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Accurate prediction of network paths between arbitrary hosts on the Internet is of vital importance for network

operators, cloud providers, and academic researchers. We present PredictRoute, a system that predicts network

paths between hosts on the Internet using historical knowledge of the data and control plane. In addition

to feeding on freely available traceroutes and BGP routing tables, PredictRoute optimally explores network

paths towards chosen BGP prefixes. PredictRoute’s strategy for exploring network paths discovers 4X more

autonomous system (AS) hops than other well-known strategies used in practice today. Using a corpus of

traceroutes, PredictRoute trains probabilistic models of routing towards prefixes on the Internet to predict

network paths and their likelihood. PredictRoute’s AS-path predictions differ from the measured path by at

most 1 hop, 75% of the time. We expose PredictRoute’s path prediction capability via a REST API to facilitate

its inclusion in other applications and studies. We additionally demonstrate the utility of PredictRoute in

improving real-world applications for circumventing Internet censorship and preserving anonymity online.
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1 INTRODUCTION
Despite its engineered nature, the Internet has evolved into a collection of networks with different–

and sometimes conflicting–goals, where understanding its behavior requires empirical study of

topology and network paths. This problem is compounded by networks’ desire to keep their routing

policies and behaviors opaque to outsiders for commercial or security-related reasons. Researchers

have worked for over a decade designing tools and techniques for inferring network connectivity

and paths [26, 27]. However, operators seeking to leverage information about network paths or

researchers in need of Internet paths to evaluate new Internet-scale systems are often confronted

with limited vantage points for direct measurement and myriad data sets, each offering a different

lens on Internet connectivity and paths.

Predicting network paths is crucial for a variety of problems impacting researchers, network

operators, content and cloud providers. Researchers often need knowledge of Internet routing to
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evaluate Internet-scale systems e.g., refraction routing [36], Tor [11], Secure-BGP [17]. For network

operators, network paths can aid in diagnosing the root cause of performance problems like high

latency or packet loss. Content providers debugging poor client-side performance require the

knowledge of the set of networks participating in delivering client traffic to root-cause bottleneck

links. While large cloud providers, like Amazon, Google and Microsoft are known to develop

in-house telemetry for global network diagnostics, small companies, ISPs and academics often lack

such visibility and data.

Understanding and predicting Internet routes is confounded by several factors. Internet paths

are dependent on several deterministic but not public phenomena: route advertisements made

via BGP and best path selection algorithms based on private business relationships. Additionally,

factors like load balancing via ECMP, intermittent congestion on network links, control plane

mis-configurations and BGP hijacks also impact network paths.

Standard diagnostic tools like traceroute provide limited visibility into network paths since the

user can only control the destination of a traceroute query, the source being their own network.

Tools like reverse traceroute [23] rely on the support of IP options to shed light on the reverse path

towards one’s network. In addition to requiring the support for IP options from Internet routers,

these techniques require active probing from the client or a set of vantage points distributed on the

Internet. Active probing is not only expensive in terms of amount of diagnostic traffic generated

(traceroutes, pings etc.) but also provides limited visibility into the temporal dynamics of the

network state e.g., network path yesterday vs. the measured path today.

In this work, we design and develop PredictRoute, a system that predicts network paths between

arbitrary sources and destinations on the Internet by developing probabilistic models of routing from

observed network paths. For this purpose, PredictRoute, leverages existing data planemeasurements,

optimizes the use of data plane measurement platforms, and simulates routing behavior when

empirical data is absent. In the median case, the path predicted by PredictRoute differs from

the measured path by only 1 hop. We offer the code and a proof-of-concept implementation of

PredictRoute at http://predictroute.github.io/. In its present form, the PredictRoute REST API allows

users to query network paths between sources and destinations (BGP routed prefixes or autonomous

systems). In addition to providing the predicted paths, PredictRoute provides confidence values

associated with each network path based on historical information.

PredictRoute complements the approach of existing path-prediction systems [24, 26] by devel-

oping efficient algorithms for measuring the routing behavior towards all BGP prefixes on the

Internet. When measuring paths towards each BGP prefix, PredictRoute maximizes discovery of

the network topology with a constrained measurement budget, both globally and per vantage point.

PredictRoute’s strategy for exploring network paths discovers 4X more AS-hops than other well

known strategies used in practice today.

1.1 Key Contributions
The problem of predicting network paths has beenwell studied, with important work like iPlane [26],

iPlane Nano [27], BGPSim [18] and Sibyl [24] tackling different parts of the problem. Our key

contributions in the context of these existing systems are the following:

Per-destination probabilistic Markov models. Systems like iPlane [26] and iPlane Nano [27]

consume traceroutes to build an atlas of network paths. By combining splices of paths from this

atlas, the systems predict a previously un-measured path. Recently, the prediction accuracy of

iPlane was found to be low – 68% at the AS path level by Sibyl [24]. Sibyl proposes to improve

the low accuracy of splicing-based network path prediction using supervised learning to choose

between multiple possible paths.
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Fig. 1. PredictRoute achieves two goals: efficient topology discovery and accurate path prediction.

PredictRoute differs from the existing approaches by using the key fact that routing on the

Internet is largely destination based [4]. This means, traceroutes through a network are likely to

traverse the same paths towards a given destination prefix, irrespective of where they originated.

Therefore, unlike previous path prediction systems, PredictRoute constructs a destination-specific

probabilistic model for each destination prefix or autonomous system (AS) in place of a common

atlas for all destinations. Using observations of network paths over time, PredictRoute not only infers

the connectivity between networks but also learns the likelihood of picking different next-hops

from a given network as a function of time.

Leveraging publicly available datasets. PredictRoute bootstraps the construction of destination-
specific routing models using public traceroutes from RIPE Atlas [30] and CAIDA Ark [7]. While

public traceroutes can be sparse, PredictRoute reuses existing crowd-sourced measurements from

different platforms to reduce redundant diagnostic traffic from on-demand measurements. The

availability of more public datasets for training will help PredictRoute achieve higher topological

coverage of the Internet and answer more path prediction queries.

Efficient global and per-destination topology discovery. A related system, Sibyl [24], allows

efficient use of measurement budget for answering path queries between sources and destination IP

addresses. Instead, PredictRoute focusses on a special case of this problem: efficiently answering all

queries towards a destination prefix for a fixed measurement budget. PredictRoute’s approach for

doingmeasurement selection is within constant factor of optimal in the general case. However, when

the routing towards a prefix is destination based, with no violations, we show that PredictRoute’s

measurement selection is optimal.

Deployment of PredictRoute. We are releasing the entire codebase of PredictRoute and have de-

ployed a proof-of-concept implementation of PredictRoute at http://predictroute.github.io/. The sys-

tem is hosted on Azure’s cloud platform for demonstration purposes. We use a modestly provisioned

cloud instance (2 CPU cores, 4 GB RAM). The REST API can be incorporated programmatically

into other systems.

2 THE PREDICTROUTE SYSTEM
Figure 1 shows the two major components of PredictRoute along with the input for each. These

components are:

(1) Efficient Topology Discovery. PredictRoute makes efficient use of limited measurement re-

sources to discover the network topology towards an IP prefix. PredictRoute’s topology

discovery algorithm takes as input a destination BGP prefix 𝑃 , a set of vantage points 𝑉 ′

capable of sending traceroutes to 𝑃 , a measurement budget 𝑘 , and information of 𝑃 ’s network

topology derived from BGP routing tables or stale traceroutes (§3.1). This topology discovery

algorithm outputs a budget-compliant set of vantage points 𝑆 ⊂ 𝑉 ′, |𝑆 | ≤ 𝑘 from which to

measure to reveal as much information about paths towards 𝑃 as possible (§3.2). In §3, we

describe this algorithm and its strong performance guarantees in detail.
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(2) Path Prediction. PredictRoute combines public traceroutes from measurement platforms like

RIPE Atlas [30] and those run by its own topology discovery module to learn Markov models

of routing towards each BGP routed prefix (§4). PredictRoute infers network paths between

source 𝑠 and destination prefix 𝑃 from the Markov model (§4). While PredictRoute aims to

explore as much of the network topology as it can via active measurements, it will still lack a

global view due to absence of vantage points in different parts of the Internet. As a result,

when a queried path (source 𝑠 and destination 𝑃 ) cannot be inferred from 𝑃 ’s empirical Markov

model, PredictRoute will fall back to an algorithmic simulation of policy-compliant BGP

paths [18]. We micro-benchmark different components of PredictRoute (§5) and extensively

evaluate the accuracy and coverage of PredictRoute in comparison with previous work (§6).

2.1 Design choices

Granularity of network destinations. In previous work, systems for path prediction have

predicted paths towards destinations of various granularities. BGPSim [18] gives BGP policy

compliant paths towards destination ASes, whereas iPlane [26], iNano [27], and Sibyl [24] predict

paths towards destination hosts or prefixes. PredictRoute predicts paths towards both AS-level and

prefix-level destinations. PredictRoute’s routing models for destinations are general and can be

easily adapted to other destination granularities, e.g., BGP atoms [3] and PoPs. For the applications

that motivate PredictRoute, destinations at the granularity of ASes and prefixes are sufficiently

informative.

Granularity of network paths. So far, we have not discussed what constitutes a network path

predicted by PredictRoute. Existing path prediction approaches predict paths where each hop in the

path is either an AS or a PoP. PredictRoute can predict paths at AS-level, BGP routed prefix-level

or even at a /24 prefix granularity. The granularity of the hops in PredictRoute’s routing models

are configurable by the users of the system. The granularity of the predicted path can impact its

utility for different applications. For instance, AS-level paths can be sufficiently informative for

quantifying the threat of eavesdropping ISPs on anonymous communication [28, 33].

However, some ASes can be very large, spanning entire countries e.g., Tier-1 networks like AT&T

and Level3, making AS-level path prediction too coarse for diagnostic purposes. Inferring PoPs

from router IP addresses is a research problem in its own right PredictRoute avoids introducing the

complexity of PoP inference by predicting prefix-level paths. Thus, in the default case, PredictRoute

predicts BGP-routed prefix-level paths. Prefix-level paths have sufficient information to predict

AS-level paths by mapping prefixes back to ASes that announce them in BGP to obtain an AS-level

path, if desired. A very fine granularity of hops in network paths can cause an explosion in the size

of routing models built by PredictRoute and this problem gets worse when considering IPv6 paths

due to the large IPv6 address space. In the later sections of this paper, we evaluate PredictRoute

using IPv4 AS-level and BGP-routed prefix-level paths only.

Markov models for path prediction. Since paths on the Internet are an outcome of several un-

observable and uncertain phenomenon, including, congestion, route failures, load balancing, time-

dependent routing policies etc., PredictRoute implements a probabilistic model for path prediction

based on an empirical understanding of network paths. We build first order Markov chains, one

for each routed prefix. While, higher order Markov chains can also be leveraged in PredictRoute,

we make the first order Markov assumption since network paths on the Internet are short [10]

and incorporating the current and previous hops in making routing decisions already accounts

for a large part of the overall path. Second, computing transition probabilities with higher order

Markov chains needs more data and relevant network measurements are scarce. Thus, we argue

that first order Markov chains are a reasonable choice for PredictRoute’s per-prefix routing models.
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Fig. 2. DAGs for a destination prefix P in different traceroute datasets are merged to create a single DAG for
P. Each circle represents an autonomous system.

With the routed prefix (or AS) as the end state, and prefixes (or ASes) as potential start states in the

Markov chain, the problem of network path prediction is to find the highest probability sequence

of states from a given start to the end state.

3 EFFICIENT TOPOLOGY DISCOVERY
In this section, we discuss the problem of discovering the AS-level topology towards a prefix.

To bootstrap the topology discovery, we use publicly available traceroutes and simulated BGP

policy-compliant paths from BGPSim (§3.1). While public traceroutes can be stale and BGP policy

compliant paths may not be of high accuracy, they help PredictRoute develop an initial notion of

the network topology to different destinations. We bootstrap the topology discovery problem from

these two data sources since they are essentially free – do not require issuing active measurements

from vantage points. We then frame the challenge of maximizing per-prefix topology discovery

for a given measurement budget as an optimization problem, which we show is equivalent to a

special case of the Max-Cover𝑘 (§3.2) problem when routing is destination-based. We present a

greedy algorithm (§3.3) that optimally solves this topology discovery problem. In the case where

ASes violate destination-based routing [13], we can still guarantee a constant-factor approximation

of the problem using a relaxation of the Max-Cover𝑘 problem (§3.5).

3.1 Bootstrapping topology discovery
PredictRoute uses publicly available traceroutes on the RIPE Atlas [30] and CAIDA Ark [7] mea-

surement platforms to bootstrap network topology discovery. Since public traceroutes can be

intermittent and sparse, we gather them over a period of 10 days to gain a significant number of

measurements for bootstrapping. The gathered data from RIPE Atlas’s consists of traceroutes to

hundreds of destination prefixes and Ark’s data set has traceroutes to more than 300K prefixes.

From traceroutes to AS-level paths. Converting traceroutes from IP to AS-level paths is fraught

with challenges [9]. We take a best-effort approach to this conversion but note that improved IP to

AS path mapping solutions would only help the accuracy of PredictRoute. This section describes

the heuristics we use to avoid common pitfalls in mapping traceroutes to AS-level paths. We use

CAIDA’s IP to AS dataset [1] to map each IP in the traceroute to an AS number. We then use

PeeringDB [2] to remove IXP hops (based on the prefix and AS number) from our traceroutes. In

the case of unresponsive hops in traceroutes we do not infer AS-connectivity. We discard circuitous

traceroutes. More details on the conversion of IP paths into AS-level paths is in Appendix A.

Augmenting with BGP paths. In addition to using public traceroutes, PredictRoute also gathers

BGP policy-compliant paths (derived from BGPSim [19]) for bootstrapping.
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Merging measurements to form DAGs. We merge the AS-level paths from different datasets

toward the same destination prefix to form a directed acyclic graph (DAG) for each destination

prefix. Figure 2 illustrates how two DAGs for a destination prefix are merged into a single DAG.

We note that the DAG will not be a tree when network paths violate destination-based routing. We

observe 2% of source-destination pairs violate destination-based routing. In Sections 3.4 and 3.5,

we describe how we deal with these cases. The DAGs constructed from measurements define the

initial structure of the Markov chain for each prefix.

The coverage of a vantage point is the set of inter-AS links or edges in a prefix’s initial DAG that

a traceroute from this vantage point to the prefix would reveal. Before measuring from it, we need

a good estimate of the coverage the vantage point can provide. PredictRoute uses the estimated

coverage to decide the utility of measuring from the vantage point. PredictRoute uses the prefix

DAGs constructed in the bootstrapping phase to derive estimates of the coverage of vantage points.

The actual coverage of vantage points can differ from our estimates. For the remainder of this

section we give performance guarantees on the assumption that the predicted and actual coverage

of vantage points are identical. We justify this assumption and show that the estimated coverage

from simulated paths matches that of measured paths in Appendix B.

3.2 Maximizing topology discovery
Since routing on the Internet is largely destination-based [4], we can represent the paths we know

toward a given prefix as a DAG, as described in the previous section.We define the destination-based

DAG of a prefix 𝑃 as 𝐺 = (𝑉 , 𝐸), where 𝑉 consists of 𝑃 and all ASes on the Internet. Edge 𝑒 ∈ 𝐸
represents a connection between two ASes observed in measurements or simulations. We consider

the prefix as the root of this graph as opposed to the AS that announced it to account for per-prefix

routing policies [4]. 𝑉 ′ ⊂ 𝑉 is the set of ASes that have vantage points.

In practice, for a given prefix 𝑃 , we do not know 𝐺 . By executing traceroutes from a subset 𝑆 of

𝑉 ′, we obtain a partial observation of𝐺 denoted by𝐺 = (𝑉 , 𝐸).𝑉 is composed of AS hops observed

in traceroutes from ASes in 𝑉 ′ to 𝑃 . Edges in 𝐸 consist of AS edges inferred from the traceroutes.

Let the coverage of a set of measurements from 𝑆 ⊂ 𝑉 ′ be:

Cov(𝑆) = |𝐸 | (1)

Figure 3 illustrates one such prefix-based graph. The blue hashed nodes indicate networks

containing vantage points (e.g., RIPE Atlas probes) and the purple striped nodes indicate nodes

that have been discovered in the prefix’s DAG. The discovered nodes consist of the nodes directly

observed in traceroutes towards 𝑃 and all single-homed customer ASes [20] of the directly observed

nodes. Here 𝑉 is the set of shaded nodes and 𝐸 are the edges that connect them. White nodes

represent nodes that we cannot discover via measurements towards 𝑃 due to the lack of suitable

vantage points. We consider the single-homed customers of empirically discovered nodes to be

discovered since single-homed ASes connect to the Internet only through one AS link.

This leads us to the following problem definition for exploring the largest portion of the AS

topology (𝐺) with a measurement budget of 𝑘 traceroutes:

Problem 1 (Prefix-Cover𝑘 ). Find 𝑆 ⊂ 𝑉 ′, where |𝑆 | ≤ 𝑘 , that maximizes Cov(𝑆).

The Prefix-Cover𝑘 problem is reducible to the Max-Cover𝑘 problem in which the input is a

number 𝑘 and a collection A = {𝐴1, 𝐴2, . . .} of sets and the goal is to select a subset A ′ ⊂ A of

𝑘 sets that maximizes | ∪𝐴∈A′ 𝐴|. The reduction is immediate since the measurement from each

vantage point can be thought of as a set 𝐴𝑖 , and our goal is to maximize the coverage of edges by

choosing 𝑘 of these sets. Max-Cover𝑘 is unfortunately NP-Hard. A well-known greedy algorithm
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Fig. 3. An example of a prefix-based DAG.

Input: Graph 𝐺 = (𝑉 , 𝐸) with vantage points 𝑉 ′.
𝑆 ← ∅
for 𝑖 = 1 to 𝑘 do

𝑆 ← 𝑆 + argmax𝑠∈𝑉 ′Cov(𝑆 + 𝑠)
end
return 𝑆

Algorithm 1: Greedy Vantage Point Selection

provides the best possible approximation with a factor of (1 − 1/𝑒) = 0.632 . . . of the optimal

solution [12]. However, since Prefix-Cover𝑘 is a special case of Max-Cover𝑘 , we find that it can

be solved exactly which we discuss in the next section.

3.3 Optimality for Destination-based Routing
We now present a greedy algorithm to select vantage points to perform measurements from

(Algorithm 1). We show that this algorithm finds the optimal solution to Prefix-Cover𝑘 when the

graph 𝐺 is a tree.

Theorem 1. Algorithm 1 solves Prefix-Cover𝑘 exactly when 𝐺 is a tree, i.e., when there are no

violations of destination-based routing.

Proof. Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑘 } denote the subset of vantage points returned by the greedy

algorithm on 𝐺 , where 𝑠1 denotes the first vantage point chosen, 𝑠2, denotes the second, and so

on. Recall that Cov(𝑆) denotes the coverage on 𝐺 of the measurements run from 𝑆 , and let C(𝑆)
denote the corresponding set of edges that are discovered. For the sake of contradiction assume

that for some 𝑖 < 𝑘 , there is an optimal solution𝑇 such that 𝑠1, . . . , 𝑠𝑖−1 ∈ 𝑇 but no optimal solution

contains 𝑠1, . . . , 𝑠𝑖 . Let

𝑇 = {𝑠1, 𝑠2, . . . , 𝑠𝑖−1, 𝑡𝑖 , 𝑡𝑖+1, . . . 𝑡𝑘 }
where 𝑠𝑖 ≠ 𝑡 𝑗 for all 𝑗 ≥ 𝑖 . In other words, we assume that for some 𝑖 , the first 𝑖 − 1 vantage points
in 𝑆 are also in 𝑇 , but that 𝑠𝑖 does not appear in 𝑇 . For any set of vantage points 𝐴, define

C′(𝐴) = C(𝐴) \ C(𝑠1, 𝑠2, . . . , 𝑠𝑖−1)
and Cov

′(𝐴) = |C′(𝐴) |.
For any 𝑗 ≥ 𝑖 , since 𝑠𝑖 was chosen by the greedy algorithm before 𝑡 𝑗 we can infer that

Cov
′(𝑠𝑖 ) ≥ Cov

′(𝑡 𝑗 ) .
Let 𝑗 ′ ≥ 𝑖 be chosen to maximize |C′(𝑠𝑖 ) ∩ C′(𝑡 𝑗 ′) | and define 𝑇 ′ = (𝑇 ∪ {𝑠𝑖 }) \ {𝑡 𝑗 ′}. Observe that

Cov
′(𝑇 ′) ≥ Cov

′(𝑇 ) + Cov′(𝑠𝑖 ) − Cov′(𝑡 𝑗 ′)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 23. Publication date: June 2021.



23:8 Rachee Singh et al.

10620

6453

3356

P

1239

45204 25091

Cust. Prov. Peer Peer
Legend

Traceroute

10620

6453

3356

P

1239

45204 25091

3356

(a) Observed violation of destination-
based routing with AS3356

(b) Splitting AS3356 to remove the violation

Fig. 4. Example of violation of destination-based routing. Depending on the prior hop AS 3356 (Level 3) selects
a different next-hop towards the destination. Splitting this node produces a tree-structured prefix DAG.

Since Cov
′(𝑠𝑖 ) ≥ Cov

′(𝑡 𝑗 ′), we deduce that Cov(𝑇 ′) ≥ Cov(𝑇 ) and so 𝑇 ′ is also optimal. But

𝑠1, . . . , 𝑠𝑖 ∈ 𝑇 ′ which is a contradiction to the assumption that no optimal solution contains

{𝑠1, . . . , 𝑠𝑖 }. □

3.4 Extension for prior-hop violations of destination-based routing
When merging multiple traceroute-derived AS paths we observe cases that violate the assumption

of destination-based routing. Figure 4 shows one such example. Here, we observe AS 3356 (Level 3)

selecting different next-hop ASes towards the same BGP-routed prefix, depending on the prior hop

in the path. To exclude the effect of churn in network paths, these traceroutes were run only a few

minutes apart. In this case, it appears Level 3’s routing decision is impacted by the prior AS hop, thus

we can “split" the node into two nodes, each of which represents 3356’s routing behavior for each

of the prior hops. The resulting graph is a tree and Algorithm 1 can find the optimal measurement

set to explore the graph. In general, we can split AS nodes that violate destination-based routing

based on their prior AS hop by creating a copy of the node for each prior hop, and adding to each

copied node all outgoing edges associated with that prior hop. The resulting tree has the same

number of edges as the original graph.

3.5 Other violations of destination-based routing
Not all violations of destination-based routing are deterministically dependent only on the prior

AS hop. In these cases, it is often difficult to determine exactly what rule underlies the routing

behavior and we simply treat this behavior as a random process. Figure 5 shows an example where

traceroutes passing through node 4 are randomly routed on the left link with probability 0.4 and

routed on the right link otherwise. This behavior can arise when routers perform uneven load

balancing over outgoing links. This gives rise to the problem of maximizing the expected coverage

through our choice of vantage points. The set of edges covered by each vantage point 𝑣𝑖 is now

a random variable 𝑋𝑣𝑖 whose value is the edges traversed by a random walk beginning at 𝑣𝑖 and

ending at 𝑃 , where each step is chosen from the outgoing edges as per their routing probability.

Thus, the problem of maximizing the expected coverage of a topology can be defined as:

Problem 2 (Stoc-Prefix-Cover𝑘 ). Find 𝑆 ⊂ 𝑉 ′ with |𝑆 | ≤ k, that maximizes E [| ∪𝑣∈𝑆 𝑋𝑣 |].

For example, in Figure 5, 𝑋1, the expected coverage of vantage points in node 1, is determined

by starting at node 1, continuing to nodes 3 and 4, and randomly choosing either node 5 with

probability 0.4 or node 6 with probability 0.6. If node 5 is chosen, continuing to node 7 and ending

at 𝑃 yields the set of edges 𝑋1 = {𝑒1,3, 𝑒3,4, 𝑒4,5, 𝑒5,7, 𝑒7,𝑃 }.
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Fig. 5. Traceroutes from vantage points are randomly routed from AS 4 independently among the two
outgoing links according to the marked probabilities.

Stochastic Maximum Coverage. The above problem is a special case of the stochastic maximum

coverage problem. Stoc-Max-Cover𝑘 is a variant of Max-Cover𝑘 where the input is an integer 𝑘

and A = {𝐴1, 𝐴2, . . .} where 𝐴𝑖 is a random set chosen according to some known distribution 𝑝𝑖 .

The goal is pick A ′ ⊂ A to maximize E [| ∪𝐴∈A′ 𝐴|].
It can be shown that a natural extension of the greedy algorithm that, at each step, picks the set

with the largest expected increase in the coverage, achieves a 1 − 1/𝑒 approximation [5]. However,

note that using this algorithm in our context requires us to be adaptive, i.e., we select a vantage

point, perform a measurement from that vantage point, and see the result of this measurement

before selecting the next vantage point. This is in contrast to a non-adaptive algorithm that must

choose the full set of 𝑘 vantage points before running any measurements. There is a trade-off

between these two approaches: on the one hand, an adaptive approach may provide a solution of

strictly better quality than a nonadaptive algorithm since it has strictly more information.

On the other hand, the adaptive algorithm is slower since after the adaptive algorithm chooses

each measurement, it must wait for the traceroute to finish before computing the next measurement.

This serial computation and measurement requirement prevents parallelization. Contrast this with

the nonadaptive algorithm, which can immediately generate a complete schedule of measurements

without actually performing any traceroutes. This schedule can be used to perform the actual

traceroutes in any order or even in parallel. This flexibility makes the non-adaptive algorithm

desirable in some cases despite its strictly worse solution quality. For these reasons, we implement

both versions and evaluate their solution quality theoretically and experimentally. As mentioned

above, the adaptive greedy algorithm is guaranteed to achieve an approximation factor of at

least 1 − 1/𝑒 . The non-adaptive greedy algorithm is guaranteed an approximation factor of at

least (1 − 1/𝑒)2; this follows from work by Asadpour and Nazerzadeh [5] on the more general

Stoc-Max-Cover𝑘 problem.

3.6 Evaluating the Greedy Algorithm
We now evaluate the performance of our greedy algorithm in discovering paths towards a given

prefix 𝑃 . The results of the measurements dictated by the algorithm is a directed acyclic graph

(DAG) rooted at 𝑃 . We evaluate the performance of our algorithm and others based on the number

of nodes observed in the per-prefix DAGs. We compare our greedy algorithm to common strategies

of exploring network topology like random vantage point selection and geo-distributed selection.

The geo-distributed strategy selects probes from as many countries as possible i.e., it will not pick

a second probe from a given country until all other countries have been selected.
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Fig. 6. The number of ASes discovered in the DAGs for different measurement budgets and different mea-
surement strategies, across three measurement platforms: (1) CAIDA Ark (2) PlanetLab, and (3) RIPE Atlas.
Results shown for content-heavy prefixes.

We first consider how well the greedy algorithm performs relative to random or geo-distributed

measurement strategies. Figure 6 shows the number of ASes discovered in DAGs for destination

prefixes for different measurements budgets. The solid line represents the median and dashed lines

containing the shaded area show the 5
𝑡ℎ

and 95
𝑡ℎ

percentiles. We perform this evaluation using

algorithmic simulation [18] but in Appendix B we show that simulated paths and coverage results

match well with actual measurement values.

The greedy strategy covers more ASes for a given measurement budget. We find that for

the same number of measurements (𝑘 = 500), our greedy strategy is able to cover 4 times more

ASes than both random and geo-distributed strategies (Figure 6). The random strategy observes

a linear increase in the number of ASes covered for a given probing budget, whereas the greedy

strategy selects probes that will increase coverage the most early on. After a certain number of

measurements, the benefit of adding more measurements shows diminishing returns.

Results are robust across measurement platforms. We evaluate the predicted coverage of

the greedy algorithm across different measurement platforms in Figure 6. We find that across the

three measurement platforms, the greedy probe selection algorithm maximizes the number of

ASes covered for a given measurement budget. Random and geo-distributed perform similarly

in all platforms, with the exception of CAIDA Ark, where forcing the system to measure from

all countries actually results in lower coverage than would be seen by the random strategy. In

Appendix C we show the additional coverage from greedy measurements over the public datasets

from various measurement platforms.

Results are robust across prefix types. We find that our results are robust across different

destination prefix types (Appendix, Figure 16).

Benefit of including single homed stub ASes. We add single-homed stub customers of ASes

containing vantage points to the discovered topology. Since these stubs are single homed, knowing

the path from their provider to the destination prefix ensures knowledge of the path from the

stub as well. We evaluate the coverage of the greedy algorithm in the absence of gains from single

homed ASes. Figure 7(a) shows that our algorithm clearly performs better than other measurement

strategies even when excluding coverage gains of single-homed stubs.

Scaling PredictRoute. We now evaluate the load imposed on RIPE Atlas probes if a maximum

of 500 (k = 500) PredictRoute proposed optimized measurements are run towards all destination

ASes on the Internet. Figure 7(b) shows the distribution of number of traceroutes per probe, if

the per-destination AS measurement budget is capped at 500 (we run a maximum 500 traceroutes

towards any destination AS). We see that 75% of RIPE Atlas probes would need to execute less than

2000 traceroutes. We hope that this analysis can inform the placement of vantage points by RIPE

Atlas in ASes where the burden on existing probes is high.
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Fig. 7. Figure (a) shows ASes covered in the DAGs of prefixes when excluding coverage gains from counting
single-homed stub ASes. Figure (b) Distribution of the number of traceroutes that each RIPE probe would
need to run if the greedy algorithm was scaled to all destination ASes on the Internet.

4 PATH PREDICTION
We outline how PredictRoute uses empirical data to predict paths. Section 4.1 explains how Pre-

dictRoute builds destination specific graphs and auxiliary tables to capture the routing behavior

towards a prefix. Section 4.2 details how PredictRoute uses this information to define Markov chains

for predicting paths between source and destination hosts on the Internet. Section 4.3 explains how

PredictRoute use simulations to fill in gaps in the Markov chains derived from traceroutes. This

enables PredictRoute to answer all path prediction queries towards a destination prefix.

4.1 Constructing per-prefix DAGs
We gather a set of traceroutes publicly available on measurement platforms and those run in the

topology discovery stage of PredictRoute (§3). We aggregate traceroute hops into BGP routed

prefixes (or ASes) to make up the nodes in the DAGs. The process of converting IP paths to

prefix-level (or AS-level) paths is involved and requires handling of complex corner cases. We have

summarized our procedure in Appendix A.

Let P be the set of discovered prefix-level paths derived from traceoutes. The process of con-

structing trusted per-destination graphs has two main components, generating the graph itself and

computing the auxiliary transition tables that will be used to predict the sequence of edges that a

path will take in the graph towards the destination prefix.

(1) DAG Construction: Take the union of all edges in the paths in P to form the directed

acyclic graph D = (𝑉 , 𝐸).
(2) Basic Transition Table: For each edge 𝑒 ∈ 𝐸, let 𝑐𝑒 be the count of the number of paths

including 𝑒 .

Temporal transition tables and compression. We are interested in predicting paths both based

on the entirety of the observed data and based on data observed during a window of time. To

support the latter, we augment our basic transition tables with an additional dimension: time.

Let 𝑡 ∈ {1, 2, . . . ,𝑇 } index the relevant time period (e.g., the last month or year) at the required

resolution (e.g., hours or days). Let P𝑡 be the set of discovered paths at time 𝑡 and let 𝑐𝑡𝑒 be the

number of paths in ∪𝑡 ′≥𝑡P𝑡 ′ that includes 𝑒 . By defining 𝑐𝑡𝑒 in this way, note that 𝑐
𝑡2
𝑒 − 𝑐𝑡1𝑒 is the

number of paths in ∪𝑡1≤𝑡 ′<𝑡2P𝑡 ′ that include 𝑒 and this can be computed in 𝑂 (1) time rather than

in 𝑂 (𝑡2 − 𝑡1) time.

Unfortunately, storing 𝑐1𝑒 , 𝑐
2

𝑒 , . . . , 𝑒
𝑇
𝑒 rather than just 𝑐𝑒 increases the space to store the tables by

a factor 𝑇 and this may be significant. To ameliorate this situation, note that 𝑐𝑡𝑒 is monotonically

decreasing with 𝑡 and hence it suffices to only store values for 𝑡 where 𝑐𝑡𝑒 ≠ 𝑐
𝑡−1
𝑒 as the other values

can be inferred from this information. By trading-off a small amount of accuracy we can further
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Fig. 8. A DAG constructed from trusted traceroutes. Vantage point 𝐴 sends two traceroutes which follow
paths 𝐴𝐵𝐶𝐷 and 𝐴𝐵𝐸𝐷 . 𝐵 sends one traceroute with path 𝐵𝐸𝐷 and 𝐹 sends one traceroute with path 𝐹𝐶𝐷 .

reduce the space as follows. Suppose we are willing to tolerate a 1 + 𝜖 factor error in the values of

𝑐𝑡𝑒 . Then, round each 𝑐𝑡𝑒 to the nearest power of 1 + 𝜖 and let 𝑐𝑡𝑒 be the resulting value. Then only

storing 𝑐𝑡𝑒 for values of 𝑡 where 𝑐
𝑡
𝑒 ≠ 𝑐

𝑡−1
𝑒 allows every 𝑐𝑡𝑒 to be estimated up to a factor 1 + 𝜖 whilst

only storing at most 1 + log
1+𝜖 (𝑐1𝑒 ) different values.

4.2 Path Prediction via Markov Chains

Learning transition probabilities. The graph for a given prefix 𝑃 derived from traceroutes

towards 𝑃 defines the structure of the Markov chain used by PredictRoute to model the routing

behavior towards the prefix. PredictRoute computes the transition probabilities of each Markov

chain using Maximum Likelihood Estimation (MLE), given the traceroute counts stored in edge

transition tables. With each edge 𝑒 ∈ 𝐸 we assign a probability 𝑝𝑒 = 𝑐𝑒/
∑

𝑓 ∈𝑁𝑢
𝑐 𝑓 where 𝑁𝑢 is the

set of outgoing edges of 𝑢. If the user wishes to only train using traceroutes in a time window

{𝑡1, 𝑡1 + 1, . . . , 𝑡2 − 1} we set 𝑝𝑒 = (𝑐𝑡1𝑒 − 𝑐𝑡2𝑒 )/
∑

𝑓 ∈𝑁𝑢
(𝑐𝑡1

𝑓
− 𝑐𝑡2

𝑓
).

Once the Markov models are trained, PredictRoute obtains one Markov chain per destination

prefix, where the states of the Markov chain represent BGP prefixes and the end state is the

destination prefix 𝑃 . Edges between the states are evidence of traffic towards 𝑃 traversing them and

the edge transition probabilities define the likelihood of traffic traversing that edge. An example

Markov chain is shown in Figure 8. In this chain 𝐴, 𝐵, 𝐶 , and 𝐷 are prefixes. We want to calculate

the probability that a packet sent from source prefix 𝐴 to destination prefix 𝐷 follows the path

𝐴→ 𝐵 → 𝐶 → 𝐷 .

Defining path probabilities. PredictRoute assumes probabilistic routing obeys a first-order

Markov property. In other words, the probability of a packet choosing a next hop towards destination

𝑃 only depends on the current hop. This dependence on current hops rather than all prior hops is

inspired by the prevalence of next-hop routing on the Internet [19]. For the example in Figure 8,

this first-order Markov assumption allows us to express the probability of the specified path as

Pr(𝐴, 𝐵,𝐶, 𝐷) = Pr(𝐴) · Pr(𝐵 |𝐴) · Pr(𝐶 |𝐵) · Pr(𝐷 |𝐶)
Since we have specified that the path begins at 𝐴, Pr(𝐴) = 1. In this case, Pr(𝐵 |𝐴) = 1 since all

traceroutes originating from 𝐴 go to 𝐵. Pr(𝐶 |𝐵) = 1/3 since there are 3 traceroutes that go through

𝐵, and one of them has next hop 𝐶 . Pr(𝐷 |𝐶) = 1 since both of the traceroutes that go through 𝐶

have a next hop of 𝐷 . So Pr(𝐴, 𝐵,𝐶, 𝐷) = 1/3.
Inferring most likely sequence of states. A naive way of predicting paths from prefix Markov

chains would enumerate all paths from the source node 𝑆 to the destination prefix 𝐷 and return

the one with the highest probability. However, a graph can have an exponential number of paths

between the source and the destination, making this approach prohibitively expensive. A more
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efficient approach is as follows: for each edge 𝑒 = (𝑢, 𝑣) define the length ℓ𝑒 = − log(𝑝𝑒 ). This
weight is always non-negative and will be high if 𝑝𝑒 = Pr(𝑣 |𝑢) is low and vice versa. Furthermore,

the probability of a path is inversely proportion to its length. We then find 𝑟 shortest paths using

Yen’s algorithm [38] where the length of 𝑒 is set to ℓ𝑒 ; these correspond to the 𝑟 paths with the

highest probability. We set 𝑟 = 5 in PredictRoute’s current implementation. PredictRoute returns a

ranked list of these paths and their respective probabilities in response to a path query.

4.3 Splicing Empirical and Simulated Paths
If PredictRoute is faced with a query for the AS-level path between a source AS and a destination

prefix such that the source is not a state in the Markov chain of the destination prefix, it cannot

predict the path using the chain alone. In such situations we query BGPSim [18] for a policy

compliant path from the source AS to the destination prefix. We keep each hop of this path, starting

from the source AS, until we reach an AS that is present in the destination’s Markov chain. We

predict the path between the ASN at the splice point and the destination prefix using methods

described in the previous subsection. In this manner, PredictRoute can still return probability-

ranked paths for such a query by considering the BGPSim splice of the path as fixed (with transition

probabilities of 1).

5 PREDICTROUTE SYSTEM EVALUATION
In this section we discuss the implementation details of PredictRoute, including the construction of

per-prefix Markov chains and computing the edge transition probabilities. We then characterize

the Markov chains and demonstrate the accuracy of the paths they predict.

5.1 Implementation

Training. For training PredictRoute’s per-prefix DAGs, we acquire all public traceroutes available

on RIPE Atlas from December 25, 2018 until March 4, 2019. These traceroutes include measure-

ments run by the developers of the platform and user-defined measurements. The scale of these

measurements is large, with nearly 2.5-3 million traceroutes being run on the platform every hour.

In this manner, we use 4.5 billion public traceroutes to learn the structure of 545,168 Markov chains,

one for each routed prefix on the Internet. In Appendix A we describe the procedure for converting

traceroutes to prefix-level and AS-level paths. The edges of the Markov chains store the first order

transition probability, derived by Maximum Likelihood Estimation on the set of traceroutes.

We build prefix Markov models at two different granularities. In this first, all nodes in the graph,

including the destination prefix are BGP routed prefixes. In the second kind, all nodes in the graph

except the destination prefix represent ASes. Our goal with these two kinds of graphs is to aggregate

information at different levels, allowing the users to pick which works for their application.

In the worst case, a prefix graph can have as many nodes as the number of prefixes on the

Internet (≈ 500, 000). This size is fairly large compared to the AS-level graphs which in the worst

case have as many nodes as the ASes on the Internet(≈ 60, 000). However, some applications require

fine-grained paths at the prefix-level while others only need AS-level paths (§7).

Characteristics of PredictRoute’s destination prefix graphs. As we train the PredictRoute

graphs on public traceroutes on RIPE Atlas, we measure the impact of duration of data collection

on the size of graphs learned. Figure 9(a) shows the distribution of graph sizes as the duration of

data collection increases from 1 week to 8 weeks. Each hour of results adds 3 million traces to

PredictRoute’s processing pipeline, so we stop at 9 weeks of data for the evaluation of prefix graphs.

We note that, in practice prefix graphs have < 15, 000 nodes, much lesser than the theoretical worst

case. The explanation for small graph sizes is two-fold. First, the public traceroutes only provide
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dicting prefix-level network paths.

Fig. 9. PredictRoute prefix graph characteristics.

partial coverage of the topology and second, Internet paths are shrinking due to the flattening of

the Internet [16].

While our training process discards all circuitous traceroutes, interestingly, we observe some

of the learned prefix graphs contain cycles. These cycles motivate the inference methodology we

use for predicting paths from the graphs (discussed at the end of this section). While several of

these cycles were found among nodes belonging to the same ASes, we found a few that crossed AS

boundaries. Cyclical structure across AS boundaries suggests routing instability or delayed BGP

convergence. We measure the age of these cycles as the common duration of time when all edges of

the cycles were observed in traceroutes. Figure 9(b) shows the distribution of inter-AS cycle age in

hours. We note that these cycles are often short lived and rare. We provide insights into one such

inter-AS cycle and think PredictRoute’s graphs provide a new lens to study routing instabilities on

the Internet (§8).

Inference. The problem of predicting the network path from a source node to the destination

prefix in the Markov chain, is that of finding the likeliest sequence of states from the source to

the destination state. Since enumeration of paths in a potentially cyclical Markov chain can be

expensive, we adapt Yen’s 𝑟 -shortest paths algorithm to our problem for finding 𝑟 most likely paths

between the source and destination. The likelihood of a path is calculated with the first order

Markov assumption as described in §4.2. Note that Yen’s algorithm returns only loop-less paths,

ensuring that even if a destination prefix graph contains cycles PredictRoute will never predict

cyclical paths.

5.2 Accuracy of Predicted Paths
To evaluate the accuracy of inferred paths from prefix-level PredictRoute graphs, we randomly

choose a subset of source and destination prefixes, ensuring we have not measured this path in our

training data. We also ensure that the source prefixes chosen have an active RIPE Atlas probe in

them. This gives us a set of paths we have not trained on but have the ability of both predicting

and evaluating against a measured path. We compare the measured and predicted paths using their

edit distance and Jaccard Index (§6).

Prefix-level paths. Figure 9(c) shows the edit distance between the prefix-level predicted path

and the measured path for different path lengths. We note, for paths shorter than 10 prefix hops,

median edit distance between PredictRoute’s predicted path and the measured path is only 1.

AS-level paths. We now evaluate the accuracy of AS-level graphs towards a prefix. Learned in

a similar manner as prefix-level DAGs, the only difference is that these DAGs are aggregated at
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Fig. 10. Differences between measured and predicted paths from PredictRoute DAGs (pc), simulated paths by
BGPSim [18] (bgpsim), PredictRoute paths spliced with simulation (spliced) and those predicted by appending
1 (pc-sh-1) or 2 (pc-sh2) single homed stubs.

AS-level hops. PredictRoute’s AS path predictions differ from the measured path by at most 1 hop,

75% of the time (Figure 10(a)).

Incorporating simulation data. Simulation-based path prediction can answer all path predic-

tion queries at the AS-level but offers low prediction accuracy. A key goal of PredictRoute is to

answer queries for arbitrary paths on the Internet more accurately than state-of-the-art simulation

approaches [18]. However, PredictRoute’s destination-specific models are trained using traceroutes

that are limited by the measurement budget and availability of vantage points. Thus, some path

prediction queries may not be answered from the destination-specific routing models alone. We

consider two methods of incorporating simulated paths into PredictRoute. First, we consider re-

turning the entire simulated path towards the destination prefix when there is no path from the

requested source AS in the DAG. Second, we return the simulated path, up until we observe an AS

in the DAG. Beyond this AS, we return the path as predicted by the DAG. The idea being that with

destination routing this allows us to base the latter half of the path on empirical data. We note that

splicing with simulated paths is only possible when answering AS-level path queries.

We evaluate our approach for incorporating simulated path data using ASes that are not in the

DAG for a given prefix, but that contain a RIPE Atlas probe. This results in a set of 2,231 source

destination pairs where we can measure the path and then compare with the predicted path.

Figure 10(b) shows the edit distance between measured paths and those returned by the BGP

simulator (bgpsim) or the path produced by splicing the simulated path with the path found in the

DAG (spliced). We observe that the PredictRoute spliced paths get at most two AS hops wrong over

82% of the time whereas simulated paths get at most two hops wrong only 50% of the time. This

shows illustrates the benefits of using an approach that combines measurement and simulations

even when complete measurement does not cover all paths.

Relationship between accuracy and path probability. We analyze the probability of the high-

est ranked path in PredictRoute. This indicates the confidence value associated with PredictRoute’s

path prediction. Figure 11(a) shows the weight of the highest ranked path for paths where we

predicted correctly and those where we did not. We see that the predicted path has a confidence of

1.0 in for nearly 80% of the paths.

We next consider how often expanding the number of paths returned increases our accuracy.

Figure 11(b) shows the rank at which we find the correct path in PredictRoute’s predictions. Over

90% of accurate paths are found at rank 1 highlighting that the most likely paths in PredictRoute’s

predictions are accurate in majority of the cases.
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Fig. 11. (a) the confidence value of the top ranked path and (b) the rank at which the correct path is discovered.

6 COMPARISONWITH RELATEDWORK
In this section, we compare the performance of PredictRoute with two canonical works in this area,

iPlane [26] and Sibyl [24]. We evaluate the three systems based on their accuracy i.e., how close is

the returned path to the actual path) and their coverage (i.e., for what fraction of queries can the

system answer).

6.1 Comparison Methodology
Similar to PredictRoute, iPlane consumes traceroutes and related metadata to build an atlas of paths.

Using the atlas, iPlane predicts PoP-level paths by splicing paths in the atlas. A key piece of data

consumed by iPlane is the IP-to-PoP level mapping, built from traceroutes and active measurements

(e.g., DNS queries) towards intermediate traceroute hops. iPlane’s spliced paths serve as inputs

for Sibyl [24] which then augments these predictions with confidence scores using a supervised

learning algorithm [31].

To compare the accuracy of PredictRoute’s path prediction with iPlane, we train PredictRoute’s

DAGs and iPlane’s atlas on the same set of traceroutes. We extract features from iPlane’s predictions

to train Sibyl’s supervised learning model and use the predictions of the model (i.e., the confidence

scores) to evaluate Sibyl’s prediction accuracy using paths with highest confidence values.

When comparing to Sibyl and iPlane, we faced the challenge that the IP-to-PoP implementation

required by these systems was not available to run on present-day traceroutes. Thus, to perform

the evaluation, we trained PredictRoute on set of ≈ 20 million traceroutes which were used in

2016 to evaluate Sibyl. The authors gave us access to the IP-to-PoP mappings for this training

data, allowing us to compare both PredictRoute and the related work on the same training dataset.

These traceroutes were performed from a wide range of vantage points: PlanetLab, RIPE Atlas

and traceroute servers and looking glasses. To isolate the effectiveness of path prediction in these

systems, we use the same set of 20 million traceroutes to train and test each system.

We performed five-fold cross-validation by randomly dividing the set of traceroutes into 5

groups (each with 20% of overall traces) and training the path prediction systems (iPlane, Sibyl and

PredictRoute) on 4 of the 5 groups (80% of the data). We evaluate the performance of the systems on

the remaining 20% of paths. We repeat this process such that each of the five folds is used for testing

once. In each round, the systems were trained on 16 million and tested on 4 million traceroutes.

Further details about the evaluation and its limitations are covered in Appendix D.
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Fig. 12. Comparison of accuracy of PredictRoute, iPlane, and Sibyl. We find that Sibyl’s weighting of returned
paths improves accuracy over iPlane, but PredictRoute provides paths that are closer to those observed in
measurements.

6.2 Comparing accuracy of path prediction
Using the 5-fold cross validation methodology, we compare the accuracy of iPlane, Sibyl, and

PredictRoute. For a given traceroute in the test data, we query each of the 3 systems and compare

the predicted paths with the measured path in the test set. Since PredictRoute gives a list of path

predictions ranked by their likelihood, we compare its accuracy on the highest ranked path pc-1

and its accuracy when the second highest ranked path is included as an option pc-2. Similarly,

Sibyl provides confidence values (0 < 𝑐 < 1, predicted by RuleFit) for predicted paths. We consider

accuracy of the top 2 paths (sibyl-1, sibyl-2) predicted by Sibyl.

We evaluate the systems’ accuracy based on two distance metrics and compare these metrics

relative to the length of the path being predicted.

1. Levenshtein distance (edit distance): This metric measures the minimum number of single-

element edits (insertions, deletions or substitutions) required to change one sequence of ASes into

the other. This metric takes into account the ordering of ASes on the paths being compared. In

Figure 12(a), we see that PredictRoute performs better than iPlane and Sibyl for all path lengths in

terms of mean edit distance. We note that as the gap in the accuracy between PredictRoute and

other systems increases as the AS path length increases. However, we note that the number of

paths with a length of ≥ 5 is small, with only 10% of 2 million paths having length ≥ 5 ASes.

2. Jaccard Index: This metric evaluates closeness to the measured path if order of ASes on the

path is not important (i.e., the predicted path contains the ASes in the measured path). Figure 12(b)

shows the distribution of Jaccard indices of predicted and measured paths for PredictRoute, Sibyl

and iPlane. Similar to edit distance, we observe PredictRoute performs better than iPlane or Sibyl,

in terms of Jaccard similarity of the predicted and measured paths.

We attribute PredictRoute’s increased accuracy to the way that iPlane combines network paths

in its path prediction. To predict a path towards prefix 𝑃 , the initial path segment used by iPlane

(from source node to intermediate hop) can be derived from any traceroute, not necessarily one

that is destined to prefix 𝑃 . Since routing is largely destination-based, the first splice of the path

may not match the route the source would take to 𝑃 . PredictRoute avoids this issue by predicting

paths using the DAG for 𝑃 which is derived from traces destined towards 𝑃 only.
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6.3 Comparing coverage of path queries
We evaluate the fraction of path queries that PredictRoute and iPlane are able to respond to, given

the same training dataset. We find that in each fold of the cross-validation, we query the systems

for ≈2 million paths that they have not been trained on. iPlane provides paths for 70% of the queries.

PredictRoute responded to 100% of the path queries. The reason that PredictRoute’s is always able

to predict a path is its ability to use simulated paths to fill in path segments that have not been

directly observed. We discuss details of how we incorporate simulated path segments into our path

predictions in §5.2. Since Sibyl leverages iPlane’s predictions, it has the same coverage as iPlane.

7 CASE STUDIES
In this section we demonstrate the impact of PredictRoute on real-world applications.

PredictRoute for Refraction Networking (RN). Refraction networking [37] is a recent tech-

nique to circumvent Internet censorship that incorporates the circumvention infrastructure into

routers on the Internet. This technique is considered more resilient to blocking by censors since it

is hard to block individual routers on the Internet, while blocking the sources and destinations of

packets is relatively easy.

A key problem faced by Refraction Routing deployments today [14] is to place refraction routers

in large ISPs such that client traffic gets intercepted by them. If client traffic follows a path without

the refraction router on it, it leads to the failure of the refraction routing session.

We worked with the largest ISP-scale deployment of refraction routing [14] to use PredictRoute

for predicting if a client refraction routing session will be successful. To predict a successful

refraction routing connection, we use PredictRoute to predict the path between the client and

refraction router. If the PredictRoute predicted path crosses specific prefixes within the deploying

ISP, we conclude that the connection went via a refraction router and was successful (except for

other non-networking failures). We find that in the current deployment of clients, PredictRoute

can predict the prefix hop inside the deploying ISP which client traffic took when a RN session was

successful, 100% of the time. In future, we are working towards incorporating the PredictRoute API

into RN software for improved client performance.

PredictRoute to defend against routing adversaries. Researchers have found that anony-

mous communication via Tor [11] is susceptible to network-level adversaries launching routing

attacks [34]. Several defenses against such attacks have been proposed that aim to avoid Tier-1

providers [6], use simulated BGP paths to avoid network-level adversaries [28, 33], etc. Predic-

tRoute’s AS-level path prediction is highly accurate and readily available as a REST API which can

be incorporated into Tor client software for defending against network-level adversaries.

8 DISCUSSION AND FUTUREWORK
In addition to their utility for path prediction, PredictRoute prefix graphs capture routing behavior

in a novel way. We believe they can be used to revisit several classical problems in inter-domain

routing. For instance:

BGP atoms. The networking research community has long studied the right granularity for

modeling routing behavior on the Internet. One proposal is to find a set of routers that route

towards the Internet similarly, called BGP atoms [3]. We note that since PredictRoute has a view

of the routing behavior of all prefixes on the Internet, using measures of graph similarity across

prefixes, PredictRoute’s Markov chains can potentially provide a way to infer BGP atoms.

Analyzing routing convergence. In Section 5.1 we described the existence of cycles in Pre-

dictRoute’s per-destination graphs. While these cycles are rare across ASes and have very short

duration, we think they offer a new perspective on the analysis of BGP route convergence. Figure
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Fig. 13. A cycle observed in the PredictRoute routing model of prefix 122.10.0.0/19. This cycle is across 4 ASes
and lasted for 3 hours, as measured by traceroutes. Node ASNs, prefixes and edge probabilities are annotated.

13 shows one such cycle observed in the PredictRoute graph for prefix 122.10.0.0/19 which lasted

for 3 hours. Combining PredictRoute’s data plane analysis with BGP announcements can help us

identify the cause of these cycles and how long it took for them to be resolved in the control as

well as the data plane.

9 BACKGROUND
In this section we discuss prior work that addresses the challenge of predicting network paths via

simulations and measurement-based path prediction.

9.1 Simulations for path prediction
A number of studies rely on modeling and simulation of inter-domain paths. These studies model

the AS-level Internet topology as a graph 𝐺 = (𝑉 , 𝐸) where the vertices represent ASes and the

edges represent connections between them. The edges in the graph are annotated with business

relationships between the ASes (e.g., customer-provider, peer-peer). Using this graph abstraction

and a model of routing policies like the Gao-Rexford model [15], researchers have simulated the

paths on empirical network topologies, e.g., the CAIDA topology [8]. Simulations of network paths

face scaling challenges due to the size of the network graph (|𝑉 | ≈ 50𝐾 , |𝐸 | ≈ 140𝐾) and the fact

that routing on the Internet does not follow shortest paths. Approaches to scale simulations include

custom simulators [22, 35], methods to scale down the topology [25], and specialized algorithms to

enable efficient computation of policy compliant paths on the entire Internet graph [18].

The accuracy and limitations of simulated network paths have been investigated by a study

which finds that 65% of measured paths match those returned by simulators [4]. However, in cases

where measurement-based path predictions are not possible due to the lack of appropriate vantage

points, simulations can provide a coarse-grained approximation of the actual network path. In fact,

PredictRoute leverages an algorithmic network path simulator, BGPSim [18] as the fall-back for

path prediction when a more accurate path prediction is not possible.

9.2 Measurement-based path prediction
iPlane [26] predicts the path from source 𝑆 to destination 𝐷 by combining paths from 𝑆 to an

arbitrary destination with a path from an arbitrary source to 𝐷 . This technique, referred to as path

splicing is used to provide predictions of point-of-presence or PoP-level paths. We note that the first

section of the spliced path may be inaccurate since it is derived from a measurement originating at

𝑆 towards an arbitrary destination, as opposed to the desired destination 𝐷 .
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In subsequent years, researchers have built iPlane Nano [27] to reduce the memory footprint of

iPlane, enabling the use of such a system on personal computers and mobiles. Unlike iPlane which

stored an atlas of paths, iNano stores a graph of connectivity information (links between PoPs,

ASes) observed from in traceroutes. To predict paths, iNano performs a shortest path search on the

graph and predicts only those AS-level paths that conform to BGP policies and known constraints

on paths e.g., valley free routing. More recently, researchers leveraged iPlane’s path prediction to

build Sibyl [24] for optimally discovering measurements that satisfy complex path queries. In this

work, the authors noted the low accuracy of path splicing formulate iPlane Nano (68%) and use

supervised machine learning to help improve accuracy when multiple spliced paths are available.

9.3 Measurement platforms and data sets
The rise of inexpensive, small form factor computing devices (e.g., Raspberry Pi [29]) has lowered

the bar for deploying vantage points in a range of networks. Prime examples are RIPE Atlas [30]

and Ark [7], which have vantage points in 3,200 and 142 ASes, respectively. While the number

of vantage points and locations has increased with these platforms, their constrained hardware
1

necessitates judicious use of their resources. Indeed, a recent study highlights the impact of load

on measurements run in parallel on RIPE Atlas nodes [21].

To facilitate more efficient use, many of these platforms make their measurements publicly

available. For example, RIPE Atlas publishes traceroutes to destinations spread across nearly 500

ASes from vantage points in over 3,200 ASes. RIPE Atlas also implements a credit system to limit

the load individual users can place on the platform. In this study, we develop techniques to make

more efficient use of our measurement budget on the RIPE Atlas platform. We also re-use the public

measurements on RIPE Atlas for building prefix routing models [32].

10 CONCLUSION
This paper introduces PredictRoute, a system that predicts network paths between arbitrary

hosts on the Internet. We show analytically that it makes efficient use of available measurement

platforms to maximize measurement inputs to its path prediction system. We empirically verify

that PredictRoute’s path predictions improve upon the state of the art, both in terms of path

query coverage and in accuracy of predicted paths. We also demonstrate PredictRoute’s utility

in improving applications for circumventing Internet censorship and revisiting classical inter-

domain routing problems. We have released PredictRoute’s code and prototype for use in Internet

applications and other studies.
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A EXTRACTING CONNECTIVITY INFORMATION FROM TRACEROUTES
Using traceroutes to extract information about connectivity between prefixes and ASes on the

Internet is a hard problem due to several practical issues. In this sectionwe highlight the assumptions

we made in processing traceroutes.

• IP-to-Prefix and IP-to-ASNWeuse the CAIDA prefix to ASN dataset [1] tomap IP addresses

to the longest matching prefix in the BGP routing table. Similarly, we associate prefixes with

ASNs that announced them.

• Dealing with prefix migration Some prefixes are announced by different ASes at different

points of time for several reasons. In order to keep track of the ASN announcing a prefix at

time 𝑡 , we use search the BGP announcements of that prefix closest to 𝑡 .

• Dealing with discontinuous traceroutes Often traceroutes are discontinuous because

some networks do not respond to ICMP packets. In our measurements, MegaFon (ASN 31133),

Hurricane Electric (ASN 6939) and Level 3(ASN 3356) are the top 3 ASes to not respond to

traceroute packets. However, we include discontinuous traces in the PredictRoute graphs in

the hope that at a later point, new traces would connect the dangling traceroute to the rest

of the graph.

• Dealing with traceroutes with loopsWe only added loop-free traceroutes to the Predic-

tRoute graphs to ensure high accuracy of the system. As a result, the cycles formed in the

graphs are a result of 2 or more traceroutes.

• Dealing with IXPs on path IXPs are an important part of the inter-domain routing ecosys-

tem. We identify IXP prefixes using aggregated datasets from PeeringDB, PCH etc. Predic-

tRoute uses this information to inform the user if their traffic crossed an IXP.
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Fig. 15. Number of ASes in the empirically derived directed acyclic graphs (DAGs) for each prefix. Prefixes
are ranked by the number of AS included in the DAG and prefixes with less than 75 ASes in their graph are
not shown, they are qualitatively similar to the ASes on the right-hand side of the graph.

B COVERAGE PREDICTED BY SIMULATIONS IS VERY CLOSE TOWHAT IS SEEN IN
PRACTICE.

A key question we face in using a simulator to compute coverage and select measurements to run,

is whether the simulator allows us to make predictions that are close to reality. Figure 14 shows the

ratio of the measured and predicted (via simulation) coverage values (i.e., number of ASes covered

by the DAGs). We find that in general, the simulated coverage is very close to what we observe in

practice. In fact, 92.5% of the time, the predicted coverage is within 1% of the measured values.

C BENEFITS OF AGGREGATING DATASETS
PredictRoute’s AS-level DAGs include ASes observed on paths towards the destination prefix. These

paths may come from existing traceroute data or measurements we issue ourselves according to

the greedy algorithm (§3). Figure 15 shows the size of the DAGs for prefixes with at least 75 ASes

in the DAG.
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Fig. 16. The number of ASes covered by the DAGs for different measurement budgets and different measure-
ment strategies: (1) Geo-distributed (2) Greedy, and (3) Random and four destination prefix types. The prefix
types are: randomly chosen routed prefixes (random), prefixes hosting content for Alexa top 100 websites
(top_content), prefixes announced by ASes with the largest customer cones on the Internet (top_cust_cone)
and prefixes announced by top eyeball networks (top_eyeball). We note that the results are consistent across
prefix types.

Breadth of coverage from CAIDA Ark and RIPE Atlas Anchors. We find that CAIDA’s Ark

platform is able to give us broad coverage of many destination prefixes. This follows from the
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fact that this platform is used to traceroute to all globally routed prefixes from a set of 25 ASes

containing probes. Similarly, the public RIPE data contains broad traceroute campaigns from 200

anchor probes (higher capacity nodes that can perform more intensive measurements).

In depth measurements of few destinations from RIPE Atlas. The bulk of the RIPE tracer-

outes we ingest center on a small number of destination prefixes (i.e., campaigns that traceroute

from a large number of probes to a single prefix). This follows from the usage model of RIPE

Atlas, which facilitates selecting many sources but not necessarily a large pool of measurement

targets. Indeed, the largest DAGs we observe are for a prefix 194.0.1.0/24 announced by ASN 42909

(Community DNS) which contains 1015 ASes.

Efficient coverage via our greedy algorithm. Figure 15 also shows the results of running our

greedy algorithm for selecting vantage points. DAGs for prefixes where we performed greedy

measurements contain an average of 410 ASes (and 6886 single homed stub ASes on an average).

This is in contrast to an average of 45 ASes for prefixes where we rely on existing traceroute data.

We also note that this gain in terms of ASes is accomplished with a relatively small number of

measurements.

D EVALUATION DETAILS
Sibyl adds a layer of ensemble based supervised machine learning on top of iPlane’s predicted

paths. We used the same implementation library (RuleFit [31]) as was used by the authors of

Sibyl. This library is an R-wrapper around a Fortran based implementation. As a first step, we

extracted features from path predictions from each fold of cross-validation. We used the same set

of features used by the authors of Sibyl [24]. Since the training data in each fold, consists of 16

million traceroutes, the set of data/features used by RuleFit is correspondingly large. Nevertheless

we attempted to learn a model from the training data using the same RuleFit implementation as

used by Sibyl. This evaluation was done on a dedicated 252GB, 56 core server. However, the Fortran

library throws memory corruption errors (SIGSEGV), when RuleFit is trained using the full 16

million traceroutes. We verified that this was not caused by our input data but was due to the

large size of the input by reducing the size of the training/test datasets (using random sampling). A

smaller training and test data combination leads to successful learning of the model. To resolve

this issue, we randomly sampled training and test points in each fold of the evaluation, until we

could get RuleFit to learn a model. The size of training data which was a threshold for this was ≈
500,000 training examples. The test data had to be similarly smaller so we again randomly sampled

from the 20% test queries and used the learned model to predict the confidence values of those. In

this manner, we evaluate Sibyl over ≈ 50,000 paths overall. We reduce the testing set as well as the

training set in an effort to be fair in our evaluation.
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