

SIGCOMM 2011 Toronto, ON Aug. 16, 2011

## Let the Market Drive Deployment A Strategy for Transitioning to BGP Security

### Phillipa Gill University of Toronto

Michael Schapira Princeton University Sharon Goldberg Boston University

# **Incentives for BGP Security**

#### **Insecurity of Internet routing is well known:**

- **S-BGP** proposed in 1997 to address many issues
- Challenges are being surmounted:
  - Political: Rollout of RPKI as a cryptographic root trust
  - Technical: Lots of activity in the IETF SIDR working group

#### The pessimistic view:

- This is economically infeasible!
- Why should ISPs bother deploying **S\*BGP**?
- No security benefits until many other ASes deploy!
- Worse yet, they can't make money from it!

#### **Our view:**

- Calm down. Things aren't so bad.
- ISPs **can** use S\*BGP to make money
- ...by attracting traffic to their network.

## Outline





- Part 2: Our strategy
- Part 3: Evaluating our strategy
  - Model
  - Simulations
- Part 4: Summary and recommendations



## Securing the Internet: **RPKI**

**Resource Public Key Infrastructure (RPKI):** Certified mapping from ASes to public keys and IP prefixes.



22394

RPKI shows China Telecom is not a valid origin for this prefix.

## But **RPKI** alone is not enough!

**Resource Public Key Infrastructure (RPKI):** Certified mapping from ASes to public keys and IP prefixes.







**Public Key Signature:** Anyone with 22394's public key can validate that the message was sent by 22394.



### **Overview**

#### S\*BGP will necessarily go through a transition phase

• How should deployment occur?

# Our Goal: Come up with a strategy for S\*BGP (S-BGP/soBGP) deployment.

- How governments & standards groups invest resources
- ... to create market pressure for S\*BGP deployment

#### We evaluate guidelines via a model & simulations

- Model: ISPs care only about <u>revenue</u>, not <u>security</u>!
- And run simulations on [UCLA Cyclops+IXP] AS graph data
- Parallelize simulations on a 200-node DryadLINQ cluster

### Outline



- Part 1: Background
- Part 2: Our strategy

#### • Part 3: Evaluating our strategy

- Model
- Simulations

#### • Part 4: Summary and recommendations

# How to deploy S\*BGP globally?

#### **Pessimistic view:**

- No local **economic** incentives; only security incentives
- Like IPv6, but worse, because entire path must be secure

#### **Our view:**

- S\*BGP has an advantage: it affects route selection
- Route selection controls traffic flows
- And an ISP that attracts more customer traffic earns more revenue.



#### Stubs vs ISPs: Stubs are 85% of the Internet's ASes!

A stub is an AS with no customers.

Stubs shouldn't transit traffic. They only originate their own prefixes.



85% of ASes are stubs! We call the rest (15%) ISPs.

### How can we create market pressure?

#### Assume that secure ASes *break ties* on secure paths!



**ISPs can use S\*BGP to attract customer traffic & thus money** 



Our Strategy: 3 Guidelines for Deploying S\*BGP (1)

- 1. Secure ASes should break ties in favor of **secure paths**
- 2. ISPs "help" their **stub** customers deploy **simplex S\*BGP**.



### Simplex S\*BGP: `Cheap' S\*BGP for Stubs

#### A stub never transits traffic

- Only announces its own prefixes..
- …and receives paths from provider
- Sign but don't verify!

(rely on provider to validate)



#### 2 options for deploying S\*BGP in stubs:

- 1. Have providers sign for stub customers. (Stubs do nothing)
- 2. Stubs run **simplex S\*BGP.** (Stub only signs, provider validates)
  - 1. No hardware upgrade required
    - Sign for **~1 prefix**, not **~300K prefixes**
    - Use ~1 private key, not ~36K public keys
  - 2. Security impact is minor (we evaluated this):
    - Stub vulnerable to attacks by its direct provider.

Our Strategy: 3 Guidelines for Deploying S\*BGP (2)

- 1. Secure ASes should break ties in favor of **secure paths**
- 2. ISPs "help" their **stub** customers deploy **simplex S\*BGP**.



#### (possibly with some government subsidies)

3. Initially, a few **early adopters** deploy S\*BGP (gov't incentives, regulations, altruism, etc).

### Outline



- Part 1: Background
- Part 2: Our strategy
- Part 3: Evaluating our strategy
  - Model
  - Simulations
- Part 4: Summary and recommendations

## A model of the S\*BGP deployment process

- To start the process:
  - Early adopter ASes have deployed S\*BGP
  - Their stub customers deploy simplex S\*BGP
- Each round:
  - Compute utility for every insecure I ISP n
  - If (ISP n) 's utility can increase by more than  $\theta$ % when it deploys S\*BGP,
  - Then decides to **secure itself** & **all its stub** customers
- Stop when no new ISPs decide to become secure.

### How do we compute utility?



Important Note: ISP utility does not depend on security.

3.

To determine routing, we run simulations on the [UCLA Cyclops] AS graph with these routing policies:

#### **BGP Routing Policy Model:**

- Prefer customer paths over peer paths over provider paths
- **2.** Prefer shorter paths

If secure, prefer secure paths

Arbitrary tiebreak

### Outline



- Part 1: Background
- Part 2: Our strategy
- Part 3: Evaluating our strategy
  - Model
  - Simulations
- Part 4: Summary and recommendations

### Case Study of S\*BGP deployment

#### Ten early adopters:

- Five Tier 1s:
  - Sprint (AS 1239)
  - Verizon (AS 701)
  - AT&T (AS 7018)
  - Level 3 (AS 3356)
  - Cogent (AS 174)

- Five Popular Content Providers
  - Google (AS 15169)
  - Microsoft (AS 8075)
  - Facebook (AS 32934)
  - Akamai (AS 22822)
  - Limelight (AS 20940)
- The five content providers source **10%** of Internet traffic
- Stubs break ties in favor of secure paths
- Threshold  $\theta = 5\%$ .

This leads to 85% of ASes deploying S\*BGP (65% of ISPs)

### Simulation: Market pressure drives deployment (1)



### Simulation: Market pressure drives deployment (2)



### Simulation: Market pressure drives deployment (3)



### So who should be the early adopters?

Theorem: Finding the optimal set of early adopters is NP-hard. Approximating this within a constant factor is also NP-hard.

## So who should be the early adopters?



### Outline



- Part 1: Background
- Part 2: Our strategy
- Part 3: Evaluating our strategy
  - Model
  - Simulations
- Part 4: Summary and recommendations

## Summary and Recommendations

#### **How to create a market for S\*BGP deployment?**

- 1. Many secure destinations via simplex S\*BGP.
- 2. Market pressure via S\*BGP influence on route selection.

#### Where should government incentives and regulation go?

- 1. Focus on early adopters; Tier 1s, maybe content providers
- 2. Subsidize ISPs to upgrade stubs to simplex S\*BGP

#### **Other challenges and future work :**

- ISPs can have incentives to turn off S\*BGP
- BGP and S\*BGP will coexist in the long run
- ISPs need tools to predict S\*BGP impact on traffic





### Data Sources for ChinaTel Incident of April 2010

- Example topology derived from Routeviews messages observed at the LINX Routeviews monitor on April 8 2010
  - BGP announcements & topology was simplified to remove prepending
  - We anonymized the large ISP in the Figure.
  - Actual announcements at the large ISP were:
  - From faulty ChinaTel router: "4134 23724 23724 for 66.174.161.0/24"
  - From Level 3: "3356 6167 22394 22394 for 66.174.161.0/24"
- Traffic interception was observed by Renesys blog
  - <u>http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml</u>
  - We don't have data on the exact prefixes for which this happened.
- AS relationships: inferred by UCLA Cyclops