound, since it character-

izes how well a learned model will generalize to unseen data.

Due to subtle reasons beyond the scope of this course, (12.6) only applies

when 𝑙(𝑤𝑘) is computed using data that was not used to learn the weights

𝑤𝑘 . For an excellent and more complete discussion of generalization

bounds, we refer the reader to the beginning of “Learning From Data”

by Yaser Abu-Mostafa [21] [21]: Abu-Mostafa et al. (2012), Learning
from Data

[Amazon].

12.5 Overfitting

How can we ensure that a learned model is safe to use? One idea would

be to check whether the final loss, 𝑙(𝑤𝑘) for the final value of 𝑘, is small.

If this value is small, it suggests that the model is making accurate

predictions.

This proposed strategy has at least two flaws. First, the loss function does

not differentiate between different types of errors. For example, when

predicting how far a landslide will travel in order to decide how far from

a slope to build a house [10], underestimating the distance the landslide

will travel is significantly worse than overestimating the distance. So, we

may wish to consider a modified objective that focuses on the types of

errors critical to ensuring safety. For this landslide example, this might

mean placing a larger weight on errors where the model underpredicts,

or even entirely ignoring errors due to overprediction.

Even if the loss function is carefully designed to characterize the safety

of the learned model, using the final loss to measure safety is still

irresponsible due to the second flaw: that the model will tend to overfit
the training data. That is, it will tend to be accurate for the training

data, but inaccurate for any new data points not included in the training

data.

To see why this happens, consider the extreme case of using linear

regression (without basis functions) to fit a line to two data points from

the GPA data set. Given any two data points, one can always fit a line that

goes through them. This means that the prediction error for each of the

points will be zero, and so the sum of the squared errors (the loss) will

also be zero.

However, this does not mean that the line that we have fit will have

approximately zero error when the model is applied to new training

points! In a sense, the model has “memorized” part of the training data.

It therefore produces accurate predictions for the training data, but fails

to generalize as well to points that were not seen during training.

https://www.amazon.com/Learning-Data-Yaser-S-Abu-Mostafa/dp/1600490069
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6: Recall when discussing generalization

techniques that we indicated Hoeffding’s

inequality must be applied using data not

used to train the model—Hoeffding’s in-

equality can be applied using the test set.

This same problem arises when using many points and complicated

parametric models. The more complicated the model (generally, the more

model parameters there are), the more the model will be able to overfit

(think, partially memorize) the training data. In our GPA example using

a linear parametric model, if we use all 43,303 data points, there is far

too much data for such a small parametric model to memorize, and

so overfitting will not be a significant concern. However, for most real

problems, either data is extremely limited or the parametric model will

be so complex that it can begin to overfit even large data sets.

To visualize overfitting, consider Figure 12.1. The horizontal axis denotes

the training time (one might measure this using the number of weight

updates or the number of passes that gradient descent takes over the

entire data set). The red curve depicts the loss computed on the training

data. If the step size is tuned properly, then we expect the red curve to

have this general shape—decreasing over time (though not necessarily

reaching a loss of zero, as that may not be possible). However, if we

compute the loss for data points not provided to the algorithm, the

loss will follow a trend like the green curve—initially decreasing as

the parametric model learns the correct general shape, but eventually

increasing when the parametric model begins overfitting to the training

data.

Figure 12.1: Example depicting overfitting.

The red curve is the loss function com-

puted using the training data, and the

green curve is the loss function when com-

puted using data not provided to the agent

during training. Overfitting occurs when

the green curve begins increasing in value

while the red curve continues decreasing.

There are many ways to overcome overfitting (for another approach not

discussed in this introductory course, I recommend studying regulariza-
tion). One strategy is to split the available data into two sets: training data

and testing data. The model can then be trained using only the training

data. After training, we can compute the loss using the testing data. Since

the ML algorithm never saw this data before, the model cannot overfit

to it, and so the computed loss will be a reasonable characterization of

what will happen if the model is applied to new data points.
6

However, splitting into training and testing sets only fixes part of the

problem (it fixes the overestimation of how well the model will perform).

The ML algorithm will still tend to overfit to the training data, resulting

in low accuracy on the test data (and future data points for which

predictions are required). To overcome this, we partition the training data

set into two sets: one still called the training data, and the other called

the validation data. The ML model is trained using only the training data.

However, during training we also track the loss function computed from

the validation data. When the loss on the validation begins to increase,
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we can stop training as further training will result in overfitting to the

training data.

This train-validation-test splitting of data is common and allows for

various techniques for improving the reliability and accuracy of ML

models. In general, the training data is used to train the model, the

validation data is used to determine which settings of hyperparameters

are most effective (like when to stop training to avoid overfitting), and

the test data is used after the final model has been selected to estimate

how well the model will perform when applied to new data points.
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What is Reinforcement Learning 13
Reinforcement learning is an area of machine learning, inspired
by behaviorist psychology, concerned with how an agent can learn
from interactions with an environment.

–Wikipedia, Sutton and Barto [22] [22]: Sutton et al. (1998), Reinforcement
Learning: An Introduction

, Phil

This process of learning via interactions with an environment is often

depicted using a agent-environment diagram like Figure 13.1. The agent

makes some observations about the state of the environment (the state

of the world around it). More specifically, the state of the environment

is any complete description of the environment at a given moment. For

us humans as agents, the environment is the universe and the state is a

complete characterization of the universe at a given moment.

Clearly we do not know, nor will we ever know, the exact state of the entire

universe—the positions and velocities of every single particle. However,

the state does exist. Similarly, the agent may not know the complete state

of the environment, but this state does exist. The agent’s observation
of the state is typically both incomplete (for example, at the moment I

am unable to observe the position of the moon or whether a person is

moments away from hitting my doorbell) and noisy (since almost all

sensors introduce some noise or uncertainty in their measurements).

Although observations and states are different, for the purposes of this

introductory course we will treat them as interchangeable. For simplicity,

you might assume for now that the agent’s observations of the state of

the environment are complete and noise-free. However, the methods that

we will present are effective even when the observations are incomplete

and imperfect.

Agent

Environment

state actionreward Figure 13.1: Agent-environment diagram.

Examples of agents include a child, dog,

robot, program, etc. Examples of environ-
ments include the world, lab, software

environment, etc.

RL has two key concepts that differentiate it from supervised learning:

evaluative feedback and sequential decisions.

Evaluative Feedback: Rewards convey how “good” an agent’s actions

are, not what the best actions would have been. If the agent was given

instructive feedback (what action it should have taken) this would be a

supervised learning problem, not a reinforcement learning problem.

Sequential: The entire sequence of actions must be optimized to maxi-

mize the “total” reward the agent obtains. This might require forgoing

immediate rewards to obtain larger rewards later. Also, the way that the

agent makes decisions (selects actions) changes the distribution of states

that it sees. This means that RL problems aren’t provided as fixed data

https://en.wikipedia.org/wiki/Behaviorism
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sets like in supervised learning, but instead as code or descriptions of

the entire environment.

Question: If the agent-environment diagram describes a child learning

to walk, what exactly is the “Agent” block? Is it the child’s brain, and its

body is part of the environment? Is the agent the entire physical child? If

the diagram describes a robot, are its sensors part of the environment or

the agent?

Answer: Either perspective is valid. It is up to you to determine the

perspective that best fits your use of RL. If you are studying high-level

animal behavior, it is likely more useful to view the entire animal as the

agent. If you are using RL to balance a robot, it is likely more useful to

view the physical actuators and their complex dynamics as part of the

environment.

Neuroscience and psychology ask how animals learn. Those fields are the

study of some examples of learning and intelligence. RL asks how we

can make an agent that learns. It is the study of learning and intelligence

in general (animal, computer, matchboxes, purely theoretical, etc.). In

this course, we may discuss the relationship between RL and computa-

tional neuroscience in one lecture, but, in general, we will not concern

ourselves with how animals learn (other than, perhaps, for intuition and

motivation).

There are many other fields that are similar and related to RL. Separate

research fields often do not communicate much, resulting in different

language and approaches. Other notable fields related to RL include

operations research and control (classical, adaptive, etc.). Although these

fields are similar to RL, there are often subtle but impactful differences

between the problems studied in these other fields and in RL. Examples

include whether the dynamics of the environment are known to the

agent a priori (they are not in RL) and whether the dynamics of the

environment will be estimated by the agent (many, but not all, RL agents

do not directly estimate the dynamics of the environment). There are also

many less impactful differences, like differences in notation (in control,

the environment is called the plant, the agent the controller, the reward

the (negative) cost, the state the feedback, etc.).

A common misconception is that RL is an alternative to supervised

learning—that one might take a supervised learning problem and con-

vert it into an RL problem in order to apply sophisticated RL methods. For

example, one might treat the state as the input to a classifier, the action

as a label, and the reward as −1 if the label is correct and 1 otherwise.

Although this is technically possible and a valid use of RL, it should not
be done. In a sense, RL should be a last resort—the tool that you use

when supervised learning algorithms cannot solve the problem you are

interested in. If you have labels for your data, do not discard them and

convert the feedback from instructive feedback to evaluative feedback

(telling the agent if it was right or wrong). The RL methods will likely be

far worse than standard supervised learning algorithms. However, if you

have a sequential problem or a problem where only evaluative feedback is

available (or both!), then you cannot apply supervised learning methods

and you should use RL.

https://en.wikipedia.org/wiki/Matchbox_Educable_Noughts_and_Crosses_Engine
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Classical_control_theory
https://en.wikipedia.org/wiki/Adaptive_control


1: There are actually significantly more

possible board configurations, but many

are equivalent. For example, a board with

only an X in the top left corner and a board

with only an X in the top right corner

are effectively equivalent—they are simply

rotations of each other, and rotations make

no difference to the game.

2: This reinforcing of moves that result in

a draw makes sense for this game because

if both players play optimally the outcome

will be a draw.
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14.1 Machine Educable Naughts and Crosses
Engine (MENACE)

We will begin our study of RL algorithms with one of the earliest RL

agents, the Machine Educable Noughts and Crosses Engine (MENACE),

which was built by Donald Michie in 1961 and published in 1963. Without

access to a computer, Michie decided to make a computational system

that learns to play the game noughts and crosses (tic-tac-toe in the United

States) using matchboxes and beads. Readers not familiar with noughts

and crosses (tic-tac-toe) should read about it on Wikipedia [link], as we

will not review the game rules here.

Michie determined that there were 304 possible board configurations

that MENACE could possibly faced with.
1

He therefore obtained 304

matchboxes and associated each with one board state (e.g., you can

imagine the board state being drawn on the matchbox, though that

was not how it was actually implemented). Next, he used beads of nine

different colors to represent each possible move. He filled each matchbox

with beads of the colors corresponding to legal moves from that state.

To obtain a move from MENACE, one can select the matchbox corre-

sponding to the current board state, randomly select a bead from the

box, and take the move that corresponds to the bead. When MENACE is

learning, the selected beads are left out of the box until the end of the

game. At the end, the beads are replaced or discarded depending on the

outcome of the game.

If MENACE won, then the beads are returned to the matchboxes along

with an extra three beads of the same color. This makes it significantly

more likely that these moves, which resulted in a win, will be played

again during future games. If MENACE lost, then the beads are not

returned to the matchboxes. This reduces the probability of MENACE

making these moves in future games. If the game was a draw (sometimes

called a cat’s game), then the beads are returned to the matchboxes along

with one extra bead of the same color. This makes it slightly more likely

that these moves will be played again during future games.
2

Exploration Versus Exploitation

Notice that MENACE does not always select the move that it thinks

is best (this would happen if the most common bead color is always

selected from each matchbox). The behavior of RL agents can roughly

be classified as either exploration or exploitation. Exploration is when

the agent selects an action that it does not think is optimal in order to

learn more about the action’s outcome—perhaps it is better than the

agent thinks, and the only way to determine this is to try the action.

https://en.wikipedia.org/wiki/Tic-tac-toe
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Exploitation is when the agent selects an action that it thinks is optimal

in order to obtain the resulting large (expected) sum of rewards.

To see why both exploration and exploitation are necessary, consider

trying to find the fastest route to work after moving to a new city (without

using a service that reports fastest routes while accounting for traffic).

You expect the commute to take 30 minutes, but on the first day, you

arrive in just 20 minutes. As the route you took was better than what

you expect any route to be, you go the same way every day. What if there

were an alternative route that you didn’t try and which actually takes

10 minutes on average? In order to try this route, you must sometimes

explore other routes, rather than only exploiting the one good one you

found. Moreover, it could be that the first time you try a faster route it

happens to be slower due to random traffic, so you may need to try each

path many times. Hence, an exploitation-only learning strategy can cause

the agent to get stuck taking suboptimal behaviors because it fails to try

out other, potentially better, behaviors.

Similarly, an exploration-only learning strategy wouldn’t be reasonable:

at some point, we should leverage the knowledge we have gained from

all the exploration. If you randomly select routes to work every morning,

you will have a very good idea about what the fastest route is, having

thoroughly explored all of the possibilities. However, if you keep selecting

paths (uniformly) randomly, you won’t be taking advantage of this

knowledge. Hence, exploration and exploitation are a trade-off: agents

must balance how much they explore (trying out actions they think are,

or might be, suboptimal) with how much they exploit (taking the actions

they think are best). Within MENACE, exploration is captured by the

random process of selecting a bead from the matchbox.

14.2 Operant Conditioning

At their core, RL algorithms are a form of operant conditioning, a learning

mechanism wherein animals reinforce (make more likely) behaviors that

result in rewards and avoid behaviors that do not. [Wiki]

Consider MENACE as an example. Essentially, MENACE waits until

the end of the game and observes the outcome of its actions (a win,

loss, or draw). When the outcome is “good,” MENACE increases the

probability that it will play the chosen actions in future games, and if

the outcome is “bad,” MENACE decreases that probability. This simple

concept underlies nearly every RL algorithm, and in this part of the

course, we will formalize and refine this idea to produce effective RL

algorithms.

14.3 Notation

To reason more formally about RL agents and problems, we begin

by establishing symbols for the various terms like states, actions, and

rewards.

1. Time progresses in a sequence of discrete time steps, indexed by

𝑡 ∈ {0, 1, 2, . . . }.

https://en.wikipedia.org/wiki/Operant_conditioning
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3: To make actions depend on the time

step, simply include the time step within

your definition of the state.

4: We call 𝐽 the “objective function” rather

than the “loss function” because the

agent’s goal is the maximize 𝐽, not the min-

imize it. A loss function is an objective

function that is to be minimized, while

an objective function could be one that an

agent aims to minimize or maximize.

2. Let 𝑆𝑡 be the state of the environment at time 𝑡. The set of possible

states can be any set. Here, we will focus on the case where the

state is a vector of numbers (features).

3. Let 𝐴𝑡 be the action chosen by the agent at time 𝑡. For simplicity, we

will assume that there are a small finite number of possible actions.

However, the concepts that we describe generally carry over to the

settings where actions are continuous or hybrid (a combination of

discrete and continuous).

4. Let 𝑅𝑡 be the reward provided to the agent at time 𝑡, as a result

of the agent taking action 𝐴𝑡 in state 𝑆𝑡 and the environment

transitioning to state 𝑆𝑡+1. The reward is a real number, that is,

𝑅𝑡 ∈ ℝ.

We call any way that the agent can select actions based on the state

(observation) a policy, 𝜋. Because we want the agent to be able to explore,

the policy is stochastic (it has some randomness), and so it doesn’t directly

map states to actions. Instead, a policy is a distribution over the set of

possible actions, conditioned on the state. That is, 𝜋(𝑠, 𝑎) = Pr(𝐴𝑡 =

𝑎 |𝑆𝑡 = 𝑠). We assume that the distribution of the actions only depends

on the state, not the time step 𝑡, and so the left and right hand sides are

equal for all values of 𝑡.3

There are many (uncountably infinite) policies, some “good” and some

“bad.” But, what exactly does “good” or “bad” mean? How do we measure

the quality of a policy? Intuitively, the agent should search for a policy

that maximizes the total amount of rewards that it receives. We can try

to encode this within an objective function 𝐽:4

𝐽(𝜋) ̸B
∞∑
𝑡=0

𝑅𝑡 , (14.1)

where we write ̸B to indicate that this is not the actual definition of 𝐽,

but a stepping stone towards the full definition of 𝐽.

While (14.1) captures the general intuition behind maximizing the total

reward that the agent receives, it has a few flaws that we will fix. First, if

the agent uses the same exact policy twice, the resulting rewards can be

different due to stochasticity in the state transitions, rewards, and chosen

actions. Even if you drive the same route to work every day, the amount

of time that it takes will vary slightly. Similarly, even if you use the same

exact formula for determining how much insulin a type 1 diabetic should

inject prior to eating a meal, the resulting blood sugar levels for the day

will vary. To handle this, we consider the expected sum of rewards:

𝐽(𝜋) ̸B E

[
∞∑
𝑡=0

𝑅𝑡

]
. (14.2)

Next, notice that 𝐽(𝜋) as defined in (14.2) could be ±∞, for example, if

𝑅𝑡 = 1 always. While this can be handled in many ways, one common

strategy ensures that 𝐽(𝜋) is always finite: reward discounting. This

strategy is also appealing because it captures another aspect of how

animals make decisions. Specifically, a reward is worth more to an agent

the sooner it occurs. When presented with the opportunity to have one

cookie right now versus two cookies next year, many people will select

one cookie right now. To capture this preference for rewards that occur
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5: It is acceptable for 𝛾 = 1, which results

in no discounting of rewards, if other as-

sumptions are used to ensure that 𝐽(𝜋) is
finite, like assuming that the sequence of

decisions has a bounded length.

in the near future relative to those that occur in the distant future, we

can introduce a hyperparameter 𝛾 ∈ [0, 1]. The utility of a reward to the

agent is then 𝛾𝑡𝑅𝑡 . For example, if 𝛾 = 0.5, then a reward of 1 at 𝑡 = 0

is worth 1 to the agent, while a reward of 1 at time 𝑡 = 1 is worth 0.5 to

the agent and a reward of 1 at time 𝑡 = 2 is worth just 0.25 to the agent.

Typically values of 𝛾 are around 0.9, 0.95, 0.99, or 1.0.
5

This results in the updated objective function definition:

𝐽(𝜋) = E

[
∞∑
𝑡=0

𝛾𝑡𝑅𝑡

]
. (14.3)

While this definition is the correct and full definition of the objective

function, 𝐽, often it is written differently to emphasize how the right side

is a function of 𝜋. That is, notice that 𝜋 is the argument to 𝐽 on the left

side of (14.3), but doesn’t appear on the right side. This is because the

distributions of the rewards 𝑅𝑡 (for all 𝑡) depend on the actions chosen

by the agent, and the distribution over actions is defined by the policy.

So, 𝜋 influences the distribution of 𝑅𝑡 . To make this explicit, authors

sometimes write:

𝐽(𝜋) = E

[
∞∑
𝑡=0

𝛾𝑡𝑅𝑡

�����𝜋
]
, (14.4)

where conditioning on 𝜋 indicates that 𝐴𝑡 ∼ 𝜋(𝑆𝑡 , ·), i.e., the action 𝐴𝑡 is

sampled according to the policy 𝜋 given the current state 𝑆𝑡 .

While (14.4) is the most common definition of 𝐽, I support a change of

notation within the field. The problem with (14.4) is that it looks like a

conditional expectation, but it is not a conditional expectation. That is, 𝜋 is

not an event that is being conditioned on. The curious reader may work

out how this is a problem, for example, by writing out the definition

of the conditional expectation and then applying Bayes’ theorem to the

conditional probability. This will result in an expression that is absolute

nonsense, showing that (14.4) is an abuse of notation (it uses the notation

of conditional expectations when it is not really one). To fix this, we will

use a semicolon rather than the “given” symbol:

𝐽(𝜋) = E

[
∞∑
𝑡=0

𝛾𝑡𝑅𝑡 ;𝜋

]
, (14.5)

where ;𝜋 is a reminder that 𝜋 influences the distribution of one or more

random variables in the expected value (𝑅𝑡 in this case).

We can now express the agent’s goal in math: find an optimal policy 𝜋∗,
which is any policy that satisfies:

𝜋∗ ∈ arg max

𝜋
𝐽(𝜋). (14.6)

Notice that there may be multiple optimal policies. For example, if 𝑅𝑡 is

always equal to a constant regardless of the actions chosen by the agent,

then all policies are optimal. Also, while (14.6) characterizes the goal, in

practice we often cannot hope to find a policy that is actually optimal,

and instead aim to find policies that are better than some currently used

policy (as measured by 𝐽). For example, we likely will never know the

truly optimal insulin doses to give a person with type 1 diabetes before
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eating a particular meal. However, we can search for insulin doses that

will be more effective than the current insulin-dosing policy.
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15.1 Episodes

Often RL problems can be broken into multiple independent trials. For

example, each game that MENACE plays can be viewed as one trial.

While we assume that these trials share the same environment dynamics

(the same rules and opponent strategy), the actions selected by the agent

during one trial do not influence the state transitions or rewards during

a future trial. Similarly, when modeling bolus insulin dosing as an RL

problem, researchers often assume that each day is an independent trial

with three actions (the injections prior to breakfast, lunch, and dinner).

In RL, these trials are called episodes. Each episode begins at time 𝑡 = 0.

Episodes are not necessarily the same length, and individual episodes

may even be infinitely long (for example, if episodes end when the agent

causes the environment to enter a state called a goal state, but the agent’s

learning mechanism fails, resulting in the agent never selecting actions

that would cause the environment to enter the goal state).

15.2 Trials

While we referred to episodes as “trials” in the previous section, a trial in

RL actually refers to something different: an entire agent lifetime. Imagine

creating a plot where the horizontal axis is the number of episodes that

have passed (e.g., the number of games of tic-tac-toe), and the vertical

axis is the discounted sum of rewards that the agent received during

each episode. If the agent is effective at learning, then as it plays more

games it will win more games, resulting in larger rewards. So, we might

hope that this plot will have an upwards trend as the number of episodes

increases.

However, due to the random nature of 𝑆𝑡 , 𝐴𝑡 , and even sometimes 𝑅𝑡 , the

points may not form a smooth trend—they may be noisy samples around

some true trend. To get a better picture of how effective the learning

algorithm used by the agent is, we might run this entire experiment

multiple times and average the results. This can even be done in parallel:

create 𝐾 different agents and environments that are identical except

for the random seed used. Next, run each agent for a lifetime, which

corresponds to some fixed number of episodes. In RL, 𝐾 is referred to as

the number of trials or runs.

Having run 𝐾 trials, we can update the plot that we described previously.

At position 𝑥 on the horizontal axis (which corresponds to the 𝑥th
episode),

plot the average discounted sum of rewards that the 𝐾 agents received

during their 𝑥th
episodes. This gives a clear impression of how the agent

learns on average. As an example, see Figure 5b here. Notice that the

https://people.cs.umass.edu/~pthomas/papers/Konidaris2011a.pdf
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vertical axis is labeled return: the “return” is a brief way to refer to the

discounted sum of rewards.

15.3 Reward Design

You might be wondering: who defines 𝑅𝑡? The answer to this differs

depending on how you are trying to use RL. If you are using RL to

solve a specific real-world problem, then it is up to you to define 𝑅𝑡 to

cause the agent to produce the behavior you want. It is well known that

we as humans are bad at defining rewards that cause optimal behavior

to be what we want. Often, you may find that you define rewards to

produce the behavior you want, train an agent, think the agent is failing,

and then realize that the agent has in a way outsmarted you by finding

an unanticipated way to maximize the expected discounted return via

behavior that you do not want.

Consider an example, where you want to give an RL agent (represented

by the dog) rewards to get it to walk along the sidewalk to a door (which

ends the episode) while avoiding a flowerbed: How would you assign

Figure 15.1: A simple “gridworld” environ-

ment. The dog is the agent, starting in the

bottom left cell. It has four actions: move

up, down, left, or right. When it reaches

the door in the top right, the episode ends.

rewards to states in order to get the dog to go to the door? Humans

frequently assign rewards in a way that causes undesirable behavior for

this example. One mistake is to give positive rewards for walking on the

sidewalk—in that case the agent will learn to walk back and forth on

the sidewalk gathering more and more rewards, rather than going to the

door where the episode ends. In this case, optimal behavior is produced

by putting negative rewards on the flowerbed, a positive reward at the

door, and zero reward along the sidewalk (other solutions exist, like

putting negative rewards everywhere with larger negative rewards on

the flowers).

This provides a general rule of thumb when designing rewards: give

rewards for what you want the agent to achieve, not for how you think the

agent should achieve it. Rewards that are given to help the agent quickly

identify what behavior is optimal are related to something called shaping
rewards [23]. When done properly, shaping rewards can be designed

such that they will not change the optimal policy. However, when we

simply make up shaping rewards (like putting a positive constant on the

sidewalk states in the above example), they often will change optimal

behavior in an undesirable way.
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Back to the earlier question: who defines𝑅𝑡? So far we have discussed how

you can choose 𝑅𝑡 when applying RL to a problem. Some researchers

study other ways that rewards can be defined. For example, inverse
reinforcement learning (IRL) involves observing the behavior of an optimal

agent and trying to infer what definition of rewards the agent’s behavior

optimizes. This is useful because it enables people to give examples of the

behavior they want an agent to learn (e.g., how should a doctor trade-off

side-effects with improved outcomes when deciding which drugs to

prescribe?), and IRL methods can then infer the corresponding definition

of rewards. For example, a person could give an example to a robot of

placing dishes in a dishwasher. Ideally it would infer the goal (place

dishes in dishwasher without breaking them) and would then be able to

use RL to find a policy that allows it to successfully load the dishwasher.

IRL is related to the area of value alignment, which focuses on ensuring

that the goals of agents (RL and otherwise) are aligned with our goals.

15.4 How to Represent 𝜋?

Notice that (14.6) calls for optimizing the agent’s policy. To implement

this, we need a way to represent a policy on a computer. The most

common way to do this is to use a parameterized policy 𝜋𝜃, which is

parameterized just like 𝑓𝑤 was a parameterized model in the supervised

learning chapters. That is, 𝜃 is a vector of parameters of the policy, and

changing 𝜃 changes the policy (how actions are selected).

Recall that the models used in the supervised learning section were

typically deterministic: always mapping inputs to the same labels. How-

ever, the models used for classification were stochastic, producing a

distribution over possible labels. Parameterized policies are generally

constructed identically to parametric models for classification: there is

one output per possible action, and softmax is used to convert these

outputs into probabilities of each action. Specifically, if 𝑜𝑖 is the 𝑖th output

of the network, then

𝜋(𝑠, 𝑎) = Pr(𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠) = 𝑒𝑜𝑎∑
𝑎′ 𝑒𝑜𝑎

′ . (15.1)

While 𝜋 could be represented with an ANN, for many RL problems

it is easier, faster, and just as effective to use linear policies with basis

functions. That is, let 𝜙(𝑠) be a vector of features computed from 𝑠 (just

like 𝜙(𝑥𝑖) in Section 7.3). For example, 𝜙 could be the Fourier basis [15] [15]: Konidaris et al. (2011), ‘Value function

approximation in reinforcement learning

using the Fourier basis’

.

Next, notice that there should be one output for each possible action.

Let 𝜃𝑖 be the vector of policy parameters used for the 𝑖th output. That is,

𝜃𝑖 = (𝜃𝑖
1
, 𝜃𝑖

2
, . . . ), where each 𝜃𝑖

𝑗
is a real number—the weight on the 𝑗th

input when computing the 𝑖th output.

Combining this with softmax action selection as in (15.1), we obtain the

following equation for computing action probabilities:

𝜋(𝑠, 𝑎) = 𝑒
∑
𝑗 𝜃

𝑎
𝑗
𝜙 𝑗 (𝑠)∑

𝑎′ 𝑒
∑
𝑗 𝜃

𝑎′
𝑗
𝜙 𝑗 (𝑠)

, (15.2)

where 𝜙 𝑗(𝑠) denotes the 𝑗th feature output by 𝜙.
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15.5 From Supervised Learning to RL

Even though many of the concepts we described in supervised learning

carry over to the RL setting, they are often referenced using different

terminology or notation. In this section, we provide a list of notation and

terminology changes.

1. model→policy: In supervised learning an agent tries to train a

model, which maps inputs to the agent to outputs of the agent. In

RL, an agent tries to train a policy. While models for regression are

often deterministic, models for classification and RL are typically

stochastic.

2. model parameters→policy parameters: Whereas𝑤were the model

parameters in supervised learning, we refer to 𝜃 as the policy
parameters in RL. However, the two are similar: they are the

parameters or weights that are learned by the agent.

3. 𝑓𝑤 → 𝜋𝜃: In supervised learning, we wrote 𝑓𝑤 to denote the

parametric model with parameters 𝑤, while in RL we write 𝜋𝜃 to

denote the parameterized policy with parameters 𝜃.

4. 𝑙 → −𝐽: The goal in supervised learning is to minimize the loss

function, 𝑙, while in RL the agent’s goal is to maximize the objective

function 𝐽, which is equivalent to minimizing −𝐽.
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16.1 A Simple RL Algorithm

We will now present a simple RL algorithm, beginning with high-

level intuitive pseudocode and then refining this pseudocode into a

precise algorithm. First, Algorithm 16.1 describes the general flow of the

algorithm, which mimics MENACE.

Algorithm 16.1: A simple RL algorithm inspired by MENACE.

1 for each episode do
2 // Run one episode (play one game).
3 for each time 𝑡 in the episode do
4 Agent observes state 𝑆𝑡 ;
5 Agent selects action 𝐴𝑡 according to the current policy, 𝜋𝜃;

6 Environment responds by transitioning from state 𝑆𝑡 to state

𝑆𝑡+1 and emitting reward 𝑅𝑡 ;

7 end
8 // Learn from the outcome of the episode.
9 if

∑∞
𝑡=0

𝛾𝑡𝑅𝑡 is big then
10 for each time 𝑡 in the episode do
11 Make action 𝐴𝑡 more likely in state 𝑆𝑡 ;
12 end
13 end
14 if

∑∞
𝑡=0

𝛾𝑡𝑅𝑡 is small then
15 for each time 𝑡 in the episode do
16 Make action 𝐴𝑡 less likely in state 𝑆𝑡 ;
17 end
18 end
19 end

The outer for-loop iterates over episodes (for example, games of tic-

tac-toe). Each episode is then handled in two phases. During the first

phase, the episode is run using the current policy, 𝜋𝜃 . During the second

phase, the agent changes its policy based on the outcome of the game. If

the agent did well (in terms of the total discounted reward,

∑∞
𝑡=0

𝛾𝑡𝑅𝑡),
then the actions that it chose are reinforced—they are made more likely

(this corresponds to putting multiple beads back into each MENACE

matchbox, matching the color of the beads to the bead color that was

chosen during the game). If the agent did poorly, then the actions that it

chose are made less likely (in MENACE, this corresponds to not replacing

the chosen beads).

To refine this algorithmic outline into a specific algorithm, we first

consider how to implement the lines “Make action 𝐴𝑡 more likely in state

𝑆𝑡” and “Make action 𝐴𝑡 less likely in state 𝑆𝑡 .”
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1: We often store policy parameters in dif-

ferent structures, like matrices or arrays of

arrays. For example, recall that during the

discussion of linear softmax policies we

kept a different policy parameter vector,

𝜃𝑎 , for each action 𝑎. However, even when

using these other policy representations,

the math is easiest if we view 𝜃 as one

long vector. So, hereafter, we assume that

𝜃 = (𝜃1 , 𝜃2 , . . . ), where each 𝜃𝑖 is a real

number. Notice that we can easily convert

between these different perspectives by

keeping the same policy parameters, but

changing how they are stored.

2: I’ve seen anywhere from 𝛼 = 0.000001

to 1.0. A general trend when using linear

function approximation is that one over

the total number of features tends to be

a good starting point when selecting step

sizes.

Make Action 𝐴𝑡 More Likely in State 𝑆𝑡

If 𝑓 is a function that takes two inputs and produces a real number, then

recall that

𝜕

𝜕𝑦
𝑓 (𝑥, 𝑦) (16.1)

is an indication of how 𝑦 should be changed to increase 𝑓 (𝑥, 𝑦). That

is, if this partial derivative is positive, then increasing 𝑦 will increase

𝑓 (𝑥, 𝑦). Similarly, if this partial derivative is negative, then increasing

𝑦 will decrease 𝑓 (𝑥, 𝑦). If 𝑓 is a smooth function, then locally (around

the current value of 𝑦), the partial derivative being negative means that

while increasing 𝑦 will decrease 𝑓 (𝑥, 𝑦), then decreasing 𝑦 will necessarily

increase 𝑓 (𝑥, 𝑦).

Recall that 𝜋𝜃(𝑠, 𝑎) = Pr(𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠;𝜃). Furthermore, the 𝜃 subscript

is just another way of indicating that the output of 𝜋 depends on 𝜃, and

so we could write 𝜋𝜃(𝑠, 𝑎) as 𝜋(𝑠, 𝑎, 𝜃).

With these two properties, it is clear how to change 𝜃 to make action 𝐴𝑡
more likely in state 𝑆𝑡 : We change each policy parameter in the direction

of the partial derivative of 𝜋𝜃(𝑠, 𝑎) with respect to the policy parameter.

That is, if 𝜃 = (𝜃1 , 𝜃2 , . . . ),1 then we can make the following update to

each policy parameter 𝜃𝑖 :

𝜃𝑖 ← 𝜃𝑖 +
𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡)

𝜕𝜃𝑖
. (16.2)

The update in (16.2) might work, but it has a problem: It could make very

large changes to the policy parameters. This is undesirable for at least two

reasons. First, we may not want to make massive changes to the agent’s

behavior based on the outcome of a single episode, especially for appli-

cations where the outcomes of episodes include significant stochasticity

(randomness). Second, the partial derivative is an inherently local quantity.

For nonlinear policy representations like ANNs, if 𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡)/𝜕𝜃𝑖 is

positive, it means that locally, close to the current value of 𝜃𝑖 , increasing

𝜃𝑖 will increase 𝜋𝜃(𝑆𝑡 , 𝐴𝑡). However, as 𝜃𝑖 continues to increase, this may

change, and continued increases to 𝜃𝑖 could actually decrease 𝜋𝜃(𝑆𝑡 , 𝐴𝑡).
That is, steps that are too large could actually decrease the probability of

action 𝐴𝑡 in state 𝑆𝑡 .

To remedy these two problems, we insert a step size 𝛼, which is typically

a small constant.
2

The resulting update is:

𝜃𝑖 ← 𝜃𝑖 + 𝛼
𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡)

𝜕𝜃𝑖
. (16.3)

This step size, 𝛼, is yet another hyperparameter, scaling how much the

agent updates its behavior from the outcome of a single episode. For

some problems, 𝛼 should be small—if you bite your tongue once while

chewing, you shouldn’t stop chewing your food for a week. For other

problems, 𝛼 should be large—if you eat food that makes you sick, you

are likely to be repulsed by it for weeks! Furthermore, if 𝛼 is too large, the

agent can run into issues with the local nature of the partial derivative,

resulting in the algorithm’s divergence.
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Make Action 𝐴𝑡 Less Likely in State 𝑆𝑡

Recall that 𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡)/𝜕𝜃𝑖 indicates how to change 𝜃𝑖 to increase the

value of 𝜋𝜃(𝑆𝑡 , 𝐴𝑡). Also, recall that when we zoom in far enough on

a smooth function, it will appear flat (planar). For a planar function, if

one direction points uphill, then the other direction necessarily points

downhill. So, to obtain a direction of change to 𝜃𝑖 that will decrease
𝜋𝜃(𝑆𝑡 , 𝐴𝑡), we need only reverse the direction of change used to increase

𝜋𝜃(𝑆𝑡 , 𝐴𝑡). That is, we multiply the partial derivative by −1, resulting in

the update:

𝜃𝑖 ← 𝜃𝑖 − 𝛼
𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡)

𝜕𝜃𝑖
. (16.4)

A Simple RL Algorithm v2.0

Replacing “Make action 𝐴𝑡 more likely in state 𝑆𝑡” and “Make action 𝐴𝑡
less likely in state 𝑆𝑡” with the updates that we have derived, we obtain

Algorithm 16.2.

Algorithm 16.2: A simple RL algorithm inspired by MENACE, Version

2.0

1 for each episode do
2 // Run one episode (play one game).
3 for each time 𝑡 in the episode do
4 Agent observes state 𝑆𝑡 ;
5 Agent selects action 𝐴𝑡 according to the current policy, 𝜋𝜃;

6 Environment responds by transitioning from state 𝑆𝑡 to state

𝑆𝑡+1 and emitting reward 𝑅𝑡 ;

7 end
8 // Learn from the outcome of the episode.
9 if

∑∞
𝑡=0

𝛾𝑡𝑅𝑡 is big then
10 for each time 𝑡 in the episode do
11 ∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼 𝜕𝜋𝜃(𝑆𝑡 ,𝐴𝑡 )

𝜕𝜃𝑖
;

12 end
13 end
14 if

∑∞
𝑡=0

𝛾𝑡𝑅𝑡 is small then
15 for each time 𝑡 in the episode do
16 ∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 − 𝛼 𝜕𝜋𝜃(𝑆𝑡 ,𝐴𝑡 )

𝜕𝜃𝑖
;

17 end
18 end
19 end

Is The Discounted Sum of Rewards Big or Small?

Next, we focus on the if-statements testing whether

∑∞
𝑡=0

𝛾𝑟𝑅𝑡 is big or

small (whether the outcome was good or bad, respectively). Consider

how we might model a board game like tic-tac-toe as an environment

that emits rewards. One option would be to give a reward of +3 when the

agent wins and a reward of −1 when the agent loses. However, another

option would be to give the agent a reward of −1 when it wins and −100

when it loses. So, if the agent receives a reward of −1 is that good or bad?

The agent doesn’t know!
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To fix this, we entirely avoid checking whether the outcome was good or

bad—whether

∑∞
𝑡=0

𝛾𝑡𝑅𝑡 was big or small. Instead, we weight the update

by the discounted sum of rewards,

∑∞
𝑡=0

𝛾𝑡𝑅𝑡 :

∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼
(
∞∑
𝑡′=0

𝛾𝑡
′
𝑅𝑡′

)
𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡)

𝜕𝜃𝑖
. (16.5)

To understand this update, first consider the case where a “good” outcome

means that

∑∞
𝑡=0

𝛾𝑡𝑅𝑡 = 4 and a “bad” outcome means that

∑∞
𝑡=0

𝛾𝑟𝑅𝑡 =
−1. This resembles MENACE, which returns four beads total if MENACE

wins, and removes one bead if MENACE loses. In this case, (16.5) places

a positive weight on the partial derivative when the actions should be

made more likely and a negative weight when the actions should be

made less likely—exactly the behavior we want.

Now, consider a more subtle case. What if a “good” outcome corresponds

to

∑∞
𝑡=0

𝛾𝑟𝑅𝑡 = 10 and a “bad” outcome corresponds to

∑∞
𝑡=0

𝛾𝑟𝑅𝑡 = 9?

In this case, it seems like (16.5) does the wrong thing—increasing the

probability of actions in both cases. However, consider what happens

on average. Imagine that there were only one possible state and two

possible actions, 𝑎1 and 𝑎2, where 𝑎1 produces the “good” outcome and

𝑎2 produces the “bad” outcome (quite a boring game with only one state

and two actions!). When the agent takes action 𝑎2 (resulting in a loss),

(16.5) does increase the probability of action 𝑎2. However, when the agent

takes action 𝑎1 (resulting in a win), (16.5) increases the probability of

action 𝑎1 even more, since it is given a larger weight (10 as opposed to

9). Since probability distributions always sum to one, we know that the

probabilities of actions 𝑎1 and 𝑎2 must sum to one. If we constantly try to

increase both probabilities, but try to increase the probability of action 𝑎1

more than that of 𝑎2, then on average 𝑎1 will win out—it will become more

likely and 𝑎2 will necessarily become less likely (since the probability

of 𝑎1 plus the probability of 𝑎2 must always be one). This general trend

carries over to settings with any number of states and actions: Actions

that result in larger expected discounted sums of rewards will tend to be

made more likely than actions that result in smaller sums of rewards.

Plugging this update in for both of the cases where the discounted sum

of rewards is big or small, we obtain Algorithm 16.3.
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Algorithm 16.3: A simple RL algorithm inspired by MENACE, Version

3.0

1 for each episode do
2 // Run one episode (play one game).
3 for each time 𝑡 in the episode do
4 Agent observes state 𝑆𝑡 ;
5 Agent selects action 𝐴𝑡 according to the current policy, 𝜋𝜃;

6 Environment responds by transitioning from state 𝑆𝑡 to state

𝑆𝑡+1 and emitting reward 𝑅𝑡 ;

7 end
8 // Learn from the outcome of the episode.
9 for each time 𝑡 in the episode do

10 ∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼
(∑∞

𝑡′=0
𝛾𝑡
′
𝑅𝑡′

) 𝜕𝜋𝜃(𝑆𝑡 ,𝐴𝑡 )
𝜕𝜃𝑖

;

11 end
12 end



1: Though it is beyond the scope of

this course, for completeness we point

out that to modify our implementation

of REINFORCE to truly be stochastic

gradient ascent, when updating the

policy the loop over time steps should be

converted into a summation within the

update, resulting in the update: 𝜃𝑖 ← 𝜃𝑖 +
𝛼
∑∞
𝑡=0

𝛾𝑡 (∑∞
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 ) 𝜕 ln(𝜋𝜃 (𝑆𝑡 ,𝐴𝑡 ))
𝜕𝜃𝑖

.

The small difference this makes is that

when computing 𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡 )/𝜕𝜃𝑖 at time

𝑡 > 0, the actual gradient ascent update

uses the policy parameters 𝜃 that were

used when running the episode, whereas

our REINFORCE implementation uses

the parameters 𝜃 that have already been

updated using the data up to time 𝑡 from

the current episode.
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17.1 Improving the MENACE-Like Algorithm

We can further improve the update in Algorithm 16.3. Consider what

happens after the episode has been completed and the agent is in the

process of updating its policy parameters—at time 𝑡 = 5 in the for-loop

on Line 9 of Algorithm 16.3. The update to 𝜃𝑖 is given by:

∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼
(
∞∑
𝑡′=0

𝛾𝑡
′
𝑅𝑡′

)
𝜕𝜋𝜃(𝑆5 , 𝐴5)

𝜕𝜃𝑖
. (17.1)

Notice that (17.1) is simply (16.5) but with 𝑡 replaced with 5. Recall

that 𝜕𝜋𝜃(𝑆5 , 𝐴5)/𝜕𝜃𝑖 is the direction of change to 𝜃𝑖 that increases the

probability of action 𝐴5 in state 𝑆5. Finally, notice that the weight given

to this direction,

∑∞
𝑡′=0

𝛾𝑡
′
𝑅𝑡′ , considers all of the rewards, including

𝑅1 , 𝑅2 , . . . , 𝑅4.

This inclusion of all rewards in the weight is a bit odd. If we assume that

decisions made in the future cannot have a causal impact on rewards in

the past (a natural assumption), then why do these rewards have any

impact on how we update the decision made at time 𝑡 = 5? We can fix

this by only considering the rewards that happen after action 𝐴𝑡 is chosen

by the agent. These are rewards 𝑅𝑡 , 𝑅𝑡+1 , 𝑅𝑡+2 , . . . .

There are two ways that we could do this. We could replace

∑∞
𝑡′=0

𝛾𝑡
′
𝑅𝑡′

with

∞∑
𝑡′=𝑡

𝛾𝑡
′
𝑅𝑡′ = 𝛾𝑡

∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 (17.2)

or

∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 . (17.3)

Both of these only consider the rewards starting with 𝑅𝑡 . The difference

is how the rewards are discounted. Notice that (17.2) discounts 𝑅𝑡 by 𝛾𝑡

while (17.2) discounts 𝑅𝑡 by 𝛾0
.

Taking the agent’s perspective at time 𝑡, its goal is to maximize the

expected discounted sum of rewards that it obtains in the future, in

which case the reward 𝑅𝑡 should not be discounted, as it is the “next”

reward from the agent’s perspective when selecting action 𝐴𝑡 in state

𝑆𝑡 . Given this point of view, we use (17.3) rather than (17.2). This results

in a further refinement of our MENACE-like algorithm, presented in

Algorithm 17.1.

If we were to use (17.2), which results in an extra 𝛾𝑡 before the sum over

𝑘, and if we were to replace
𝜕𝜋𝜃(𝑆𝑡 ,𝐴𝑡 )

𝜕𝜃𝑖
with

𝜕 ln(𝜋𝜃(𝑆𝑡 ,𝐴𝑡 ))
𝜕𝜃𝑖

, this would result

in Algorithm 17.2, which is a common implementation of REINFORCE

[24], which is very close to being stochastic gradient ascent on 𝐽(𝜃).1
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Algorithm 17.1: A simple RL algorithm inspired by MENACE, Version

4.0

1 for each episode do
2 // Run one episode (play one game).
3 for each time 𝑡 in the episode do
4 Agent observes state 𝑆𝑡 ;
5 Agent selects action 𝐴𝑡 according to the current policy, 𝜋𝜃;

6 Environment responds by transitioning from state 𝑆𝑡 to state

𝑆𝑡+1 and emitting reward 𝑅𝑡 ;

7 end
8 // Learn from the outcome of the episode.
9 for each time 𝑡 in the episode do

10 ∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼
(∑∞

𝑘=0
𝛾𝑘𝑅𝑡+𝑘

) 𝜕𝜋𝜃(𝑆𝑡 ,𝐴𝑡 )
𝜕𝜃𝑖

;

11 end
12 end

Algorithm 17.2: REINFORCE

1 for each episode do
2 // Run one episode (play one game).
3 for each time 𝑡 in the episode do
4 Agent observes state 𝑆𝑡 ;
5 Agent selects action 𝐴𝑡 according to the current policy, 𝜋𝜃;

6 Environment responds by transitioning from state 𝑆𝑡 to state

𝑆𝑡+1 and emitting reward 𝑅𝑡 ;

7 end
8 // Learn from the outcome of the episode.
9 for each time 𝑡 in the episode do

10 ∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛾𝑡
(∑∞

𝑘=0
𝛾𝑘𝑅𝑡+𝑘

) 𝜕 ln(𝜋𝜃(𝑆𝑡 ,𝐴𝑡 ))
𝜕𝜃𝑖

;

11 end
12 end

17.2 Value Functions and Updating during
Episodes

So far our MENACE-like algorithm has two phases. During the first

phase, the agent interacts with the environment for one full episode

using its current policy. During the second phase, the agent learns from

its experiences during the episode, changing its policy.

It would be better if the agent could also learn during each episode, not

just between episodes. To achieve this, we will refine our algorithm to

be a little different from MENACE. MENACE was built on the idea that

actions should be made more likely when they result in a good outcome

(a win at the end of the game/episode). However, we do not need to wait

for an outcome (or even a reward) before we can start learning.

As an example, imagine that you play the lottery and learn that you have

won. In the future, you will obtain the prize money, which may result in

actual rewards (in the form of increased comfort and pleasure). However,

you will likely be happy and celebrate, perhaps learning that you should

play the lottery more, all before you actually collect any prize money or

see the actual impact that it has on your life. This learning isn’t due to any
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2: For problems wherein the current time

does matter, one can embed the current

time within the agent’s observations; that

is, 𝑡 can be included within 𝑆𝑡 .

3: Notice that 𝑣𝜋(𝑠) is the value of any

state 𝑠 when using policy 𝜋. Since 𝑆𝑡 is the

state at time 𝑡, 𝑣𝜋(𝑆𝑡 ) denotes the value of

the particular state that happens to occur

at time 𝑡.

rewards—you have received no actual rewards yet. Instead, this learning

is due to your expectations of future rewards.

When you realize that you have won the lottery, you recognize that the

expected outcome was better than you were previously expecting, and

this is sufficient for you to learn. That is, instead of making actions more

likely when they result in an observed desirable outcome, the agent can

make actions more likely when it makes observations that cause it to

believe it will obtain more reward than previously expected. In order

to do so, the agent must have some notion of how much reward it is

expecting to get at any given moment. This is captured by a function

called a value function, 𝑣𝜋.

The value function 𝑣𝜋 takes as input any state 𝑠, and produces as output

the expected discounted sum of rewards that the agent would receive if

it were in state 𝑠. That is,

𝑣𝜋(𝑠) = E

[
∞∑
𝑘=0

𝛾𝑡𝑅𝑡+𝑘

�����𝑆𝑡 = 𝑠;𝜋

]
. (17.4)

Notice that the right hand side of (17.4) depends on 𝑡, which is not

specified on the left side. This is because, given a common assumption

called the Markov assumption, which we are not discussing in this

course, one can prove that the value of the right hand side is the same for

any value of 𝑡. Intuitively, given the state of the environment (𝑆𝑡) and how

the agent will select actions (𝜋), the expected discounted sum of rewards

that the agent will obtain in the future is completely specified—it does

not further depend on when the environment is in state 𝑆𝑡 .
2

17.3 Temporal Difference Error

Later, we will discuss how the agent can learn (estimate) 𝑣𝜋 based on

its experiences. First, let’s explore how the agent could use 𝑣𝜋 (or an

estimate of 𝑣𝜋). So, for now we will assume that the agent has access to

𝑣𝜋 for its current policy 𝜋.

If the agent knows 𝑣𝜋, how could it update after one time step—after

observing the transition from 𝑆𝑡 to 𝑆𝑡+1 due to action 𝐴𝑡 and with the

resulting reward 𝑅𝑡? The core idea is that the agent should make the

action 𝐴𝑡 more likely if it causes the agent to expect that it will obtain

more reward starting from 𝑆𝑡 than it had predicted.

When in state 𝑆𝑡 , the agent expects to receive a discounted sum of rewards

equal to 𝑣𝜋(𝑆𝑡).3 It then observes an immediate reward of 𝑅𝑡 , followed

by state 𝑆𝑡+1. From state 𝑆𝑡+1, it expects to obtain a discounted sum of

rewards equal to 𝑣𝜋(𝑆𝑡+1).

So, before observing 𝑅𝑡 and 𝑆𝑡+1, the agent expects to receive a total

discounted sum of rewards, starting from time 𝑡, equal to 𝑣𝜋(𝑆𝑡). After
observing 𝑅𝑡 and 𝑆𝑡+1, the agent expects to receive a total discounted

sum of rewards, starting from time 𝑡, of 𝑅𝑡 + 𝛾𝑣𝜋(𝑆𝑡+1), since it obtained

a reward of 𝑅𝑡 at time 𝑡 and 𝑣𝜋(𝑆𝑡) captures how much reward it expects

to get thereafter. Taking the difference between the agent’s expectations

before and after observing𝑅𝑡 and 𝑆𝑡+1 gives a measure of much the events
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that transpired during the current time step differ from its expectations.

We call this difference the temporal difference error or TD error, 𝛿𝑡 :

𝛿𝑡 = 𝑅𝑡 + 𝛾𝑣𝜋(𝑆𝑡+1)︸            ︷︷            ︸
(a)

− 𝑣𝜋(𝑆𝑡)︸︷︷︸
(b)

, (17.5)

where term (a) is the agent’s expectations after the current events (the tran-

sition to 𝑆𝑡+1 and receipt of reward 𝑅𝑡) and (b) is the agent’s expectations

before the current events.

So, if 𝛿𝑡 is positive, it means that the outcome (of one time step) was

better than the agent expected. Similarly if 𝛿𝑡 is negative, it means that

the outcome (of one time step) was worse than the agent expected. In

both cases, the “outcome” incorporates the agent’s expectations about

how much reward it will receive in the future.

So, a positive TD error 𝛿𝑡 indicates that the events of the current time

step (the transition to 𝑆𝑡+1 and receipt of reward 𝑅𝑡) resulted in the agent

now expecting to receive more reward than it did previously. Hence, 𝐴𝑡
turned out better than the agent expected, and so perhaps 𝐴𝑡 should be

made more likely. Similarly, if the TD error 𝛿𝑡 is negative, it indicates that

the events of the current time step resulted in the agent now expecting to

receive less reward than it did previously. Hence, 𝐴𝑡 turned out worse
than the agent expected, and so perhaps 𝐴𝑡 should be made less likely.

This intuition can be included in our update by replacing the discounted

sum of rewards,

∑∞
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 , which indicated how good the outcome

was at the end of the episode, with 𝛿𝑡 , which indicates how “good” the

outcome of one time step was relative to the agent’s expectations. That is,

we replace

∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼
(
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘

)
𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡)

𝜕𝜃𝑖
, (17.6)

with

∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛿𝑡
𝜕𝜋𝜃(𝑆𝑡 , 𝐴𝑡)

𝜕𝜃𝑖
, (17.7)

where

𝛿𝑡 = 𝑅𝑡 + 𝛾𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑆𝑡). (17.8)

Notice that the earlier expression, (17.6), made the change to make action

𝐴𝑡 more or less likely in state 𝑆𝑡 dependent on 𝑅𝑡 , 𝑅𝑡+1 , 𝑅𝑡+2 , . . . , and

therefore could only be performed at the end of the episode when these

rewards had all been observed by the agent. However, the new expression,

(17.7), only depends on 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , and 𝑆𝑡+1, and so it can be performed as

soon as 𝑆𝑡+1 is observed. Hence learning can be interleaved with action

selection, instead of requiring the agent to act for an entire episode before

switching to a learning phase. Algorithm 17.3 incorporates this change.
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Algorithm 17.3: A simple RL algorithm inspired by MENACE, Version

5.0

1 for each episode do
2 // Run one episode (play one game).
3 for each time 𝑡 in the episode do
4 // Execute one time step of agent-environment

interaction
5 Agent observes state 𝑆𝑡 ;
6 Agent selects action 𝐴𝑡 according to the current policy, 𝜋𝜃;

7 Environment responds by transitioning from state 𝑆𝑡 to state

𝑆𝑡+1 and emitting reward 𝑅𝑡 ;
8 // Learn from the outcome of this one time step
9 𝛿𝑡 ← 𝑅𝑡 + 𝛾𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑆𝑡);

10 ∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛿𝑡 𝜕𝜋𝜃(𝑆𝑡 ,𝐴𝑡 )
𝜕𝜃𝑖

;

11 end
12 end
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Notice that Algorithm 17.3 uses the value function, 𝑣𝜋, which is not

known to the agent. To fix this limitation, the agent must also estimate

the value function, 𝑣𝜋. Notice that this problem is a supervised learning

problem. For every time 𝑡, we can view 𝑆𝑡 as the input and the observed

discounted sum of rewards,

∑∞
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 , as the label (output) for a

regression problem.

When describing regression algorithms previously, we wrote 𝑓𝑤(𝑥) to

denote a parametric model with weights 𝑤 applied to input 𝑥. When

estimating the value function, we write 𝑣𝑤 for the parametric model,

rather than 𝑓𝑤 , and the input is a state, 𝑠. Hence, 𝑣𝑤(𝑠) is the agent’s

estimate of 𝑣𝜋(𝑠)—the value of state 𝑠 using weights 𝑤.

From each episode, we can construct many input-output pairs. The first

input is 𝑆0, and the first output is

∑∞
𝑘=0

𝛾𝑘𝑅
0+𝑘 . The second input is 𝑆1,

and the second output is

∑∞
𝑘=0

𝛾𝑘𝑅
1+𝑘 . In general, the 𝑡th input is 𝑆𝑡 and

the 𝑡th output is

∑∞
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 .

We simply apply a variant of least squares regression to this data set—

specifically (10.13) but with the scaling factor of two removed (this scaling

factor can be viewed as a change to the step size, 𝛼). The resulting update,

assuming that𝑤 = (𝑤1 , 𝑤2 , . . . ) is a vector of real-valued weights,𝑤 𝑗 ∈ ℝ:

∀𝑡 ,∀𝑗 , 𝑤 𝑗 ← 𝑤 𝑗 + 𝛼
(
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 − 𝑣𝑤(𝑆𝑡)
)
𝜕𝑣𝑤(𝑆𝑡)
𝜕𝑤 𝑗

. (18.1)

Incorporating this into our MENACE-like algorithm, we obtain Algorithm

18.1. Notice that we have changed the step size from the symbol 𝛼 to the

symbol 𝛽 when updating the value function estimate. This is because

the step sizes used for updating the policy and value function need not

be the same (in most cases, these algorithms work better when the step

sizes are not the same). So, 𝛼 is the step size for updating the policy and

𝛽 is the step size for updating the value function estimate. This type of

algorithm is called an actor-critic because it has two components: the

policy 𝜋𝜃 (actor) and the value function estimate, 𝑣𝑤 (critic).

Notice that the critic update in Algorithm 18.1 happens after the end of

the episode because it relies on all of the rewards. To change this, shifting

the critic update to happen after each time step, we must change the

labels associated with each state, 𝑆𝑡 . Instead of using

∑∞
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 , which

depends on future rewards, we desire a label that only depends on the

terms available at the end of time step 𝑡. That is, we desire a label that is

defined in terms of 𝑆𝑡 , 𝑅𝑡 , and 𝑆𝑡+1.



18 Policy Gradient Part 3 88

Algorithm 18.1: A simple RL algorithm inspired by MENACE, Version

6.0

1 for each episode do
2 // Run one episode (play one game).
3 for each time 𝑡 in the episode do
4 // Execute one time step of agent-environment

interaction
5 Agent observes state 𝑆𝑡 ;
6 Agent selects action 𝐴𝑡 according to the current policy, 𝜋𝜃;

7 Environment responds by transitioning from state 𝑆𝑡 to state

𝑆𝑡+1 and emitting reward 𝑅𝑡 ;
8 // Learn from the outcome of this one time step
9 𝛿𝑡 ← 𝑅𝑡 + 𝛾𝑣𝑤(𝑆𝑡+1) − 𝑣𝑤(𝑆𝑡);

10 ∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛿𝑡 𝜕𝜋𝜃(𝑆𝑡 ,𝐴𝑡 )
𝜕𝜃𝑖

;

11 end
12 // Update the critic after episode.
13 for each time 𝑡 in the episode do
14 ∀𝑗 , 𝑤 𝑗 ← 𝑤 𝑗 + 𝛽(

∑∞
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 − 𝑣𝑤(𝑆𝑡)) 𝜕𝑣𝑤 (𝑆𝑡 )𝜕𝑤 𝑗
;

15 end
16 end

Notice that if the value function estimate is accurate, then

∑∞
𝑘=0

𝛾𝑘𝑅𝑡+𝑘
is approximately equal to 𝑅𝑡 + 𝛾𝑣𝑤(𝑆𝑡+1). So, we can use 𝑅𝑡 + 𝛾𝑣𝑤(𝑆𝑡+1)
as the label for input 𝑆𝑡 . This results in the update:

∀𝑡 ,∀𝑗 , 𝑤 𝑗 ← 𝑤 𝑗 + 𝛽(𝑅𝑡 + 𝛾𝑣𝑤(𝑆𝑡+1) − 𝑣𝑤(𝑆𝑡))
𝜕𝑣𝑤(𝑆𝑡)
𝜕𝑤 𝑗

. (18.2)

Notice that the term inside the parentheses is simply the TD error, 𝛿𝑡 ! So,

we can write this update as:

∀𝑡 ,∀𝑗 , 𝑤 𝑗 ← 𝑤 𝑗 + 𝛽𝛿𝑡
𝜕𝑣𝑤(𝑆𝑡)
𝜕𝑤 𝑗

. (18.3)

Incorporating this change, and moving the update to happen during the

episode (rather than after the episode), we obtain Algorithm 18.2, which

is a common and effective RL algorithm.
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Algorithm 18.2: An Actor-Critic Algorithm

1 for each episode do
2 // Run one episode (play one game).
3 for each time 𝑡 in the episode do
4 // Execute one time step of agent-environment

interaction
5 Agent observes state 𝑆𝑡 ;
6 Agent selects action 𝐴𝑡 according to the current policy, 𝜋𝜃;

7 Environment responds by transitioning from state 𝑆𝑡 to state

𝑆𝑡+1 and emitting reward 𝑅𝑡 ;
8 // Learn from the outcome of this one time step
9 𝛿𝑡 ← 𝑅𝑡 + 𝛾𝑣𝑤(𝑆𝑡+1) − 𝑣𝑤(𝑆𝑡);

10 ∀𝑖 , 𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛿𝑡 𝜕𝜋𝜃(𝑆𝑡 ,𝐴𝑡 )
𝜕𝜃𝑖

// Actor update

11 ∀𝑗 , 𝑤 𝑗 ← 𝑤 𝑗 + 𝛽𝛿𝑡 𝜕𝑣𝑤 (𝑆𝑡 )𝜕𝑤 𝑗
// Critic update

12 end
13 end
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Notation

List of common symbols in alphabetical order.

�̂�𝑖 Prediction of the label associated with the 𝑖th data point (supervised learning).

ℕ>0 The set of natural numbers excluding zero. That is, {1, 2, . . . }.

ℕ≥0 The set of natural numbers including zero. That is, {0, 1, 2, . . . }.

ℝ The set of real numbers, which does not include −∞ or∞.

ℝ+ The set of extended real numbers, which is the same as ℝ but includes −∞ and∞.

ℝ>0 The set of real numbers that are more than zero.

ℝ≥0 The set of real numbers that are at least zero.

E Expected value.

Pr(𝐴) The probability of event 𝐴.

𝑓𝑤 Parametric model with model parameters 𝑤 (supervised learning).

𝑓𝑤(𝑥𝑖) Prediction of the label associated with 𝑥𝑖 , generated using the parametric model 𝑓𝑤 (supervised

learning).

𝑙 Loss function (supervised learning).

𝑙(𝑤) Value of the loss function for model parameters 𝑤 (supervised learning).

𝑚 The number of features associated with each data point (supervised learning).

𝑛 The number of data points (supervised learning).

𝑤 Model parameters (supervised learning).

𝑤 𝑗 The 𝑗th weight of 𝑤 (supervised learning, early chapters).

𝑤𝑘 The 𝑘th
vector of model parameters in a sequence of model parameters (supervised learning).

𝑤𝑘,𝑗 The 𝑗th weight of the 𝑘th
vector of model parameters in a sequence of model parameters (supervised

learning).

𝑥𝑖 Features associated with the 𝑖th data point (supervised learning).

𝑦𝑖 Label associated with the 𝑖th data point (supervised learning).



Greek Letters with Pronunciation

Character Name Character Name

𝛼 alpha AL-fuh 𝜈 nu NEW
𝛽 beta BAY-tuh 𝜉, Ξ xi KSIGH
𝛾, Γ gamma GAM-muh o omicron OM-uh-CRON
𝛿, Δ delta DEL-tuh 𝜋, Π pi PIE
𝜖 epsilon EP-suh-lon 𝜌 rho ROW
𝜁 zeta ZAY-tuh 𝜎, Σ sigma SIG-muh
𝜂 eta AY-tuh 𝜏 tau TOW (as in cow)
𝜃, Θ theta THAY-tuh 𝜐, Υ upsilon OOP-suh-LON
𝜄 iota eye-OH-tuh 𝜙, Φ phi FEE, or FI (as in hi)
𝜅 kappa KAP-uh 𝜒 chi KI (as in hi)
𝜆, Λ lambda LAM-duh 𝜓, Ψ psi SIGH, or PSIGH
𝜇 mu MEW 𝜔, Ω omega oh-MAY-guh

Capitals shown are the ones that differ from Roman capitals.

This table is from Jim Hefferon’s linear algebra text [25].



Index

𝑘 nearest neighbor, 11

𝑘-NN, 11

action, 70

activation function, 45

actor-critic, 87

adaptive step size, 59

agent, 1, 66

agent-environment diagram, 66

AGI, 5

ANN, 49

artificial general intelligence, 5

artificial intelligence, 1

artificial neural network, 49

backpropagation, 54

backwards pass, 54

basis, 41

BBO, 26

binary classification, 60

black box optimization, 26

classification, 8

contour plot, 28, 29

cross entropy loss, 60

data, 3

data point, 9

data set, 8

direction of steepest descent, 28

environment, 66

episode, 73

exploitation, 68

exploration, 68

feasible set, 22

feature vector, 9, 41

forward pass, 50

fully connected feedforward, 49

generalization bound, 62

global minimum, 36

gradient, 28

He initialization, 58

hidden layer, 49

hill climbing, 26

hyperparameter, 15

incremental gradient methods, 54



input vector, 41

intelligent behavior, 1

label, 9

law of large numbers, 61

layer, 49

learning, 3, 17

least mean squares, 22

least squares, 21

level set, 29

lifetime, 73

linear function, 40

linear models, 19

Lipschitz continuous, 35

LMS, 22

local, 28

local minimum, 36

logistic function, 45

loss function, 20

machine learning, 3

Markov assumption, 84

MENACE, 68

MNIST, 4

model (supervised learning), 17

nearest neighbor, 10

network architecture, 49

node, 49

nonparametric, 17

objective function, 22

observation, 66

operant conditioning, 69

optimal policy, 71

overfitting, 24, 62

parameterized model, 17

parameterized policy, 75

parametric, 17

perceptron, 43, 44

policy, 70

policy parameters, 76

rectified linear unit, 57

recurrent network architecture, 49

regression, 8

ReLU, 57

residual, 20

return, 74

sample mean squared error, 23

sample root mean squared error, 23

sigmoid, 45

singleton, 21



softmax, 59

state, 70

stratified sampling, 24

TD error, 85

temporal difference error, 85

trial (RL), 73

unit (neural network), 49

value function, 84

vanishing gradients, 56

weights, 17

Xavier initialization, 58
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