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PHILLIPA GILL

University of Toronto, Toronto, ON, Canada

ANIKET MAHANTI

University of Calgary, Calgary, AB, Canada

CAREY WILLIAMSON

University of Calgary, Calgary, AB, Canada

There is a continuous struggle for control of resources at every organization that is connected
to the Internet. The local organization wishes to use its resources to achieve strategic goals. Some
external entities seek direct control of these resources, to use for purposes such as spamming or
launching denial-of-service attacks. Other external entities seek indirect control of assets (e.g.,
users, finances), but provide services in exchange for them.

Using a year-long trace from an edge network, we examine what various external organizations
know about one organization. We compare the types of information exposed by or to external
organizations using either active (reconnaissance) or passive (surveillance) techniques. We also
explore the direct and indirect control external entities have on local IT resources.

Categories and Subject Descriptors: C.2.0 [Computer-Communications Networks]: General

General Terms: Measurement

Additional Key Words and Phrases: Workload Characterization

Authors’ address: M. Arlitt, HP Labs, Palo Alto, CA, USA, martin.arlitt@hp.com; N. Carlsson,
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1. INTRODUCTION

Many organizations rely on the Internet and other IT resources to achieve their
goals. However, there is a continuous struggle for control of resources at each
and every organization connected to the Internet. In addition to management
teams that allocate resources to achieve internal goals, there typically are many
other external organizations (and/or individuals) interested in gaining control of
the organization’s resources. As part of this struggle, the organization’s technical
team faces numerous challenges, one of which is responding to security risks that
could prevent the IT infrastructure from functioning as intended.

There are a variety of external entities that are interested in the local organiza-
tion. Some seek direct control of the local organization’s assets (e.g., computers,
finances). Others seek indirect control of an organization’s assets, but provide
services in exchange. Both groups collect information in pursuit of these goals,
typically via reconnaissance (i.e., active measurements like scanning) of the local
organization or surveillance (i.e., observation through passive measurements) of the
local organization’s use of Internet services.

Using a year-long trace of network activity from a large university, we examine
how much information is leaked to external organizations, how the information
is leaked, and how much control they have within the target organization. The
purpose of our characterization study is to improve the understanding of these
issues, so that proper solutions can be developed.

We used the following five questions to guide our work:

—Who are we dealing with?

—What do they know about the local organization?

—How did they obtain that information?

—Which intelligence gathering technique is the most effective?

—What control do they have over local resources?

The primary contribution of our work is the characterization of a year in the life
of an edge network. We quantify the extent of information that various external
organizations learn about the IT infrastructure of an edge network. On this topic,
we believe we are the first to compare the information gained by two different
intelligence gathering techniques. We quantify the control (direct or indirect) that
external entities have on local IT resources. Our results show that many external
entities have extensive, up-to-date information on the edge network. While some of
the “leaks” could be prevented, others will be more difficult to eliminate. Instead,
edge network operators should stay informed of what these external entities learn,
so that problems can be quickly remediated.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 describes our research methodology. Section 4 presents summary
characteristics for our data sets. Section 5 investigates the participating organiza-
tions in the observed traffic. Section 6 examines what selected external organiza-
tions know about the local edge network. Section 7 considers which local resources
these external organizations control. Section 8 summarizes our results and future
directions.

ACM Journal Name, Vol. V, No. N, MM 20YY.



Characterizing Intelligence Gathering and Control on an Edge Network · 3

2. RELATED WORK

Internet security has received significant attention from the research community,
because of its critical importance. We briefly consider research in four areas:
Surveillance, Reconnaissance, Botnet Characterization, and Intrusion Detection
(i.e., “real-time intelligence” for computer networks).

Surveillance: Surveillance is an intelligence gathering technique that obtains
information through passive observation of activity. This method is commonly
used on the Web, for example by behavioral tracking sites (e.g., doubleclick.net)
or Web analytics sites (e.g., google-analytics.com) [Krishnamurthy and Wills
2009]. Krishnamurthy and Wills [2009] examine how third parties are able to track
user actions across many Web sites, through the use of “hooks” like cookies and
Javascript. Although our work focuses on knowledge obtained on organizations
rather than users, their work clearly demonstrates how organizations can improve
their understanding of targets of interest.

Reconnaissance: Reconnaissance comprises efforts to actively gather informa-
tion of interest. In the computer systems and networks domain, scanning is an ac-
tive measurement technique used to gather information about resources at a target
organization. There is significantly more research on this topic than on surveillance.
For example, Yegneswaran et al. [2003] provided an extensive characterization of
four months of third-party scanning activity, by examining firewall logs from 1,600
organizations. Pang et al. [2004] monitored unused IP address space to characterize
the sources and intent of “Internet background radiation”. Jin et al. [2007; 2007]
examined third-party activity on gray space (unassigned IP address space) to iden-
tify and categorize scanners. Allman et al. [2007] conducted a longitudinal study of
third-party scanning, investigating the onset of scanning, scanning frequency, and
scanned services over a 12-year period.

A key difference from these works is that we focus on understanding what the
third party learns about the targeted environment. This is important as it helps
prioritize the actions that the technical team needs to take in response to the
scan. Also, these works focus on reconnaissance, while our work also considers
information an external party could learn through surveillance. We do, however,
leverage the heuristics defined by Allman et al. [2007]. Other related works to
understanding and/or addressing reconnaissance traffic include scan identification
techniques [Gates et al. 2006; Xu et al. 2008; Jung et al. 2004; Allman et al. 2007],
visualization techniques [Muelder et al. 2005; Jin et al. 2009; Yin et al. 2004], and
worm detection/mitigation techniques [Jung et al. 2007; Zou et al. 2005; Sommers
et al. 2004; Weaver et al. 2004]. Our work complements these.

Botnets: Identifying resources under the control of external organizations is
challenging, as the controlling party may try to conceal this fact. On the Internet,
botnets (sets of compromised hosts) are a commodity desired by certain organiza-
tions. A considerable number of researchers have characterized botnets [Barford
and Blodgett 2007; Barford and Yegneswaran 2006; Zhuang et al. 2008; Li et al.
2009], or developed techniques for identifying them [Collins et al. 2007; Karasaridis
et al. 2007]. We leverage the observation that botnets are often used to send spam
to identify hosts that are (potentially) under the control of an external organization.

Intrusion Detection: Network Intrusion Detection Systems (NIDS) are used
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to monitor network activity and alert network administrators to potentially im-
portant events. A challenge is to accurately identify prioritized, actionable events
from the large volumes of network activity. Shankar and Paxson [2003] proposed
a technique called Active Mapping that helps reduce the number of false alarms.
Katti et al. [2005] demonstrated the value of multiple collaborating NIDS to combat
“common enemies”. Duffield et al. [2009] used machine learning with flow signa-
tures to detect malicious or unwanted traffic. Our work complements such studies,
as by understanding what information is being leaked, we assist in assessing the
significance of different events. This could be leveraged to help reduce the number
of false alarms, by eliminating (or lowering the priority of) events that do not reveal
sensitive information.

3. METHODOLOGY

3.1 Data Collection

We use three types of measurements collected from the University of Calgary’s 400
Mbps full-duplex link to the Internet. Two of the data sets span a full year and the
third covers nine months. All the measurements were collected simultaneously using
a SunFire server with four quad-core CPUs, 32 GB memory, and 1 TB disk space.
One of the monitor’s gigabit Ethernet NICs receives a mirror of all the university’s
Internet traffic. The monitor rotates and compresses the logs for each data set
described in Section 3.2 on a daily basis. The compressed logs are periodically
moved to a secure archive for long-term storage.

We take the issues of privacy and security very seriously. To protect user privacy,
we limit the types of data we record, restrict access to the recorded data, and do
not conduct analyses to try and identify individual users. Regarding security, we
share actionable information with the campus IT staff.

3.2 Data Sets

While recording full-packet traces to disk could make a lot of interesting and useful
information available to us, it would be difficult to sustain indefinitely and would
also pose significant privacy concerns. Therefore, we determined what data we could
gather continuously (without ever recording full-packet traces to disk) that would
enable us to answer the research questions at hand. We determined we needed three
complementary types of data sets in our work: connection-level records, HTTP
transaction records, and frame-level summaries. We next describe each of these
data sets.

Connection: The data set that we study most extensively is a collection of con-
nection summaries. We use the conn feature of the open-source Intrusion Detection
System Bro1 to collect these summaries. Each connection summary contains in-
formation such as the source and destination IP addresses and port numbers, the
number of bytes transferred in each direction, and the “state” of the connection.
A detailed description of the connection summaries is provided in the online Bro
documentation.2 This data set was collected from April 1, 2008 to March 31, 2009.

1http://www.bro-ids.org/
2http://tinyurl.com/bro-conns
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HTTP: To supplement the connection data, we gathered summaries of Web
transactions. We implemented this as a script in a separate Bro process. This
script records information such as the URL, the User-Agent, and the presence (or
absence) of certain HTTP headers. To preserve user privacy, we do not record the
local IP address involved in the transaction, nor do we record any cookies. This
data set was collected between July 1, 2008 and March 31, 2009.

Frame: For validation purposes, we used frame-level summaries that count the
number of frames and bytes transferred in each direction broken down by network
and transport-layer protocols. The functionality (implemented in C) is kept as
simple as possible to minimize the overhead it places on the monitor. The data set
is considered the “ground truth” (particularly for the amount of data transferred)
and is used to validate other results. The counts were recorded for every one minute
interval for the same one-year period as the connection data.

3.3 Scalability Challenges

While the one-year duration of our traces allows us to examine long-term behaviors,
coping with the large volume of data is a challenge. To address this challenge, we
apply best practices, such as developing analyses on small subsets of the data [Pax-
son 2004]. The bulk of our analyses were run on a server with four single-core AMD
Opteron processors and 8 GB of memory. Each analysis used two processors, one
to decompress the data and stream it to the analysis program on another processor.
Many of the analyses use the same parser (written in C) to extract the fields of
interest from each connection summary. Specialized functions are added as needed
to perform specific analyses of interest.

Developing efficient and scalable analyses is important to us, as real-time intelli-
gence is our long-term goal. We made a key design choice to focus initially on the
activity of distinct /24 prefixes (i.e., the first three octets of an IPv4 address). As a
result, most of our analyses use an array of 224 data structures, one for each possible
/24 prefix. The contents of the data structure vary by analysis. For example, since
a /24 network can have at most 28 hosts, we use a bit vector of length 32 bytes (256
bits) to record the unique IPv4 addresses seen per prefix. Other variables keep a
running count of the number of hosts and flows seen for the prefix. This approach
provides a reasonable balance between state and time overheads. For example, the
individual analyses we conducted on the year-long “connection” data set required
16–25 hours to complete.

3.4 Supplementary Data Sets

We also use several secondary sources to supplement our data sets. In particular,
we needed a mapping between external organizations and their corresponding /24
prefixes. This information is available from the Regional Internet Registries (RIRs).
We queried the RIRs (obeying rate limits) for the organization identifier (OrgID)
for the most popular /24 prefixes observed (based on number of connections), to
determine the external organizations. Unfortunately, some organizations have mul-
tiple OrgIDs, for reasons such as acquisition or internal policy [Krishnamurthy and
Wills 2009]. We attempted several methods to discover the set of OrgIDs affiliated
with an organization: using the organization lookup feature available in some RIRs;
extracting the domain of the contact email for an OrgID and grouping OrgIDs with
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the same contact domain; and exploiting regular patterns in the OrgID (e.g., orga-
nization name followed by a number).

4. SUMMARY CHARACTERISTICS

This section examines some high-level characteristics of the data sets and discusses
several limitations. In subsequent sections, we examine specific characteristics in
more detail.

Table I provides information from the Frame data set. Over one trillion frames
and nearly 700 TB of data were transmitted over the network, averaging about
2 TB per day. Approximately one half of the frames were inbound ; i.e., sent by
computers on the Internet to destinations within the university network. Slightly
more data (57%) was observed for inbound frames than for outbound frames (43%).
This indicates (not surprisingly) that the university consumes more data from the
Internet than it provides to others.

Table I. Information from Frame Data Set.

Description Value

Total Frames Observed 1,173.0 billion
Total Data Observed 695.9 TB

Inbound Frames 50.2%
Inbound Data 56.6%

Outbound Frames 49.7%
Outbound Data 43.4%

Using the Frame data set, Figure 1 shows time series plots of the volume of data
transferred on a daily basis into or out of the university. As noted earlier, a slightly
greater volume of data is consumed; this can be seen in the higher daily volume of
data in the inbound direction, which peaks near 2 TB per day in March 2009. As
one might expect, the daily volume is higher on weekdays than on weekends. The
daily volume reflects the university’s annual calendar; volumes are highest when
classes are in session3, and lower otherwise. This characteristic affects the rate at
which external entities learn information about the organization (as will be seen
later). TCP is the dominant transport-layer protocol used on this network. For
both the inbound and outbound directions, TCP transfers about 80% of all frames
and 90% of the data bytes. UDP accounts for almost all of the remaining traffic.

There are two periods of missing data in Figure 1. From April 14–21, 2008, our
monitor was offline due to a hardware problem. On December 6th and 7th, 2008 (a
weekend), no packets were forwarded to our monitor due to scheduled maintenance
on the campus network infrastructure. Otherwise, our data set provides a complete
picture of a year in the life of a campus network.

Table II summarizes the “Connections” data set. The year-long data set contains
more than 39 billion connection summaries. Inbound connections are initiated by an
external host and destined to a host on campus. Outbound connections are initiated

3Regular sessions span from September-December and January-April, with a five-day workweek
from Monday through Friday, and a one-week study break in the middle of February.
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Fig. 1. Data Volume by Transport Protocol.

by a host on campus and destined to a host on the Internet. The connections are
roughly split evenly across these two categories (48% versus 52%).

Table II. Summary of Connections Data Set.

Description Value

Data Set Size 850 GB (compressed)
Data Set Size 3.3 TB (uncompressed)
Connection Summaries 39.3 billion
Total Data Observed 1,620.3 TB

Inbound Connections 48.1%
Outbound Connections 51.9%

One problem with the connection summaries is that the total data volume re-
ported is incorrect. This is due to the large percentage of TCP connections that
are terminated with a RST (reset) packet rather than a FIN packet. The RST
packet may not contain a valid sequence number, which can result in incorrect cal-
culation of the number of bytes transferred. This reset behavior has existed on the
Internet for some time [Arlitt and Williamson 2005]. Weaver et al. [2009] provide a
thorough discussion of reset TCP connections. While we ignore blatantly incorrect
size information (e.g., MB or GB transfers in less than one millisecond), the total
data transfer estimate is still more than double the data transfer reported by the
low-level data set. Thus in this work we focus primarily on flow volumes rather
than data volumes to identify types of activity. For future studies we plan to alter
the data collection to address this particular issue.

Table III provides a breakdown of the connection states for both the inbound
and outbound directions. Following the work of Allman et al. [2007], we group
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the connections according to their state (as determined by the Bro conn script).4

“Good” connections account for just under half of all connections. About 40% of
the inbound connections are considered “Bad”, while 30% of outbound connections
also fall in this category. The remaining connections are labeled as “Unknown”. We
use information on the mix of good, bad, and unknown connections in subsequent
sections.

Table III. Summary of Connection States.

Type State Inbound (%) Outbound (%)

Good

SF 43.42 39.99
RSTO 2.63 4.55
RSTR 0.43 1.81
Total 46.48 46.35

Bad

S0 35.71 27.13
RSTOS0 3.54 1.10

REJ 0.99 2.40
Total 40.24 30.63

Unknown 13.28 23.02

5. WHO ARE WE DEALING WITH?

5.1 Aggregating by Network Prefix

As an initial step towards answering our first question regarding who might be
gathering intelligence about the university, we examine the diversity of external
IPv4 addresses observed in the connection summaries. In addition, we also counted
the distinct /24 prefixes observed. The motivation for considering the prefixes is
to gain insight into the organizations involved in the communications. While IPv4
addresses can be allocated in blocks other than /24, we felt that /24 represented
a reasonable starting point.5 Once we understand the popular prefixes, we can
determine the actual address blocks they belong to, and focus on the corresponding
organizations.

Table IV shows the number of distinct IPv4 addresses and /24 prefixes observed
in our connection summary data set. Considering only the inbound connections,

4The Bro conn script classifies connections into one of thirteen states (see http://tinyurl.com/

bro-conns). The states shown in Table III corresponds to: normal establishment and termination
(SF); connection established, originator aborted (i.e., a RST was sent by originator) (RSTO);
established, responder aborted (RSTR); connection attempt seen, no reply (S0); originator sent
a SYN followed by a RST, a SYN-ACK was not seen from the responder (RSTOS0); connection
attempt rejected (REJ). For completeness, the remaining connections, which we do not further
classify, but leave as “unknown”, are: connection established and close attempt seen only from
originator (S2); connection established and close attempt seen only from responder (S3); responder
sent a SYN ACK followed by a RST, a SYN not seen from the (purported) originator (RSTRH);
originator sent a SYN followed by a FIN, a SYN-ACK not seen from the responder (SH); responder
sent a SYN ACK followed by a FIN, a SYN not seen from the originator (SHR); no SYN seen, just
midstream traffic (OTH). For a detailed discussion of each of these states, see Allman et al. [2007].
5Of the roughly 700,000 /24 prefixes we resolved, only 1.82% were from address blocks with larger
prefixes.

ACM Journal Name, Vol. V, No. N, MM 20YY.



Characterizing Intelligence Gathering and Control on an Edge Network · 9

we observe nearly 300 million unique IPv4 addresses, with 3.2 million distinct /24
prefixes. This is roughly 7% of all possible (but not necessarily routable) IPv4
addresses, and 19% of the possible /24 prefixes.

For the outbound connections, the number of destination IP addresses is slightly
larger at 324 million, but the diversity in terms of /24 prefixes increases substan-
tially to 10.6 million, or 63% of the possible /24 prefixes. Throughout the mea-
surement period, there is a lot of overlap in the external addresses observed from
inbound and outbound connections. When all connections are considered together,
392 million distinct IPv4 addresses and 10.6 million unique /24 prefixes are seen
(9.1% and 63.4% of the possibilities, respectively).

Table IV. Summary of External IPv4 Addresses.

Unique Unique
Description IPv4 Addresses /24 Prefixes

Inbound Connections 298,367,959 3,152,020
Outbound Connections 324,174,907 10,577,626
All Connections 391,875,529 10,637,400

The left-hand side of Table V shows how the /24 prefixes were “discovered”; i.e.,
which protocol and state the connection had when a distinct /24 prefix was first
encountered in the trace. For inbound connections, about two-thirds of the /24
prefixes are encountered for “good” connections (i.e., connections that exchanged
data). UDP connections account for half of the discoveries. “Bad” connections
(i.e., those typically associated with scanning, such as S0 or ICMP echo) discovered
about 25% of the distinct /24 prefixes.

For outbound connections, the breakdown is quite different. “Good” connections
discovered less than 10% of the 10.5M unique /24 prefixes. 90% of the discoveries
were with “bad” connections; mostly using TCP (57%), but a lot with UDP (20%)
or ICMP echo (13%).

Table V. Breakdown of External IPv4 /24 Prefix and External IPv4 Address Discovery.

Type Protocol
External IPv4 /24 Prefixes External IPv4 Addresses

Inbound (%) Outbound (%) Inbound (%) Outbound (%)

Good (Successful)

TCP 18.4 2.9 10.9 4.6
UDP 49.6 6.0 59.2 22.8
Total 68.0 8.9 70.1 27.4

Bad (Exploratory)

TCP 6.5 57.1 5.1 20.0
UDP 17.0 20.0 20.2 43.4
ICMP 1.3 12.5 0.2 5.4

Total 24.8 89.6 25.5 68.8

Unknown (Other)

TCP 2.2 0.8 1.6 1.9
UDP 0.4 0.0 0.0 0.0
ICMP 4.6 0.7 2.7 2.0
Total 7.2 1.5 4.4 3.8
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The right-hand side of Table V shows the breakdown of the discovery of IPv4
addresses. A notable difference from the discovery of /24 prefixes is “good” con-
nections discover a greater percentage of the addresses in both the inbound and
outbound directions. This indicates that the “bad” connections are often quite
distributed across the IPv4 address space, rather than concentrated within small
portions (e.g., a /24 prefix).

Since TCP is utilized for a much larger fraction of all connections than UDP, it is
somewhat surprising to see UDP account for such a large portion of the /24 prefix
and IPv4 address discoveries. One reason for this is the use of UDP for control
communication by some popular P2P applications (e.g., eMule).
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Fig. 2. Frequency of /24 Prefixes.

Figure 2 shows the frequency distribution of the inbound connections across the
unique /24 prefixes. The distribution is clearly non-uniform, with some prefixes
responsible for significantly more inbound connections than others. On this log-log
plot, the graph appears roughly linear through the first one million prefixes. The
distribution drops off sharply for the remaining two million prefixes. Many of the
one million highest ranked prefixes involved “good” connections, while the “bad”
connections are more commonly associated with prefixes with fewer connections.

Figure 2 also shows how the 20.4 billion outbound connections were distributed
across the 10.6 million distinct /24 prefixes observed on outbound connections.
The frequency distribution for outbound connections is more skewed than in the
inbound direction, as local users use popular Internet-based services. The frequency
distributions are quite similar from prefixes 10,000 through one million. The tails
of the distributions differ noticeably. The outbound connections are addressed to
an additional 7.4 million distinct /24 prefixes. Figure 2 shows that most of these
prefixes receive only a handful of connections from the university. Again, many of
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the connections associated with prefixes in this “unpopular” region were classified
as “bad” connections.

The results in this section demonstrate one of the first challenges in determining
who we are dealing with - the local organization communicates with a large and
diverse group. With many connections, it is also unclear if communication with
an organization actually occurred. In the subsequent sections, we take additional
steps towards answering our guiding questions.

5.2 Identifying Organizations

Using the statistics by /24 prefix, we match each prefix to an OrgID, as described in
Section 3. To reduce the overhead on the RIRs, we only issued queries for the most
popular prefixes, namely those cumulatively responsible for 75% of all connections.

Table VI lists the ten prefixes responsible for the most inbound connections. The
table also lists the percentage of connections that are classified as “bad” and the
number of hosts (out of at most 256 in the /24 subnet) that are contacting machines
on campus. The top /24 prefix (CHINANET-AH) belongs to China Telecom; it
generated 118 million incoming connections (over 300,000 per day). The states of
these connections are almost exclusively “bad”, using the definitions of Allman et
al. [2007]. The next four most popular /24 prefixes belong to ISPs in four different
countries: RCMS (RoadRunner) in the USA, ISPSYSTEM in Russia, VE-DEMA
(Desca.com) in Venezuela, and LUNA-DSL (luna.nl) in the Netherlands. Each of
these organizations has a number of users interested in selected services at the
university (e.g., Web), even if they are not aware they are visiting the university
(e.g., for P2P). These /24 prefixes are an example of how rankings can change as
data is aggregated; even though these OrgIDs are in the top 10 when ranked by a
single /24 prefix with the most inbound connections, when we aggregate all of the
/24 prefixes associated with an OrgID, these organizations drop from the top of the
list, behind larger organizations.

Three of the top ten /24 prefixes belong to popular Internet companies (Google,
Microsoft, and Yahoo!). These inbound connections are primarily the activity of
the crawlers associated with each company’s search engine. Two interesting ob-
servations about the activity of these prefixes are that they generate a moderate
number of “bad” connections (7–19%), and that they are distributed across more
hosts (25-84% coverage of 256 possible hosts) than any of the other prefixes (less
than 14% host coverage).

The remaining two /24 prefixes in the top ten belong to local companies. Telus
(TACE) provides commercial and residential communications services, including
Internet access. FCL-13 is a small local company. The high percentage of “bad”
connections from the Telus prefix come from 13 residential computers scanning the
university network.

While Table VI provides high-level statistics for the top ten prefixes for incom-
ing connections, we also computed other measures for these connections, including
byte counts, port counts, and fan-out ratios. These metrics provide additional di-
mensions to characterize the different external organizations. Rather than claiming
that some measures better characterize the differences between organizations than
others, we used Principal Component Analysis (PCA) together with clustering to
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Table VI. Top 10 /24 Prefixes for Inbound Connections.

Rank
Inbound

OrgID Country Connections % Bad Hosts

1 CHINANET-AH China 118,036,837 99.995 35
2 RCMS USA 56,077,430 0.106 24
3 ISPSYSTEM Russia 46,649,041 15.347 9
4 VE-DEMA Venezuela 42,282,187 0.345 28
5 LUNA-DSL Netherlands 37,429,823 0.004 33
6 GOGL USA 34,135,193 7.299 216
7 MSFT USA 34,017,285 18.976 200
8 TACE Canada 28,781,112 74.452 13
9 YHOO USA 27,589,471 4.051 65

10 FCL-13 Canada 26,016,295 10.511 6

Table VII. Top 10 /24 Prefixes for Outbound Connections.

Rank
Outbound

OrgID Country Connections Hosts

1 THEFA-3 USA 233,151,450 105
2 LLNW USA 199,406,030 182
3 TACE Canada 173,986,912 34
4 GOGL USA 135,869,335 60
5 GOGL USA 132,321,311 48
6 GOGL USA 119,603,516 56
7 AKAMA-3 USA 105,659,863 82
8 C01342375 USA 102,145,390 21
9 GOGL USA 78,934,636 53

10 EBSCO-1 USA 70,677,068 18

visualize the relationship between the top 50 prefixes observed on campus.6

Figure 3 shows the results of a cluster analysis of the output of a two-dimensional
PCA of the top 50 /24 prefixes based on incoming connections. Here, each dimen-
sion consists of a linear combination of nine different measures and the weights are
selected such that the two dimensions account for as much of the variability in our
data as possible. This approach provides a visualization of how similar the different
/24 prefixes are to each other.

Several distinct clusters are apparent in Figure 3. In particular, prefixes belong-
ing to the popular service providers Google, Microsoft, and Yahoo! (labeled as
“Providers”) form an exclusive cluster in the top right corner. On the other end of
the spectrum, ChinaNet (marked with a ‘1’) and a cluster with three ill-behaved
(and black-listed) subnets from Asia (in the lower left corner) are located relatively

6This part of the analysis was done using SPSS. For the clustering, we used hierarchical clustering,
but only show example results with eight “clusters” (including some singletons).
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Fig. 3. Clustering /24 prefixes using incoming connections.

far to the left.7

We apply the same methodology to determine the top ten destination /24 prefixes
for outbound connections. Table VII provides the results. Five of these prefixes
belong to organizations that provide globally popular services. The most popular
prefix belongs to Facebook (THEFA-3), while four others are assigned to Google
(GOGL). Two additional /24 prefixes in this list are related to content delivery -
Limelight Networks (LLNW) and Akamai (AKAMA-3). The third most popular
prefix belongs to Telus (TACE), a local ISP.

5.3 Organizational View

Next, we aggregate the /24 prefix statistics by OrgID. As stated earlier, some orga-
nizations have more than one OrgID [Krishnamurthy and Wills 2009]. Aggregating
OrgIDs into distinct organizations provides a clearer picture of external entities.

Table VIII shows the ten OrgIDs responsible for the most inbound and outbound
connections. Inbound connections have a mix of residential network providers
(SHAWC and TACE), search providers (GOGL, INKT (Yahoo!)), and several for-
eign providers (e.g., TurkTelekom, ChinaNet, Hinet, and TPNET.PL (NEOSTRADA)).
For outbound traffic, the top OrgIDs tend to be popular Web-based service providers
(GOGL, MSFT, THEFA-3, YHOO), content delivery providers (LLNW, AKA-
MAI), and providers of various other services (LVLT, VGRS, DOUBLE-3).

After completing the aforementioned analyses, we selected several organizations
to represent the different types of external entities observed in the traces. For
simplicity, we use three types: first-party providers, third-party providers, and In-

7When interpreting these results, we note that the primary component is dominated by measures
that capture the ratio between good and bad connections, good and bad fanout, and the number
of connections contacted using bad connections (with negative values being strongly correlated
with subnets being more “bad”). The secondary component, on the other hand, is dominated by
the number of hosts (with positive values being strongly correlated with larger number of hosts).
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Table VIII. Top 10 OrgIDs, Inbound/Outbound.

R
a
n
k Inbound Outbound

OrgID
Conns

OrgID
Conns

(106) (106)

1 SHAWC 2,558 GOGL 1,082
2 TACE 1,069 MSFT 456
3 TurkTelekom 392 THEFA-3 321
4 NEOSTRADA-ADSL 240 YHOO 286
5 GOGL 153 LLNW 280
6 CHINANET-AH 141 TACE 280
7 AR-APGO-LACNIC 127 LVLT 234
8 HINET-NET 104 VGRS 181
9 INKT 92 DOUBLE-3 180

10 CHINANET-GD 81 AKAMAI 163

ternet Service Providers (ISPs). The first two types were used by Krishnamurthy
and Wills in their study of privacy diffusion on the Web [Krishnamurthy and Wills
2009]. First-party providers are those that provide services directly visited by users,
such as search engines (e.g., www.google.com) and social networking sites (e.g.,
www.facebook.com). Third-party providers are indirectly visited by users when
they visit first-party providers. Examples of third-party providers include Con-
tent Delivery Networks (CDNs) like Akamai or Limelight. ISPs provide Internet
connectivity to users at other edge networks.

The main criteria we used to select external organizations to represent each type
was popularity (based on the volume of connections). The non-uniform distribution
of traffic across organizations presents an opportunity to learn what information
about an edge network is leaked by examining only a few external organizations. As
our results in this section will show, an organization’s popularity strongly influences
how much it knows about the local organization.

The set of first-party providers that we selected consists of four popular Web-
based service providers (Facebook, Google, Microsoft, Yahoo!). We selected three
third-party providers: a CDN (Limelight Networks), a global registry service (Verisign)
and an Infrastructure-as-a-Service (IaaS) provider (Amazon). While Table VIII
shows that Akamai is another popular CDN, we omit them from our set of third-
party providers as our network monitor does not see traffic between university com-
puters and the Akamai edge nodes located on the campus network. Even though
Amazon is also a first-party provider via their online store, we believe their IaaS
business is responsible for much of their on-campus traffic. Thus we consider them
a third-party provider for our study.

In the set of ISPs, we included two local providers (Telus, Shaw) and four foreign
providers that appear in the top ten list for inbound connections (ChinaNet, Hinet,
TPNET.PL, and TurkTelekom). At the time of our study, these four foreign ISPs
were all on the Composite Blocking List8, indicating that other organizations have
reported “bad” traffic originating from them.

Table IX provides summary statistics on the selected external organizations. Ta-

8http://cbl.abuseat.org/domain.html
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ble IX reveals distinctive commonalities within groups, and differences between
them. For example, the first-party providers used relatively few distinct prefixes
(tens to hundreds), and popular first-party providers tend to have a higher propor-
tion of outbound connections than inbound ones. The first-party providers that
offer search services (Google, Microsoft, and Yahoo!) have a noticeably larger frac-
tion of inbound connections than the social networking provider (Facebook). This
is primarily due to the search services scanning for Web servers, retrieving doc-
uments for indexing, or gathering consistency information for cached documents
from hundreds of different Web sites on campus. These three first-party providers
also offer email service, and thus also have inbound connections to deliver messages
to email servers on campus. They also have inbound connections to the campus
DNS servers, to learn about the hosts using their services. For first-party providers
like Google, Microsoft, and Yahoo!, this assortment of tasks can result in hundreds
of thousands of inbound connections per day.

The third-party providers have characteristics similar to the first-party providers.
Since the third-party providers do not provide Web search functionality, they have
very few inbound connections (i.e., no crawling activity). It is interesting to note
that Limelight has almost as much outbound traffic as Facebook, even though most
Internet users are likely only familiar with the latter. Also, more /24 prefixes were
seen for Amazon than either of the other third-party providers, as well as more
than Google and Facebook. One possible explanation for this is the traffic is for
Amazon’s IaaS infrastructure, rather than its online store. This is one reason why
we included Amazon as a third-party rather than first-party provider.

The ISPs exhibit quite different characteristics. For example, ISPs have hosts on
thousands of /24 prefixes, rather than tens or hundreds. They are also responsi-
ble for proportionally more inbound connections than outbound connections. The
local ISP Shaw seemingly has a disproportionately large fraction of the inbound
connections (almost 15%). This is due to students, faculty, staff and other local
people accessing university resources from their homes.

For the remainder of the paper, we focus on the organizations in Table IX.

Table IX. First-Party, Third-Party, and ISP Statistics.

Class Organization
Prefix Connections
(/24) In (%) Out (%)

Google 263 0.56 7.44
First-Party Microsoft 398 0.42 3.20
Providers Yahoo! 630 0.45 2.71

Facebook 19 0.04 1.90

Third-Party Amazon 365 0.02 0.26
Providers Limelight 114 0.06 1.73

Verisign 29 0.00 1.86

ISPs

ChinaNet 20,022 2.78 1.10
TurkTelekom 13,309 2.24 0.09

Hinet 15,197 0.84 0.58
Shaw 7,046 14.94 0.06
Telus 7,844 4.89 1.67

TPNET.PL 6,907 1.40 0.15
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6. WHAT DO OTHERS KNOW?

In this section, we search for answers to the next two guiding questions. We begin
with a discussion of how others are gathering “intelligence” on the local organiza-
tion in Section 6.1. We then describe how we filter Distributed Denial of Service
(DDoS) incidents from the data, to more accurately interpret what others know. In
Section 6.3, we explain what others (potentially) know about the local organization.

6.1 How Others Gather Intelligence

As stated in Section 2, there are two general methods external organizations can
use to gather information on a local organization: surveillance and reconnaissance.

Active measurements (e.g., scans) typically receive the most attention. We refer
to this type of intelligence gathering as reconnaissance. Some reconnaissance may
occur as part of normal operations; e.g., contacting a DNS server to determine the
IP address of the target organization’s SMTP server. Other reconnaissance may be
more difficult to assess, as an entity may intentionally try to hide the fact that any
sort of intelligence gathering is occurring. For example, an entity may use a botnet
(i.e., a set of compromised hosts from other organizations) to make it difficult for
the targeted organization to recognize the source or intent of the reconnaissance.

External organizations can also gather intelligence on a target through surveil-
lance; i.e., by passively monitoring activity between the two organizations. In
particular, external organizations can passively gather data by examining the tar-
get organization’s use of the external organization’s (Internet-based) services. This
technique has received relatively little attention in the research community. Kr-
ishnamurthy and Wills [2009] recognized that some organizations use surveillance,
and investigated the implications on user privacy. We consider what information
about the IT infrastructure is leaked.

6.2 Filtering DDoS Incidents

While quantifying what an external organization learns through surveillance, we
realized that it is important to establish the identity of a host before it can be
considered active. For TCP, this means observing a complete SYN handshake.

This requirement was not anticipated, since we knew the university’s network
used best practices like egress filtering to reduce Distributed Denial of Service
(DDoS) attacks [Specht and Lee 2004] initiated from hosts on campus. However,
while testing our surveillance analysis, we realized that some compromised machines
on campus were launching DDoS attacks that only used source addresses within the
university’s assigned IPv4 address space. This resulted in all 216 possible local IPv4
addresses being observed, even though many are not in use. To filter such traffic
from the trace, we only consider (outbound) connections for which the identity of
the source has been verified. This may result in fewer active hosts being discovered
in our surveillance analysis, but it provides more realistic results than considering
all observed connections.

6.3 What Intelligence is Gathered

6.3.1 IT Infrastructure Reconnaissance. Since networks are dynamic (e.g., many
hosts are online only part of a day, week, or year), we decided to look at how many
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active (i.e., in use) hosts each external organization observes on a daily basis. While
an organization could use longer-term information, our analysis helps indicate how
often the information is “refreshed” by the external organization.
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(a) First-Party Provider Reconnaissance (b) ISP Reconnaissance

Fig. 4. First-Party Provider and ISP Knowledge of Active Hosts from Reconnaissance.

Figure 4(a) shows a time series plot illustrating the information the selected
first-party providers obtain from reconnaissance. This graph reveals several inter-
esting observations and insights. First, even with fewer connections than Google
and slightly less than Yahoo! (Table IX), Microsoft is always aware of more active
hosts than either Google or Yahoo!. Microsoft’s knowledge varies a lot over the
course of the year, reflecting the changes in the user population that correspond
to changes in the academic calendar (and hence the number of computers in use).
This is due to the prevalence of the Microsoft Windows operating systems on uni-
versity computers. Google and Yahoo! obtain relatively constant information via
reconnaissance throughout the year. Microsoft’s peak discovery via reconnaissance
is 803 active hosts, compared to 400 for Google and 473 for Yahoo!. The main
reason for the difference is that Microsoft scans more “servers” running on student
computers, resulting in the greater variation in active hosts over the course of the
year.
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Fig. 5. First-Party Provider and ISP Knowledge of Active Hosts from Surveillance.
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Fig. 6. Third-Party Provider Knowledge of Active Hosts.
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Second, first-party providers that offer Internet search services (e.g., Google, Mi-
crosoft, Yahoo!) consistently learn more about the local IT environment than those
who do not offer such a service (e.g., Facebook). In normal operation, these lat-
ter first-party providers primarily discover DNS (and occasionally SMTP) servers,
rather than many hosts. Google, Microsoft, and Yahoo! also contact DNS and
SMTP servers in the course of providing various services.

Figure 4(b) shows the reconnaissance activities of the ISPs. This activity is quite
different from the first-party providers. First, the ISPs are the source of much
more aggressive reconnaissance, and thus learn of more active hosts (e.g., ChinaNet
discovered a peak of 6,606 active hosts in one day). However, the reconnaissance
activities of ISPs are much burstier than that of first or third-party providers. Hosts
from ChinaNet issued on average more than 300,000 connection attempts per day;
many of these did not discover anything. However, this does not mean that the
targeted IP address is not in use, as hosts with personal firewalls may choose not
to respond to certain connection attempts even if a port is open to select hosts.

The reconnaissance activity of the third-party providers (Figure 6(a)) like Lime-
light and Amazon is much like that of Facebook. That is, they discovered relatively
few active hosts, and those that were discovered tended to be DNS or SMTP servers.

6.3.2 IT Infrastructure Surveillance. Figure 5(a) shows the number of active
hosts that first-party providers are aware of through surveillance. An initial insight
from this figure is that first-party providers know a lot more about the number of
active hosts through surveillance than through reconnaissance. For example, Mi-
crosoft discovered up to 15,633 active hosts in a single day through surveillance,
compared to 803 through reconnaissance. It is also important to note that the pop-
ularity of an organization matters; using surveillance, both Microsoft and Google
learn about the same number of active hosts. Yahoo! appears to be less popular
with users on campus, and thus knows about 9,531 active hosts on its peak day;
Facebook is aware of a similar number, seeing a peak of 9,234 active hosts.

Figure 5(b) shows the number of active hosts that ISPs may know from surveil-
lance. The numbers are substantially less than those of popular first-party providers.
There is, however, more consistent behavior seen in Figure 5(b) than there was in
Figure 4(b). For example, the outbound traffic to ChinaNet includes (legitimate)
HTTP transactions to the Sina.com web portal, “a leading online media company ...
for China and the global Chinese communities.”9 Similarly, Telus hosts numerous
Web sites for local companies and organizations. The graph of Telus surveillance
indicates that some of these are of interest to university users.

Figure 6(b) shows the knowledge of active hosts that third-party providers could
gain via surveillance. The CDN Limelight discovered up to 13,902 active hosts per
day, more than some popular First-Party Providers like Yahoo! and Facebook. This
occurs because Limelight delivers content for multiple popular first-party providers.
The graph of active hosts discovered via surveillance in Amazon traffic shows notice-
able growth between September 2008 and April 2009, compared to other providers.
This could be due to expansion of Amazon’s IaaS business.

9http://corp.sina.com.cn/eng/
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6.3.3 Combined Knowledge of IT Infrastructure. Figure 7(a) shows the knowl-
edge that a first-party provider, a third-party provider, and an ISP have about
the local organization. In this case, we compare the combined knowledge from
reconnaissance and surveillance against the total number of local hosts engaged in
TCP connections that successfully completed the SYN handshake (all). To keep
the graph legible, we only include one organization from each category: Microsoft,
Limelight and ChinaNet.

Figure 7(a) reveals several important insights. First, popular first-party providers
consistently know more than providers in the other groups. Second, popular third-
party providers can consistently know more than ISPs. This is particularly impor-
tant to note. While popular Web sites have traditionally partnered with established
companies (e.g., Limelight) to help scale their services, popular Web 2.0 sites like
Facebook allow any third party to expose their services to a broad audience. This
means that an edge network could leak information to an even broader audience in
the future. Third, even the most popular first-party providers do not see all hosts
on a given day (note the difference between the “All” and “First-Party” plots).

An open question is whether another (still unidentified) external organization
knows more about this edge network than any of the entities considered in our
study. To answer this, we examine the information that remains in the trace if
we ignore the traffic involving our set of first-party providers, third-party providers
and ISPs. The results of this analysis indicate that the remaining reconnaissance
traffic discovers a maximum of 7,200 active hosts in a single day. Considering the
remaining surveillance traffic, a peak of 19,981 active hosts are discovered in a
single day. This means that the set of “other” (unidentified) organizations can at
best know only slightly more about the active hosts on campus than the popular
first-party providers like Google and Microsoft. Only a collaboration of multiple
entities could compose a more complete picture of the active host behavior.

6.3.4 Knowledge of Open Ports. While we have shown that surveillance can pro-
vide an external organization with information about the active hosts on a remote
network, it does not provide all information that might be of interest. For example,
knowledge of specific open ports that are vulnerable to known problems could be
exploited. Reconnaissance is a much more effective technique than surveillance for
obtaining this information (because surveillance typically only sees a limited set of
ports (e.g., HTTP, SMTP, DNS, etc.).

Figure 7(b) shows that ISPs see an order of magnitude more open ports than
first or third-party providers. On a typical day, more than 10,000 open ports
were discovered by various parties. The largest discovery occurred on February 26,
when (in a 10 hour span) a single external host scanned 109 different protocol/port
pairs on 45,848 addresses in the university’s address space. About 100,000 open
ports were discovered; we alerted IT to the most serious cases. This is an example
of how knowing what others know about your organization can help improve the
management of local IT resources. While it may be difficult to stop the leakage
of the types of information we have discussed, proactively addressing issues could
prevent others from exploiting them.
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Fig. 7. What External Organizations About Active Hosts and Open Ports.

6.3.5 Discussion of Header-specific Surveillance. In addition to greater knowl-
edge of the IT infrastructure, surveillance may also provide the external organiza-
tion with additional (richer) information. For example, HTTP headers can provide
a lot of information about an organization’s IT resources (and/or its individual
users). The remainder of this section discusses the types of information leaked via
HTTP headers. For security reasons, we chose not to release the details of this
analysis; we only share some of the implications.

Operating systems and versions: Some external entities target specific weak-
nesses in operating systems, browsers, or Web-enabled software to gain control of
machines. Using the User-Agent field, we confirmed that it can reveal the operating
system on the user’s machine (e.g., Windows), the version (e.g., Vista), and often
patch levels. Clearly, this information could be used to compromise a machine. It
also reveals which OS versions are most prevalent on the edge network, which could
be used to determine which exploits the organization is most vulnerable to.

Applications and browsers: The User-Agent field also reveals the Web browser
in use (e.g., Internet Explorer, Firefox) and the version. Aggregating this informa-
tion over hosts indicates the adoption rates and other longitudinal trends. Such
first-hand knowledge is much more valuable than (potentially) out-of-date public
statistics (e.g., obtained from blogs). Self-monitoring of the User-Agent field could
be used to resolve browser vulnerabilities, and to learn about other Web-enabled
applications that could potentially provide a means of compromising the host.

Organizational interests: The Referer field provides the URL of the Web
page a user traversed to reach the current page (and/or service provider). This
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field can be used to infer information about the organization’s interests, and the
user’s browsing habits.

To demonstrate this, we performed the following analysis. First, for each transac-
tion in our HTTP data set, we extracted the brand of the visited Web site (e.g., the
brand of www.google.com, mail.google.com and www.google.co.uk is google;
in other words, we strip off the top level domain(s) information, and then use the
next term as the brand).10 We then ranked the brands by number of transactions.
Next, we extracted the brands from the URLs contained in Referer fields of HTTP
transactions that visited Google, Microsoft or Yahoo!. This set of extracted brands
represents what these first-party providers learned (via surveillance) about traffic
to other sites.

Figure 8 shows the results of this analysis. For each organization, a logarithmi-
cally binned weighted average of the rank is plotted on the x-axis. The actual rank
(i.e., popularity of brands across all HTTP transactions) is shown on the y-axis.
The results indicate that all three of these first-party providers have a reasonably
accurate view of the brands used most by the university. They could also use other
information in the Referer URL to enhance understanding of the target organiza-
tion’s interests.
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Fig. 8. Referral Information Leakage.

6.3.6 Discussion of Web-services-based Information Leakage. External organi-
zations can also learn a lot about an edge network (and their users) through the
use of their services. For example, in addition to the (private) information indi-
vidual users may provide a social networking site, such as Facebook, we note that
the combined leakage of many users may reveal much more about the organization
(such as its structure, who is employed, who reports to whom, etc.). There are also
many other services, such as email and other password protected services, that may
reveal sensitive organizational information. This may become an even greater issue
as organizations are outsourcing their services. As an example, we note that some

10Most host names follow this convention; however, exceptions do exist (e.g., del.icio.us).
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organizations (including universities) have already started outsourcing their email
and other collaboration services to Google.11 From an organizational standpoint,
adopting other (emerging) cost-effective services such as Amazon’s IaaS may result
in further information leaks.

Finally, as an example, we examined what Google learns from the search results
it provides to local users (ignoring what Google may learn from the search query
strings themselves). When a user clicks on a link in a page of search results, the
user actually visits Google first and then gets redirected. Figure 8 also shows the
results of this analysis. Although there are fewer search selections than Referer

URLs for Google, the “Google search redirections” provide Google with a similar
picture of the local organization’s interests.

7. WHAT DO OTHERS CONTROL?

In this section, we tackle our final guiding question, and shed light on how much
control external entities have over resources of the local organization. We focus on
IP addresses (hosts) as the resource being controlled. As noted by Xie et al. [2009],
“security rests on host accountability.” Establishing the number of hosts directly
controlled by external entities is a difficult endeavor, as they wish to hide the fact
that they have compromised a machine. As such, our estimates should be considered
lower bounds.

7.1 Direct Control of an Edge Network’s Resources

Compromised machines that are controlled by an external entity may for example
participate in a botnet that launches denial of service attacks, delivers spam, scans
other computers for vulnerabilities, or attempts to exploit known vulnerabilities.
As an initial step towards understanding how many machines are being directly
controlled, we first look for significant spikes in the discovery of “new” (i.e., not
previously seen in the data set) /24 prefixes observed on outbound connections.

Figure 9 shows the number of “new” prefixes observed daily. The largest spike
occurs on the first day, since we have no prior knowledge of the “working set” of
regularly visited external destinations. Most of the fluctuations in the graph reflect
the general use of the network (e.g., higher activity during the main academic year).
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Fig. 9. New /24 Prefixes Observed Per Day.

11http://www.google.com/a/help/int/en/edu/customers.html
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Figure 9 also shows several periods of increased discovery: a few days at the
end of August, a sustained increase from mid-November to mid-December, and
significantly increased activity from January 25 to February 12. We refer to this
latter range as the “peak discovery” period. We now examine characteristics of it
compared to the overall trace.

Table X provides some high-level characteristics of the discovery of /24 prefixes,
for both the entire one-year trace as well as for the 18 day-long “peak period”.
Although the peak (discovery) period accounts for only 5% of the total trace du-
ration, 35% of all distinct /24 prefixes were observed during that time. The bulk
of the /24 prefixes were discovered by hosts on only a few local subnets. Hosts on
the wireless subnet (WLAN) discovered about half of all distinct external prefixes.
The student residence subnet is the next largest, discovering about one third of all
unique /24 prefixes observed over the course of the year. The hosts on these two
subnets are self-administered. The Student Union (SU) accounts for approximately
5% of all prefix discoveries. The computer science subnet (CPSC) is approximately
the same size as the WLAN and Residence subnets. By comparison, the hosts on
this subnet discover relatively few new /24 prefixes. Several notable differences
between these groups are: (1) different user populations; and (2) CPSC machines
are administered by IT staff. The peak period reveals that the discovery is done
almost exclusively by hosts on the wireless subnet.

Table X. Discovery Characteristics

Characteristic Label Overall (%) Peak (%)

Origin
WLAN 49.4 89.6

Subnet
Residences 32.4 7.9

SU 4.8 1.7
CPSC 0.9 0.0
Others 12.5 0.8

Protocol
TCP 60.8 98.4
UDP 26.0 1.3
ICMP 13.2 0.3

Top 445 36.3 92.4
Ports (ICMP Echo) 12.5 0.1

Top
S0 76.0 98.9

States
OTH 13.7 0.1
SF 7.3 0.1

REJ 0.1 0.2
Others 2.9 0.8

If we consider the protocol in use when a distinct /24 prefix is discovered, we
see a significant deviation from the overall distribution of packets or data traffic.
Table X shows that while TCP is still used for a majority of the discoveries (60%),
UDP (26%) and ICMP (13%)12 are quite common as well. During the peak pe-
riod, TCP was the dominant protocol used (98%), suggesting UDP and ICMP are
more commonly used in long-lived discovery. The discovery during the peak period

1295% of the ICMP traffic are Echo responses.
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appears homogeneous; almost all of the discovery occurred on TCP port 445 (used
for sharing services on Windows). Most of these connections end in an S0 state, in-
dicating that no response was received from the destination. Our hypothesis is this
activity was a worm (Conficker/Downadup) attempting to propagate. Relatively
few local hosts were involved, and they aggressively attempted to contact hosts at
other locations.

The bulk of the discoveries are done by a few hosts. Over the course of the
year, the top two “discoverers” found a combined 17% of all observed distinct /24
prefixes. The top discoverer found 1.1 million /24 prefixes in two days during the
“peak period”. All of these were destined to TCP port 445. 99.5% received no
response; almost all others received a REJ response (but indicating that the host
is online). The second top discoverer was very active in November and December.
This host used ICMP predominantly (96% of its discoveries), and discovered at
much lower rates than the previously discussed host (tens of thousands per day
rather than hundreds of thousands).

External entities who seek direct control of Internet hosts will actively search for
opportunities to take control. Compromised hosts can then be used for numerous
purposes, including DDoS attacks or sending spam [Staniford et al. 2002]. To search
for potential bots on the edge network, we examine SMTP traffic - the exchange of
email. To minimize false positives, we focus on successful SMTP transactions (TCP
port 25) with known email servers. Over the year-long period, we observed success-
ful transactions from about 3,000 local addresses to SMTP servers13 at Google, Mi-
crosoft and Yahoo!. 745 local hosts successfully communicated with SMTP servers
at Google, Microsoft or Yahoo!. 71% of these local addresses were from the WLAN
and Residence subnets (i.e., self-administered machines), and are not authorized
mail servers.

We performed a simple test to determine if the WLAN and Residence hosts send-
ing SMTP messages to the selected first-party providers were trying to propagate
spam. The Simple Mail Transfer Protocol specifies that client SMTP hosts should
send a HELO (or EHLO) message to identify itself when the transmission channel
is established [Postel 1982; Klensin 2001]. We used our network monitor to extract
(in an online manner) the HELO/EHLO messages from several outbound SMTP
connections from WLAN or Residence subnets. None of the observed HELO/EHLO
messages contained the name or IP address of a host on the WLAN/Residence sub-
nets. In fact, most of the observed messages included an unroutable IP address.
Since the hosts were not revealing their actual identities to the SMTP servers, we
conclude that they are most likely attempting to propagate spam.

7.2 Indirect Control of an Edge Network’s Resources

Based on the data we examined, we argue that popular first-party providers (indi-
rectly) control more hosts than external entities who seek direct control. By pro-
viding interesting or useful functionalities, first-party providers can build a loyal
audience. For example, thousands of machines on campus communicate with Mi-

13Pathak et al. [2009] observed that 90% of spam is destined to Yahoo! Mail, Google’s Gmail,
Microsoft’s Hotmail, and Hinet. Thus we believe it is sufficient to consider SMTP connections
destined to three of our first-party providers.
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crosoft and Google every day. Many of these users use a particular service by habit,
become personally invested, and are therefore more likely to be loyal to the service.
These potentially large captive audiences represent a strong control point that can
be leveraged for advertisement opportunities, marketing of new services, and even
used to shape their perception and interests. As an example, Google recently made
the following (hyperlinked) statement on their main search page: “Upgrade to
Google Chrome, a faster way to browse the web. Install now.” This represents a
powerful position, one that the edge network operators should be mindful of.

Search engines are another powerful control point. Not only do they have the
ability to redirect hosts to destinations of their own choosing, they can do so after
they know the OS and browser of the user.

A third control point is online social networking platforms. First-party providers
like Facebook realize this, and are opening their platforms to others, which may
cause their captive audiences to become more available to third parties. For exam-
ple, on April 27, 2009 Facebook announced the Open Stream API.14 This allows
any developer to access the stream of information within Facebook. Using this
stream, developers can create new interfaces for it. While many positive things
may come of this, one problem we foresee is the development of “impostor” sites
that look and feel just like Facebook, created to compromise user computers, hijack
user identities, etc.

Some external organizations take control to a higher level. For example, Google
provides the Safe Browsing Extension for Firefox that limits the pages the user can
visit.15 While this extension (and other software and Web-based services) provides
a helpful service to users and organizations, it demonstrates another opportunity
that an external organization could establish a control point surreptitiously.

Systematic monitoring can help an organization understand the control external
organizations have. For example, Figure 10 shows that Google’s (indirect) “control”
of resources on campus is increasing over time. We have also observed in Figure 6
that Amazon’s knowledge of the local organization via surveillance is growing faster
than others, perhaps due to third parties using their IaaS.

8. CONCLUSIONS

In this paper, we examined a year in the life of a campus network. We examined
the communication patterns of three groups of external organizations: first-party
providers, third-party providers, and ISPs. While reconnaissance activities like
scanning receive a lot of attention in the research and operations communities, our
results show that surveillance can also reveal a substantial amount of information
about an edge network’s infrastructure and usage. We demonstrated that popular
first-party providers can obtain a much more accurate and up-to-date picture of
an edge network through surveillance than an entity engaged in reconnaissance.
We also showed that popular third-party providers can obtain a similarly complete
assessment of an edge network, even though users do not intentionally direct traffic
to them. We argue that by increasing an edge network’s awareness of what external
entities know about them, the security of the edge network could be improved. If

14http://tinyurl.com/OpenStream
15http://www.google.com/tools/firefox/safebrowsing/
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Fig. 10. Breakdown of Google Transactions.

this approach was widely adopted, it would benefit overall Internet security.
As future work, we plan to work towards obtaining “real-time”, prioritized intel-

ligence about the use of our network. Part of this plan will involve improving the
performance and scalability of our analysis tools. There is a need for more scalable
information services (e.g., mapping IP addresses to the organizations they are as-
signed to) that deliver more complete and consistent information to edge networks.
Lastly, we believe that tools to facilitate sharing of selected information would also
aid in improving overall Internet security. In particular, proper tools could enable
edge networks to systematically help ISPs identify and shut down the sources of
the types of undesirable traffic we reported.
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