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1. INTRODUCTION

The World Wide Web was initially created as a means for conveniently sharing
information among distributed research teams [Berners-Lee et al. 1994]. Over the
past 20 years, the Web has been broadly adopted, due to its transparency and
ease of use. Today, in addition to information sharing, the Web supports a myr-
iad of functionalities and “services” (i.e., software functionalities), such as email,
instant messaging, file transfer, multimedia streaming, electronic commerce, social
networking, advertising, and online document processing.

Emerging trends such as cloud computing and software-as-a-service may result
in even more business-oriented functions offered as services. These may be offered
as “traditional” Web services (i.e., machine-to-machine interaction1), or as “Web-
based” services (e.g., a person accesses the service via a Web browser). Many
organizations are exploring how Web-based services could reduce the cost of pro-
viding important business functionalities, allow the organization to adapt nimbly to
changes, or seize new business opportunities (e.g., it may be simpler to use existing
Web-based services than to develop new services internally).

Information on Web-based service usage is valuable to several different types of
individuals. Researchers may use such information to build workload models, or
to learn about open problems. Network and system administrators can use the
information to proactively plan IT infrastructure upgrades. Business managers
may need information for risk assessment. We analyze current Web workloads of
an enterprise and a university as a first step towards fulfilling these needs.

Our paper makes three primary contributions:

—We examine an initial methodology for analyzing Web-based services and their
usage within organizations, and assess its strengths and weaknesses. Our analysis
allows us to determine which services are dominant, and who provides them.
As part of this investigation, we discover and identify many gaps that exist in
composing useful information in a scalable, automated and verifiable manner.

—We characterize today’s Web-based service usage, providing a comparison point
for future studies on the evolution of the Web. Our results provide insights
on what popular functionalities the Web provides to organizations today. Our
results are relatively consistent between our traces collected from an academic
and an enterprise environment.

—We study how Web workloads have evolved over the past decade. As previous
studies have not considered service usage, we first re-examine service usage as ob-
served in a historical trace. We then examine traditional characteristics and see
how these have been affected by the evolution of the Web (e.g., the introduction
of “Web 2.0” services). For this comparison, we leverage earlier Web character-
ization studies [Breslau et al. 1999; Crovella and Bestavros 1997; Cunha et al.
1995; Duska et al. 1997; Glassman 1994; Mahanti et al. 2000; Wolman et al. 1999].
In particular, we show that while the Web has undergone significant transforma-
tion in the scope of services and service providers, many underlying object access
properties have not fundamentally changed.

1http://www.w3.org/TR/ws-gloss
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The remainder of the paper is organized as follows. Section 2 introduces related
work. Section 3 describes our data sets. Section 4 explores relevant new character-
istics of Web traffic. It also examines techniques to identify service instances and
providers, and to classify the functionality of popular Web-based services. Section 5
compares current access characteristics to those observed a decade ago, and dis-
cusses similarities and differences. Section 6 concludes the paper with a summary
of our work and possible future directions.

2. RELATED WORK

During the first decade of its existence, the Web’s primary function was information
sharing. Characterization of organizational Web usage at that time focused primar-
ily on objects and their access characteristics [Cunha et al. 1995; Duska et al. 1997;
Kelly and Mogul 2002; Mahanti et al. 2000; Wolman et al. 1999]. These studies
have influenced the development of technologies such as Web caching, prefetching,
and Content Distribution Networks (CDNs) to improve the user experience (i.e.,
by reducing retrieval latency) and reduce distribution costs (e.g., by eliminating
redundant object transfers). We use these earlier studies to evaluate how the Web
has evolved over the past decade.

Today, the Web supports a multitude of services, and some recent studies have
begun to examine this shift. For example, a recent poster paper by Li et al. [2008]
considers “What kinds of purposes is HTTP used for?”. Our work extends well
beyond theirs. In particular, we examine two different data sets representing larger
user populations and longer periods of time, provide more detailed results, and
elaborate on the challenges of identifying the functionality of a service. Schnei-
der et al. [2008] consider characteristics of Web-based services of a specific type
(e.g., AJAX). Krishnamurthy and Wills examine changes in the distribution of
Web content, and its effects on performance [Krishnamurthy and Wills 2006a] and
privacy [Krishnamurthy and Wills 2006b; 2009]. Our work focuses on identifying
Web-based services, who provide these services, and who consumes them. Our work
is complementary to these studies.

Other aspects of the Web have also been studied. Fetterly et al. [2003] studied
the evolution of Web pages over time. Baeza-Yates et al. [2007] examined Web
page characteristics of various national domains, looking at topics such as cul-
tural differences. These studies used data from crawling Web sites, which does
not provide insights into how an organization uses or is dependent on Web-based
services. Bent et al. [2006] measured usage of multiple Web sites hosted within a
single ISP. This approach gives the service provider insights about organizations
that use their services, which is a different perspective than the one in which we
are interested. Williams et al. [2005] examined how the workloads of several Web
sites had changed over a ten-year period. While our study shares the longitudinal
perspective, we consider proxy rather than (“Web 1.0”) server workloads.

The main reason for the lack of recent studies of organizational use of the Web
is the difficulty in obtaining data. Trestian et al. [2008] use search engines as a
means of circumventing this problem. While intriguing, it does not provide the
same information as is available in actual usage traces.

The desire of network operators to identify Peer-to-Peer (P2P) traffic on their

ACM Journal Name, Vol. V, No. N, MM 20YY.



4 · Gill, Arlitt, Carlsson, Mahanti and Williamson

networks motivated research on traffic classification (e.g., [Ma et al. 2006]). Such
techniques tend to group applications by network-level similarities such as the ap-
plication protocol (e.g., HTTP) they use, rather than by the functionality they
provide. Cormode and Krishnamurthy [Cormode and Krishnamurthy 2008] iden-
tify tangible differences between “Web 1.0” and “Web 2.0” sites. Their technical
comparison of the two considers functional aspects. We focus on the functionality
of services, rather than labeling them as “Web 1.0” or “Web 2.0”. Similar to us,
they rely on manual labeling.

3. DATA SETS

This section describes our data collection methodology and provides a statistical
summary of our two new data sets and one historical data set.

3.1 Enterprise Data Set

Our enterprise data set comprises the logs from 28 caching proxies (belonging to a
single enterprise) that are geographically distributed around North America. The
enterprise has approximately 60,000 employees in North America. The HTTP traf-
fic (regardless of port) of these employees, destined to servers on the Internet, must
use one of these 28 proxies. These logs contain a record on each transaction that
either traversed a proxy to reach a server on the Internet, or that was served from
cache. Each record contains fields such as the protocol, method, user agent, status
code, bytes transferred, and cache action (e.g., hit or miss). The logs do not contain
“personal” information such as client IP addresses or cookies.

3.2 University Data Set

Our second data set is a trace of HTTP transactions at the University of Cal-
gary, which has approximately 35,000 faculty, staff and students. The traces were
collected during the Fall 2008 semester, for the same week as the enterprise traces.

A Bro [Bro Intrusion Detection System 2008] script was developed to summarize
HTTP transactions on port 80 on the university’s Internet link in real time. This
methodology is advantageous in that it limits the amount of data stored (compared
to full packet traces) and offers better protection of user privacy, as sensitive infor-
mation like client IP addresses or cookies is not written to disk. The Bro script cap-
tures application-layer statistics (e.g., HTTP method, status code, Host: header,
etc.), and transport-layer statistics (e.g., transfer duration, bytes transferred, etc.).

3.3 Historical Data Set

To facilitate a comparison of how Web-based services have changed over time, we
obtained a historical proxy data set. This data set represents the Web usage of
residential cable modem users in 1997. A detailed characterization of this data set
is available in [Arlitt et al. 1999].

3.4 Overview of Traces

Table I provides summary statistics for the two new data sets and the one historical
data set. Each new data set is one week long, and spans the same 168 hour period.
The week-long duration facilitates direct comparison between these two data sets,
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Table I. Summary of data sets used.

Property Enterprise University Historical

Start Date Sep. 14, 2008 Sep. 14, 2008 Jan. 1, 1997
Start Time 0:00:00 GMT 0:00:00 GMT 01:30:05 EST
End Date Sep. 20, 2008 Sep. 20, 2008 Jun. 1, 1997
End Time 23:59:59 GMT 23:59:59 GMT 01:30:05 EDT

Total Transactions 1,442,848,763 121,686,977 117,652,652
Data Uploaded 1.4 TB 0.22 TB 0.20 TB
Data Downloaded 22.6 TB 3.5 TB 1.3 TB
Unique HTTP Objects 232,780,505 25,986,309 25,276,253
Unique Servers 1,685,388 732,287 318,894
Unique User Agents 645,656 19,445 8,622

as well as a comparison with those collected by Wolman et al. in 1999 [Wolman
et al. 1999].2 The historical data set spans a five month period in 1997.

Comparing our two new data sets, we see that the enterprise data set contains
an order of magnitude more transactions (1.4 billion) than the university data set
(122 million), and an order of magnitude more unique URLs (233 million versus
26 million). The enterprise data set includes about 6.5 times as much downloaded
data, from twice as many unique servers. While these differences are in part due
to roughly twice as many users, it appears that the Web is used more extensively
at the enterprise than at the university.

The historical data set has a similar number of transactions and unique HTTP
objects requested as the university data set. However, the historical data set spans
a much longer period of time (five months rather than one week), and downloaded
about 1/3 as much data from roughly half as many servers.

Our data sets indicate that there has been significant growth in the number of
Web servers used to deliver content to users over the last decade. For example,
Wolman et al. [1999] observed 360,586 distinct servers in their enterprise trace, and
244,211 unique servers in their academic trace. In contrast, we observed 1,685,388
unique servers in our enterprise trace and 732,287 unique servers (by Host: name)
in our university trace. While direct comparison with previous studies [Cunha
et al. 1995; Mahanti et al. 2000; Wolman et al. 1999; Kelly and Mogul 2002] is
difficult, this growth is consistent with observations made by Krishnamurthy and
Wills [Krishnamurthy and Wills 2006a; 2006b; 2009].

Because obtaining concurrent traces from multiple large organizations is onerous,
we limited our data collection to a one-week period. This is sufficiently long to gain
insights into interesting properties of current Web use, as well as to understand
what the challenges are for examining the properties on an ongoing basis.

4. EXAMINING WEB-BASED SERVICE USAGE

Over the past decade, Web-based services have played an increasingly important
role in the day-to-day operations of many organizations. We expect this trend to

2Wolman et al. [1999] examined week-long traces of activity from the University of Washington
(23,000 users) and a different enterprise, also with 60,000 users.
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increase in the future, and believe that information rich data sources such as proxy
logs can assist organizations with a variety of needs, from operational aspects such
as security issues, to business decisions such as quantifying costs associated with
specific services or providers.

In this section we explore how to identify unique Web-based services, who pro-
vides the services, what classes of services are used, and who (or what) uses them.
We also describe the challenges that exist for each of these tasks.

4.1 Definitions

A Web-based service offers specific functionality (e.g., email, search) to end-users
via the HTTP protocol. The service is made available by a service provider, and
is consumed by a client such as a Web browser. There are different service classes,
which are distinguished from other classes by the offered functionality. A service
provider offers an instance of a service belonging to a given class. Other service
providers may offer their own (competing) service instances. For example, Google,
Inc. is a service provider. In the email service class, they offer the Gmail service
instance. Microsoft is another service provider, which provides the Hotmail service
instance in the email service class.

4.2 Identifying Service Instances

A necessary first step towards characterizing Web-based services is to identify the
unique service instances in our traces. As there is no established method to do this,
we leverage data available in the Host: header of each transaction. We use this
header to identify unique host names, domains, brands, and service instances.

Unique Hosts: The Host: header contains the name of the host contacted
to fulfill the given request. This value is typically in domain name format (e.g.,
www.google.com) rather than IP address format, as it provides an additional layer
of abstraction that the service provider can use for purposes such as load balancing.
Table II indicates that the enterprise data set contains transactions with almost 1.7
million unique host names, the university data set involved about 732,000 unique
host names, and the historical data set contains 319,000 unique host names. With
the above host name specification, there can be at most one unique service instance
per host name, and the number of host names is an upper bound on the number of
unique service instances in each trace.

Unique domains: We divide the domain names into three parts: functional
labels (e.g., www), the brand (e.g., google), and the Top Level Domain (TLD; e.g.,
com). We also consider secondary domains, such as state codes for country TLDs
(e.g., tx for us TLD). A domain name may contain zero or more functional labels,
and will contain one brand and at least one TLD.3 An example with more than
one TLD is google.co.uk.

We consider a unique “domain” to be the combination of the brand and the TLD
(and any secondary-level domains). For example, google.com is the “domain”
for www.google.com. Table II indicates that by ignoring the functional terms, we
reduce the number of unique items substantially (e.g., from 1.7 million unique hosts
to 904,000 unique domains for the enterprise data set). The primary cause of this

3Domain hacks such as del.icio.us are exceptions [Wikipedia Article 2009].
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Table II. Breakdown of Host values.

Property Enterprise University Historical

Unique Host Names 1,685,388 732,287 318,894
Unique Domains 904,129 205,263 205,355
Unique Brands 831,243 194,348 185,031
Unique Service Instances 932,620 229,299 203,349

Table III. Functional terms in Host values.

Number of Terms
Enterprise University Historical

% of host names % of host names % of host names

0 10.6 5.9 9.2
1 69.3 39.1 73.3
2 18.4 54.2 12.5

> 2 1.7 0.8 4.9

is the sophisticated and extensive content distribution infrastructures, particularly
for popular Web-based services. For example, the domain with (by far) the most
unique host names in both data sets was facebook.com, with over 125,000 distinct
host names in the enterprise trace, and more than 340,000 distinct host names in the
university trace. The top 10 domains in each trace accounted for 15.8% and 50.8%
of the unique Host values, for the enterprise and university data sets, respectively.
In contrast, in the historical data set from 1997 the top 10 domains only account
for 2.2% of the unique Host values.

Unique brands: Another method of consolidation is to consider only the brand,
and ignore the TLD term(s) and any functional terms. This approach amalgamates
regional variations of the same service instances (e.g., google.com, google.de and
google.co.uk), though at the risk of incorrectly merging some domains (e.g., if
brand.TLD1 and brand.TLD2 are owned by different service providers). Table II
shows that another 5–10% reduction occurs by consolidating domains to brands.

Considering only the domain or the brand portion of a Host value underestimates
the number of unique service instances (e.g., mail.google.comand www.google.com

are indistinguishable). To better estimate the number of service instances, we next
attempt to extract useful information from the functional terms.

Unique service instances: Our data sets contain a wide range of functional
terms that complicate the analysis of service instances. We first consider the number

of functional terms in each Host value. Table III indicates that 5–11% of Host

values have no functional terms. In the enterprise data set, 70% of Host values had
a single functional term; two-thirds of these were the term www. In the university
data set, the term www accounts for the majority of the single functional Host

values as well. However, the university data set has a much larger percentage of
Host values with two functional terms. This skew is created by facebook.com

servers, which account for almost half of all unique Host values in that data set.
The majority of the observed facebook.com servers had two functional terms of
the form X.channelY, where X and Y are numeric identifiers.

ACM Journal Name, Vol. V, No. N, MM 20YY.
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Table IV. Composition of terms.

Type
Enterprise University Historical

% of Terms % of Terms % of Terms

alphabetic-only 56.7 18.0 85.5
numeric-only 13.4 37.9 0.1
alphanumeric 23.1 41.6 10.3

others 6.9 2.4 4.0

We next examined the syntactic composition of functional terms. Table IV shows
that over half of the functional terms in the enterprise data set are entirely com-
posed of alphabetic characters. About 23% of the remaining terms have alphabetic
components that could be extracted. The remaining terms (primarily numeric-
only terms) are likely labels used to systematically manage servers in large-scale
data centers; such terms are unlikely to help identify unique service instances.
The fraction of alphanumeric terms in the university data set are skewed by the
large number of facebook.com host names. The historical data set has mostly
alphabetic-only terms (94% of which are www). This suggests that there has been
a significant change in the composition of terms, which may be largely due to the
growth of the Web. For example, with the increased scale of the infrastructure
underlying the Web, organizations may have found it easier to use names such
as “mail1.orgname.com”, “mail2.orgname.com”, ..., “mailN .orgname.com”, rather
than coming up with distinct human readable names for each additional server.
The higher number of numeric-only terms observed today suggests that more and
more Host names are not intended for direct use by Web users.

For further insights on the semantic functionality of each server, we compare each
alphabetic functional term against an English word list [Atkinson 2008].4 As an
initial approximation of the number of service instances, we consider a match for
an English word (for the first functional term) to indicate that we have identified
a unique service instance. Using this technique, we determined there were about
933,000 unique service instances in the enterprise data set, 229,000 in the university
data set, and 203,000 in the historical data set (see Table II). This represents a
slight increase over the number of unique domains, and 10–17% increase over the
number of unique brands. The increase is relatively small for several reasons: some
Host values have no functional terms; many Host values have functional terms
that offer no insight on the service (e.g., www); and many domains or brands were
seldom observed, and thus considering the functional terms did not result in the
identification of additional service instances.

4.3 Concentration of Activity

Although the domain, brand, and service instance approaches significantly reduce
the number of items to consider (compared to the number of unique Host names
or URLs), they are still too numerous to label, inspect, or investigate manually.
Fortunately, the highly non-uniform popularity of Web-based services allows much
of the activity to be understood by focusing on only a few of the most popular

4A possible improvement on this approach would be to match only against domain-specific terms.
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items. For example, in the enterprise data set, 511 servers accounted for 50% of
the transactions, and 770 accounted for 50% of the response bytes. These represent
less than 0.1% of the total observed servers in that data set.

As we consolidate from servers to brands, or service instances, the concentration
increases. In the enterprise data set, the 121 most popular brands received 50% of all
transactions. This concentration property means that a reasonable understanding
of the traffic can be obtained by examining only a few popular services.

The data traffic is even more concentrated than the transaction traffic, due to
the heavy-tailed transfer size distribution. The 36 most popular brands in the
enterprise data set account for half of the downloaded data (only 15 brands in
the university data set). This is a 20-fold reduction in the number of entities to
observe, if tracking was done based on the entire domain name. This is an important
property. It means that a network provider could mirror content locally, and reduce
the bandwidth demands on their external network connection to the Internet. To do
this effectively, network operators will want to focus on the companies responsible
for the most traffic, rather than on individual servers. For example, an organization
with a substantial fraction of traffic for Google’s services could consider a peering
arrangement via the Google Global Cache service.5 Google would then install
servers on the company’s internal network, to serve HTTP requests internally.

Figure 1(a) compares the concentration (based on transactions) between the en-
terprise, university and historical data sets. Although there are slight differences
between the results for the two new data sets, there are many similarities, due (not
surprisingly) to the “global” popularity of certain brands. For example, seven of
the ten most popular brands by transaction count or data downloaded were the
same between the two data sets (e.g., google and facebook). Figure 1(a) also
reveals that user demand has become more concentrated between the collection of
the historical and new data sets, despite the fact that there are now a lot more
services to choose from. Figure 1(b) shows that the concentration property is even
more pronounced for data downloads.
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Fig. 1. Concentration properties comparison: (a) transactions; (b) response bytes.

5http://ggcadmin.google.com/ggc
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Table V. Service provider information.

Enterprise University

initial brands 10,000 10,000
brands with DNS & RIR data 6,518 7,580

estimated service providers 4,458 4,995
provide own name service 1,334 1,468

4.4 Identifying Service Providers
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Fig. 2. Concentration properties in Service Providers: (a) brands; (b) transactions.

We now consider who provides each service. While determining the “brands”
and “service instances” is important for understanding the types of services used
within an organization, it is not sufficient for establishing which service providers
are involved, as many service providers have multiple brands in their portfolio.

Identification methodology: To systematically identify unique service providers,
we use data from three sources. First, we extract the brands, corresponding do-
mains, and a Host name from the original traces, as previously described. Second,
we query a Regional Internet Registry (RIR) such as LACNIC6 for registration
information on each domain. Third, we perform a DNS query to determine the
authoritative name servers for each domain. If no information is available, we issue
a query for the specific host name.

We analyze each transaction in three steps. First, from the DNS query results, we
determine the brand for each of the name servers affiliated with the brand of a Web-
based service. We also identify which brands share the same name servers. From
the RIR data, we identify the Organization Identifier (OrgID) associated with each
brand. Second, we create service provider groups, composed of brands that have
common name server brands and common OrgIDs, in an attempt to group together
brands owned by a single entity. This step provides an initial hint as to whether the
infrastructure used by the Web-based service is operated by the same company, or
provided by a third party (e.g., as an infrastructure service), and shared by many

6http://www.lacnic.org/
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different service providers. Our third step extracts other information on the service
providers, such as how long they have been in the registry.

As an example, consider the two Host names www.youtube.comand www.google.com,
which have the brands youtube and google. First, we use dig to obtain the
name servers for the Host names. In this case, both Hosts returned the same list
(ns1.google.com, ns2.google.com, ns3.google.com, ns4.google.com). Also
using dig, the IP addresses resolved to 74.125.113.100 and 66.249.91.104, re-
spectively.7 Using whois, the OrgID for these IP addresses resolved to GOGL.
Since both the OrgID and the brand of the name servers are the same for these two
“brands” (youtube and google), we determine a single service provider administers
them. Furthermore, since the brand of the name servers (google) is the same as
one of the member brands, we say google is the dominant brand (or potentially
the parent company).

Service provider identification results: As an initial experiment, we applied
our methodology on the 10,000 most popular brands (by transaction count) in the
two new data sets. As shown in Table V, we were able to obtain relevant DNS
and RIR data on 65–75% of these. Using this subset of the brands, we identified
approximately 4,500 service providers in the enterprise data set, and roughly 5,000
in the university data set. About 30% of these use their own DNS servers to
support the service. For example, we found 24 (service) brands that mapped to
Google, Inc.’s OrgID (GOGL) and used Google to provide DNS service.

In contrast to service providers such as Google, which maintains its own DNS
servers for its many brands and services, we observed that many organizations
rely on “third-party” DNS providers, which serve brands and services registered
to other organizations. Close to 71% of the identified service providers use third-
party DNS providers. Among these service providers, roughly 24% used one of the
ten most popular DNS providers. The most prevalent DNS providers observed were
UltraDNS and Domain Control, which were used by about 5% and 3% of the service
providers using third party DNS, respectively. Unlike the high concentration of
brands to service providers, the mapping to DNS providers is much more balanced.
This flatter distribution may be an effect of DNS services being distributed among
many ISPs.

Figure 2(a) shows the number of brands associated with each identified service
provider. A Zipf-like distribution is observed, indicating that some service providers
offer many more “brands” than do other providers. Figure 2(b) shows that a small
set of service providers receive a significant proportion of the transactions. The top
provider in both data sets is Google, Inc., handling about 9% of all transactions.
The top 10 service providers account for 30% of transactions in the enterprise data
set, and 37% in the university data set. The skew is even greater in terms of the
response data, with the top 10 service providers accounting for 35% of the response
data in the enterprise data set, and 47% in the university data set. As more critical
business functions are moved to the Web, an organization may wish to understand
if they are inadvertently “putting all of their eggs in one basket.”

Age of service providers: Figure 3 shows how long each of the identified
service providers has been registered with an Internet registry. Curves are shown

7The name server list and IP addresses assigned to these hosts may change over time.
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for the registration dates of the brands observed in the enterprise trace and the
university trace, respectively. Fewer than 10% of the service providers are from the
early years of the Web. There is a noticeable surge during the late 1990s (the “dot
com era”). Since 2000, the “birth rate” of popular service providers appears to be
relatively stable. One-half of the service provider organizations were registered in
2003 or later.
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Fig. 3. Registration of Service Providers.

4.5 Service Classes

Another question of interest is what classes of Web-based services are used by an
organization? Once individual service instances have been identified, they can be
grouped together under common classes to provide a high-level understanding of
how Web-based services are used within an organization. This task requires service
classes to be defined, and service instances to be mapped to different classes. In
this section, we describe the approaches we have tried, evaluate their success, and
discuss the lessons we have learned.

4.5.1 Manual Classification. To illustrate the classification of service instances,
we leverage the observation made in Figure 1 that a relatively small number of
instances are responsible for a majority of the transactions and response bytes.
We created two lists of service instances: one containing the 259 instances that
collectively provide > 50% of the transactions across both new data sets, and the
67 instances that generate > 50% of the response bytes (29 instances appear in both
lists). We then manually labeled each instance as belonging to one of the service
classes listed in Table VI. Each selected service instance was manually visited to
determine its class. Labels were based on the primary functionality of the service.
For example, we considered a file download from flickr.com to be “photo sharing”,
as that is the primary purpose of the service. We considered all transactions for
gmail.com to be (Web-based) “email”, even though it could be used to exchange
photos (as email attachments).
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Table VI. Manual classification results of new data sets.

Service Class
Example Enterprise University
Brand % Trans. % Bytes % Trans. % Bytes

content distribution llnwd 28.4 20.6 18.5 22.3
information retrieval cnn 27.3 7.6 20.6 1.3

advertisements doubleclick 18.8 3.4 18.6 1.1
search bing 6.9 3.7 11.5 3.3
email gmail 5.1 2.4 6.6 0.7

social networks facebook 4.3 0.7 14.1 2.9
updates windowsupdate 1.9 14.9 2.1 6.3
video youtube 1.0 24.8 2.3 48.3
music pandora 0.8 4.4 0.3 0.1

photo sharing flickr 0.5 1.4 0.5 0.9
repositories rapidshare 0.0 16.1 0.0 12.9

other travelocity 5.1 0.0 5.3 0.0

The results in Table VI are sorted by the percentage of transactions for the
enterprise data set. The top three classes are related to Web browsing. The in-

formation retrieval class includes popular news sites or other information sharing
sites (e.g., cnn.com). Many of these sites are globally popular, and thus use content

distribution mechanisms (e.g., servers located on edge networks that are dedicated
to serving static content like images) to handle the workload. Much of the con-
tent distribution is likely related to information retrieval; however, the content
distribution is achieved via providers of infrastructure services (e.g., CDNs such as
Limelight Networks - llnwd.net) or via dedicated servers (with unique names) in
the server provider’s own domain. The third class is advertising. While advertising
(e.g., doubleclick.net) may not be a service selected directly by the user, online
advertising is now an integral part of the business models of many Web-based ser-
vices, and this is reflected in the percentage of transactions. The main differences
between our two data sets are that (online) social networks (e.g., facebook.com)
and search (e.g., bing.com) account for a larger percentage of transactions at the
university.

In terms of the bytes downloaded, the largest component is the video service class
(e.g., youtube.com), which accounts for 24% of the data in the enterprise trace, and
48% in the university trace. Other classes responsible for significant data transfer
volume are data repositories (e.g., rapidshare.com) and updates (e.g., OS patches
from windowsupdate.com). Music services like pandora.com (Internet radio) also
account for a larger fraction of data traffic than request traffic in the enterprise
data set. However, the same characteristic was not seen in the university data set,
making this another difference between the data sets.

Sites that did not belong to one of the 11 service classes were included in the
“other” class. For example, travelocity.com enables customers to make travel
reservations. The “other” class accounted for approximately 5% of transactions in
both new data sets, but created negligible traffic volumes.

While this experiment illustrates how the large volume of data in each trace can
be transformed into meaningful information (e.g., helpful to a network operator for
planning, or a business manager for tracking risk), there are challenges. It was both
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difficult and time-consuming to label O(102) service instances, while the data sets
contain O(106). A related challenge is developing a useful taxonomy; while ours is
sufficient for illustrative purposes, a more formal process is needed in practice.

4.5.2 Automated Classification. As an initial step towards an automated solu-
tion, we apply a Web page classification technique to the problem of classifying
previously unidentified service instances. Web page classification methods can use
many sources of information including on-page features such as text content and
html tags, or visual features such as images and layout information [Qi and Davison
2007]. We consider the Centroid method [Han and Karypis 2000], which uses text
information taken from html tags to classify Web pages. As our data sets do not
contain html tags or similar information, we actively retrieved the home pages of
popular Hosts (as determined from our two new data sets).

The Centroid method works by taking in a labeled set of Web pages. Term vectors
are then generated for each labeled page using html tags, and “centroid” term
vectors are produced for each category, by combining the term vectors of the labeled
Web pages within each category [Han and Karypis 2000]. Using these centroid
vectors, unlabeled Web pages are then classified by generating their individual
term vector (using html tags) and determining the centroid that is nearest to them.
Distance is calculated using the cosine measure [Han and Karypis 2000].

Specific terms that we use in our analysis are taken from the html keyword and
description meta-tags as well as the title tag. These tags are selected because
they work well for classifying Web pages [Kwan and Lee 2003]. We consider two
different methods for generating the term vectors; the first is to always use terms
from the title tag (title), and the second uses terms from the title tag if no other
terms are found in the keyword and description meta-tags (selective title).

Of the labeled Hosts from Section 4.5.1, we used the 221 Hosts for which we
were able to obtain html titles or tags. We split these into two disjoint sets. Our
experiments use each set once as the training set, with the remaining set used as
testing data. The performance of the classifier is then averaged across these trials.

We evaluate the performance using the F-measure metric, which is the weighted
harmonic mean of precision (the number of true positives divided by the sum of true
and false positives) and recall (true positives divided by the sum of true positives
and false negatives) [Manning et al. 2009]. The F-measure ranges from 0 to 1;
higher values are better.

Figure 4 shows the F-measure for the different categories. The median F-measure
across the categories is 0.70, with typical values between 0.60 and 0.80.

The Centroid method is promising for categories such as classified ads and e-
commerce, but it does not perform well for categories with an ill-defined set of
terms. For example, the terms used by CDNs are often similar to those used by
instances in the updates category. Similarly, social networks are often mislabeled
as instances of blog or photo sharing services.

4.6 Identifying Consumers

A third question we consider pertains to the consumers of Web-based services.
Specifically, we use the User-Agent header to determine what generates the traffic.
We divided the activity in each data set into four categories: browsing, applications,
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Fig. 4. F-measure of Centroid classification method applied to Web pages.

updates, and other. For our data sets, the first three categories account for 99% of
the observed transactions and response data.

Table VII shows the breakdown of activity in each data set, by the type of
User-Agent. In the historical data set, browsing accounted for essentially all of
the HTTP traffic. That proxy also supported FTP, which was seldom used but
still accounted for over 20% of the data transferred. The results by class are quite
similar between the enterprise and the university. Browsing is the largest class,
accounting for over 90% of the transactions and 80% of the response data in each
trace. Compared to the historical data set, browsing accounts for slightly less
of the transactions, as HTTP is now being used in more ways. HTTP-enabled
applications represent the next largest class, generating 5–8% of transactions and
15% of the bytes. These include “helper” applications (e.g., Adobe’s Shockwave
Flash player) that can be embedded in Web pages, as well as standalone applications
(e.g., music or video players). The larger percentage of response bytes suggests some
applications are responsible for the downloads of larger objects than might be seen
in typical browsing. Updates for OS patches or revised definitions for anti-virus
programs account for about 1% of transactions, and 1–3% of response bytes. We
expect these are automatically generated transactions (i.e., no human involvement).
Machine-initiated transactions may increase over time, as more system management
tasks are automated, and as more such services are provided over the Web.

Table VII. User-agent statistics.

Class
Enterprise University Historical

% Trans. % Bytes % Trans. % Bytes % Trans. % Bytes

browsing 90.1 80.9 92.4 82.4 (HTTP) 99.3 87.7
application 7.9 14.4 5.1 15.2 (FTP) 0.3 12.1

updates 0.9 3.2 0.9 0.5 – –
other 1.0 0.9 1.2 1.1 – –
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4.7 Challenges

Our work is motivated by the premise that as Web-based services become more
business critical, organizations will want access to a variety of information about
their own usage of such services. The previous subsections explored some possible
questions of general interest; we now discuss some of the challenges that exist for
systematically answering them, and list some potential solutions.

Identifying Service Instances. In Section 4.2, we used information from
the Host names to try and identify the distinct service instances. While we find
this approach works reasonably well, it has its shortcomings. In particular, it
would not properly identify service instances whose name appears in the URL
(e.g., our approach would not distinguish between www.provider.com/service1

and www.provider.com/service2). One solution would be a standardized naming
convention.

Discerning User Actions. Many HTTP transactions are invoked indirectly.
For example, a user may request the home page of a selected Web site (termed a
first party site), which may then trigger requests to third party servers of a content
distribution network and an advertising service [Krishnamurthy and Wills 2009]. In
some cases it may be helpful to know which transactions occurred as a direct result
of a user action versus those generated to third party services. One method for doing
this is to use the Referer and Location HTTP response headers to reconstruct
the graph of user sessions. However, a proxy would have to be configured to collect
this information to facilitate such an analysis.

Determining Service Providers. In Section 4.4, we demonstrated a method
for mapping service instances to service providers. While we had some success,
there were many limitations. First, the RIR data is missing for many organizations
(25–35%), and out-of-date for others (e.g., YouTube is now owned by Google, Inc.,
but still appeared as an independent organization in the RIR data). Second, some
service providers do not have a single view of their own organization. For exam-
ple, for reasons such as the acquisition of other companies, Google has duplicate
OrgIDs [Krishnamurthy and Wills 2009], such as YOUTU. Similarly, Yahoo! has
many different OrgIDs, some from acquisitions (e.g., INKT), and others from global
operations (e.g., YAHOO-NET for Yahoo! Japan). Third, the scalability of the in-
formation services is quite limited. While we observed hundreds of thousands of
distinct domains, we only resolved about 10,000, primarily due to the rate-limited
query interface the information service provider offered. Different solutions to these
issues are possible, but are clearly outside the scope of this work.

Classifying Service Instances. In Section 4.5.1, we manually classified a small
set of popular service instances. While this could be sufficient for an organization’s
information needs, it is time-consuming and clearly not scalable. In Section 4.5.2,
we considered an existing automated classification technique. While this approach
was more scalable than and about as accurate as our manual classification, it too
has its disadvantages. In particular, the lack of descriptive meta-data is problem-
atic for systematically classifying all service instances. The Centroid method may
be coupled with other methods of classification to improve performance for some
categories. For example, many hosts use words to describe their function (e.g.,
news.yahoo.ca, finance.google.com). By mining these domain keywords, the
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accuracy of the classifier may improve. Another challenge is verifying the accuracy
of automated classifications (at scale). One possible solution is “collective intelli-
gence”; i.e., use a mechanism like Amazon’s Mechanical Turk8 to have automated
classifications validated by humans.

Identifying Consumers. As more use of Web services (i.e., machine-to-machine)
occurs, the interest in identifying the consumers may increase. While the User-Agent
field could potentially be used to answer such questions, there are several challenges
with using this field. First, as noted in Table I, there are many unique User-Agent

values. Second, many of the values are not well-structured. A standardized ap-
proach for setting the values in this field seems like the best solution to these
issues.

Other Questions. We investigated three questions of potential interest to net-
work operators or researchers, and encountered numerous problems. As Web-based
services become more important to organizations, a much broader set of questions
are likely to be asked, which will result in an even larger set of issues. Future work
will involve exploring what other important questions might be, so that solutions
can be developed in unison with those for the issues identified above.

5. LONGITUDINAL ANALYSIS OF WEB WORKLOAD CHARACTERISTICS

During the past decade, the Web and its underlying infrastructure have changed
significantly, including tremendous growth in services, the emergence of “Web
2.0” [Cormode and Krishnamurthy 2008], and new/improved Internet access ca-
pabilities. In this section we provide a longitudinal analysis of Web workload char-
acteristics, to examine the effects such changes have had.
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Fig. 5. HTTP hourly transaction rates.

8https://www.mturk.com/mturk/welcome
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Table VIII. Breakdown of methods.

Method
Enterprise University Historical

Trans.
Req.∗ Rsp.

Trans.
Req. Rsp.

Trans.
Req. Rsp.

Bytes Bytes Bytes Bytes Bytes Bytes
(%) (%) (%) (%) (%) (%) (%) (%) (%)

GET 92.0 76.6 93.8 92.6 0.0 97.7 98.0 98.0 99.2
POST 7.7 23.0 6.2 6.7 99.2 2.0 1.6 1.8 0.7
Other 0.3 0.4 0.1 0.7 0.8 0.3 0.4 0.2 0.1

∗ The data sets differ in how the request and response bytes were counted. The enterprise and historical

data sets count the HTTP headers as part of the requests and responses, while the university data set

does not. This has only a minor effect on the percentages for response bytes, but is responsible for the

noticeable difference between the data sets for request bytes.

5.1 Similarities in Transaction-level Statistics

By comparing transaction-level statistics of our traces with those reported in earlier
studies, we have identified characteristics that have remained invariant over the past
decade.

Strong diurnal pattern: Figure 5 shows the HTTP activity in each data
set over a one-week period. There are strong diurnal components, as have been
observed previously [Crovella and Bestavros 1997]. As in the past, the time of day
and day of week non-stationarities observed are consistent with human activity. In
particular, the enterprise and university data sets show peak workloads during work
hours on weekdays, when users are at work or on campus. The historical data set
(from a residential ISP) reveals peak use during evenings and weekends, when users
are at home. Unlike a decade ago, however, the pervasiveness of portable devices
(e.g., laptops) and changes to business policies (e.g., shutting down computers at
night to reduce energy use) could result in automated use of Web-based services
occurring during work hours.

GET is the dominant method: As was the case a decade ago [Cunha et al.
1995; Duska et al. 1997; Kelly and Mogul 2002; Mahanti et al. 2000; Wolman et al.
1999], GET is the most prevalent method, used for over 90% of the transactions
and over 90% of the downloaded data. Most remaining transactions (6–8%) use the
POST method for uploading data to the server. This method is used, for example,
in (Web-based) email, posting comments, and Web-based instant messaging.

HTTP response codes: Table IX shows that like a decade ago, most HTTP
transactions resulted in either a “Successful” (status 200) object transfer or a “Not
Modified” (status 304) cache validation message. In our new data sets, these trans-
actions account for 90-94% of all transactions, compared to 92% of all transactions
in the historical data set. The next most common status codes are “Redirections”
(e.g., status 301, 302, 303) at 4–5%, reflecting load-balancing across Web server
farms or delivery infrastructures. The “Partial Content” (status 206) response,
although seldom used, contributes a moderate fraction (2–7%) of the bytes down-
loaded in the new data sets. This is likely due to some services breaking large
objects into smaller pieces prior to downloading. The proxy in our historical data
set also handled FTP transactions; these are classified as part of “Other” status
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Table IX. Breakdown of status codes.

Status Code
Enterprise University Historical

% Trans. % Bytes % Trans. % Bytes % Trans. % Bytes

Successful (200) 72.18 92.15 77.87 97.27 75.83 87.50
Not Modified (304) 21.44 0.43 11.98 0.08 15.81 0.15

Partial Content (206) 0.35 7.02 0.54 2.42 0.02 0.04
Redirection (30x) 3.73 0.14 5.14 0.10 3.96 0.11
Client Error (40x) 1.68 0.17 1.50 0.07 1.60 0.06
Server Error (50x) 0.19 0.01 0.17 0.01 1.51 0.06

Other 0.43 0.08 2.80 0.05 1.27 12.08

codes.
Zipf-like popularity: Figure 6 shows the rank-frequency plot (with logarithmic

scale on both axes) for the total number of references to each unique object for each
of our data sets.9 The straight-line trend indicates strong Zipf-like behavior in all
data sets, consistent with earlier Web studies [Breslau et al. 1999; Glassman 1994;
Kelly and Mogul 2002; Mahanti et al. 2000]. Using a discrete version of maximum

likelihood estimation [Clauset et al. 2009; Newman 2005], we estimated the Zipf
exponent [Adamic 2009; Adamic and Huberman 2002] as θ ≈ 1.0 in each of our
recent data sets, and as θ ≈ 0.9 in the historical data set. These results suggest
that there have been a shift towards a higher skew in object popularity. Another
reason for the higher Zipf exponent than suggested by previous studies may be due
to the maximum likelihood estimation giving a more even weight to all parts of
the distribution. Traditional regression techniques, which were used in some prior
works to estimate the Zipf exponent, are subject to systematic subject to systematic
(and potentially large) errors [Clauset et al. 2009].
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Caching is effective: Wolman et al. [1999] considered the “ideal” cache request
hit rate as a function of client population, and observed that 51–60% of requests

9For this analysis only, we examined the referencing activity of a single week day (Sep. 15th) in
the enterprise data set, due to the space requirements of this analysis and the memory limitations
of our analysis machine. We still used the entire university and historical data sets.
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Table X. Breakdown of cache actions.

Cache action
Enterprise Historical

% Trans. % Bytes % Trans. % Bytes

Hit 46.8 24.8 26.9 22.8
Not Cacheable 38.0 30.7 8.6 4.7

Miss 12.1 37.8 43.5 72.3
Other 3.1 6.8 21.0 0.2

are to cacheable documents. Examining the cache action fields (i.e., the action
taken by the cache for each requested object, based on the accompanying HTTP
cache control headers) in our enterprise data set suggests that caching properties
remain similar to a decade ago. In the enterprise data set, 38% of cache misses due
to objects marked as uncacheable, compared to 40–49% reported by Wolman et

al. [1999]. Our historical data set did not include detailed cache action information.
We established a lower bound (8.6%) using the number of requests for server-side
scripts (e.g., cgi-bin).

The set of enterprise proxies achieve a 47% cache hit rate (which is consistent
with the achievable hit ratios reported a decade ago by both Wolman et al. [1999]
and Mahanti, et al. [2000]. Our historical data set observed a much lower hit rate
of 26.9%, but this was largely due to a conservative consistency mechanism, as an
additional 14.3% of requests resulted in Not Modified responses from the origin
servers. This means the cache in the historical data set had an effective hit rate of
41.2%. The “byte hit rate” is substantially lower (25% in the enterprise data set,
23% in the historical data set), indicating that hits are typically for small objects.

Small objects dominate: Figure 7(a) shows the empirical CDF for the sizes
of distinct objects. It also shows the transfer size distributions, since there may
be many transactions for the same object. Figure 7(b) shows the cumulative per-
centage of the total data volume for object transfers, as a function of the object
threshold size. (When interpreting these results it is important to note that the
per-object and per-transaction curves in Figure 7(a) are with regards to frequencies,
while the download curves in Figure 7(b) pertain to data volume.)
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The size distributions for unique objects and for transactions are similar, both
within and across the three data sets. In addition, most transfers are for small
objects: about 85% of the transfers are for objects smaller than 10 KB in the two
new data sets, and 77% in the historical data set. Not only do small file sizes still
dominate, but Figure 7(a) shows that most objects and transfers in the new data
sets are smaller than they were in the historical data set. This is at least partially
due to many Web sites splitting their pages into many (smaller) objects that are
hosted and delivered by many different servers.

Heavy tails: The “data download” curves in Figure 7(b) show that large object
transfers account for most of the data volume. For example, while only 15% of
the object transfers in the new data sets are larger than 10 KB, these transfers
together account for over 90% of the total data downloaded. In the historical data
set, 24% of transfers were larger than 10 KB, accounting for 82% of the total data
downloaded. Similarly, large objects account for a disproportional fraction of the
total data volume. 50% of the total data volume is contributed by objects exceeding
4 MB in the enterprise data set and 28 MB in the university data set. The slightly
higher skew in the university data set is due to substantially more video traffic
from services such as YouTube. These large files only account for less than 0.1% of
the transactions. This skew is similar to observations from a decade ago, although
larger objects are having a greater effect. In the historical data set, 50% of the
total data volume was contributed by objects larger than 64 KB, which accounted
for 2% of transactions.

5.2 Differences in Transaction-level Statistics

Compared to Web data sets from a decade ago, we have also identified some dif-

ferences that provide insights into the evolution of the Web. Our data sets provide
evidence to quantify these trends.

POST method more frequently used: POST currently accounts for only 6–
8% of the transactions, although this is an increase from a decade ago. For example,
less than 2% of transactions in our historical data set used the POST method.
This change is important to note, as it affects the amount of data uploaded. In
the enterprise data set, the POST method was responsible for 23% of all uploaded
data (including HTTP request headers). In the university data set (which excludes
HTTP request headers from the count), the POST method accounts for essentially
all of the uploaded data. As HTTP is used to provide additional functionality via
Web-based services, use of the POST method may become more prevalent, in which
case the volume of data transferred to servers will increase.

Scripts are more prevalent: In the Web’s first decade, image and text (e.g.,
HTML) objects accounted for more than 90% of all transactions [Cunha et al.
1995; Kelly and Mogul 2002; Mahanti et al. 2000]. Today, application types are
also prevalent, due to the extensive use of scripts (e.g., Javascript) to provide more
sophisticated interfaces to Web-based services. In fact, 50–75% of the transactions
of type “application” are for Javascript objects (i.e., declared to be of content type
Application/Javascript by the server). Table XI provide a high-level breakdown
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Table XI. Breakdown of content types

Content Type
Enterprise University Historical

% Trans. % Bytes % Trans. % Bytes % Trans. % Bytes

Images 51.87 14.81 39.00 9.96 73.11 47.58
Text 26.50 13.95 33.56 13.69 12.56 4.97

Application 18.71 40.14 13.75 28.33 8.61 4.71
Video 0.11 24.46 0.20 40.54 0.17 19.87
Audio 0.04 3.98 0.05 6.21 0.60 3.92
Other 2.76 2.65 13.44 1.27 4.95 18.95

of the content types observed.10

Video traffic is growing: The percentage of transactions involving audio and
video remains quite low (< 1%). However, audio and video types do account for 24–
48% of the downloaded bytes, compared to 20% in the historical data set. These
percentages may become more significant as high definition (HD) quality video
becomes more prevalent. We expect this could happen in the near future, as it
is already possible to buy a HD-quality video camera for around $100 USD, and
commercial sites (such as YouTube11, Dailymotion12 and Smugmug13) already offer
upload, download, storage, and viewing of HD content. Clearly, if such types do
become more common, organizations will feel the effects on their networks.

Another change relates to video formats. A decade ago, the most common video
formats included MPEG and AVI [Cunha et al. 1995; Kelly and Mogul 2002; Ma-
hanti et al. 2000]. In our data sets, Flash Video (the format used by many popular
video sharing services) accounts for 20% of the total data downloaded at the enter-
prise, and 25% at the university.

Heavier heavy tails: Comparing Figure 7(b) with those observed by Mahanti et
al. [2000], the CDF of the unique object-size distribution is similar to a decade ago,
though significantly larger transfer sizes are seen now; i.e., the tail is longer and
shifted to the right. Should this change continue, it could diminish the effectiveness
of caches to reduce network bandwidth consumption.

Software tools and size constraints: Finally, we note that there is a notice-
able “step” in the transfer size distribution for both data sets near 100 MB. This
“step” is due to some sites and/or software tools splitting large files into chunks of
“smaller” sizes, as well as sites (e.g., YouTube) imposing file size limitations. As
opposed to the general trend pushing to the right, these constraints truncate the

10These statistics rely on information in the content-type field for the new data sets, and file
extensions and substrings in the historical data set. The 13% transactions in the “other” category
in the University data set are a reflection of many objects not being labeled by the content
providers. While the majority of these transactions can be manually placed into traditional
categories such as applications, text and images, we note that a non-negligible fraction corresponds
to live-updates, such as automatic score-board updates, which content providers may find more
difficult to label into traditional categories. The “application” category reflects client-side scripts
in the new data sets (e.g., Javascript) but server-side scripts (e.g., cgi-bin) for the historical
data set.
11www.youtube.com
12www.dailymotion.com
13www.smugmug.com
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tail of the distribution. However, we note that the tail now contains substantially
larger files than observed a decade ago. For example, while files larger than 100 MB
accounted for a negligible portion of the bytes observed by Mahanti et al. [2000]
a decade ago, these files now account for 16–30% of the total bytes transferred in
our data sets. As network bandwidths and storage capacities increase (and the
corresponding costs decrease), the size-based constraints will likely move further
“to the right”, and may eventually disappear.

5.3 Summary and Discussion

To summarize, by comparing the current access characteristics to those previously
observed in the literature, we have identified similarities and differences to the
characteristics observed a decade ago. The primary differences are more prevalent
use of the POST method, increased use of scripts (e.g., Javascript), a longer
tail of large files (e.g., videos, software distribution), and the popularity of new
video formats. These differences are consistent with general Web trends: increased
interactivity of Web 2.0, increased availability of video on the Internet, and use of
new object formats (e.g., Shockwave Flash video) to enable new functionality.

A necessary component of workload characterization is empirical data. This tends
to be difficult to obtain, especially from enterprise environments. Interestingly, the
use of Web-based services in the university traces considered here exhibits many
similar properties as the enterprise traces. There are two reasons why we think
these similarities exist. First, many of the users in a university environment will
find employment with enterprises. When they do, they will “drag along” their
usage behaviors (even if policies at the enterprises must first be revised to permit
usage of certain Web-based services). Second, universities are a type of enterprise;
they generate revenue (e.g., via tuition), and they incur expenses (e.g., to con-
struct and operate buildings, etc.). As such, universities are faced with managing
their expenses, and may become early adopters of Web-based services. In fact, nu-
merous universities are already using Web-based services to provide students with
email and other software functionalities. For example, Google currently offers free
“communication and collaboration tools” to educational institutions [Google Apps
Education Edition 2009].

6. CONCLUSIONS

As the Web evolves, and as organizations adopt Web-based services to provide
critical business functionality, these organizations will have a greater need for in-
formation on the types of Web-based services they use, who provides them, who is
using them, and why. In this paper, we took an initial step towards understanding
how to answer such questions, by examining traces of Web-based service use within
a large enterprise and a large university. To build this understanding, we examined
techniques for identifying service instances, service providers, brands, and service
classes. We highlighted the challenges for discerning the functionalities in use on
the Web today, assessed the strengths and weaknesses of the techniques used, and
provided initial insights on what popular functionalities the Web provides to orga-
nizations today.

In addition to presenting a new dimension to Web workload characterization, we
also revisited the traditional object-level properties considered in previous work.
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Our results show that while the Web has undergone fundamental changes with
respect to the services it provides, the underlying object-level properties have not
significantly changed. While there are some differences observed between the enter-
prise and university data sets, we note that many of the properties observed appear
to be similar. This raises the question if the Web activity collected at large univer-
sities may provide useful insights for enterprise-level networks as well. However, a
community-wide effort would be required to fully answer such a question. Identi-
fying such invariants would be particularly valuable, as many academic researchers
do not have access to enterprise data.

This paper works towards enabling organizations to better understand their use
of Web-based services. A key contribution of our work is the discovery of the
many gaps that exist in composing useful information in a scalable, automated and
verifiable manner. Addressing these and related gaps are open research questions.
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