Identifying Traffic Differentiation on Cellular Data Networks

Arash Molavi Kakhki*, Abbas Razaghpanah*, Rajesh Golani~
David Choffnest , Phillipa Gill-, Alan Mislove!
*Northeastern University, *Stony Brook University

1. INTRODUCTION

The goal of this research is to detect traffic differentiation
in cellular data networks. We define traffic differentiation
as any attempt to change the performance of network traf-
fic traversing an ISP’s boundaries. ISPs may implement
differentiation policies for a number of reasons, including
load balancing, bandwidth management, or business rea-
sons. Specifically, we focus on detecting whether certain
types of network traffic receive better (or worse) perfor-
mance. As an example, a wireless provider might limit the
performance of third-party VoIP or video calling services
(or any other competing services) by introducing delays or
reducing transfer rates to encourage users to use services
provided by the provider. Likewise, a provider may allocate
more bandwidth to preferred applications.

Previous work [1, 3, 5] explored this problem in limited
environments. Glasnost focused on BitTorrent in the desk-
top/laptop environment, and used port/payload randomiza-
tion to avoid differentiation. NetDiff covered a wide range of
passively gathered traffic from a large ISP but likewise did
not support targeted, controlled experiments. We address
these limitations with Mobile Replay.

2. MOBILE REPLAY

We assume that ISPs will differentiate traffic based on
properties such as hostname, IP addresses, ports, total num-
ber of connections, payload signatures, total bandwidth and
time of day. Our system currently can detect all of these
forms of differentiation with the exception of server-based
differentiation.

2.1 Overview

Mobile Replay identifies service differentiation using two
key components. First, it tests for differentiation by replay-
ing real network traces generated from user interactions with
apps. Meddle [4] facilitates capturing this information, and
we develop new strategies for replaying arbitrary app traces.
Second, Mobile Replay exploits the Meddle VPN to conduct

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

SIGCOMM'’14, August 17-22, 2014, Chicago, IL, USA.

ACM 978-1-4503-2836-4/14/08.

http://dx.doi.org/10.1145/2619239.2631445 .

alnfle]=

mlimlmle

Figure 1: Schematic view of how our project works. Traffic is
sent unencrypted and through the Meddle VPN tunnel between
the mobile client and a control server.

controlled experiments. By alternately replaying traffic over
tunneled and untunneled connections multiple times in rapid
succession, we control ISP visibility into packet contents that
may used to differentiate traffic.

A key challenge is how to capture and replay the salient
features of application traffic such that it will be subject
to differentiation from middleboxes. To this end, we design
a system that captures traffic generated by users’ devices
(via Meddle) and replays those flows from a replay server.
Another challenge is how to establish ground truth as to
whether the ISP is differentiating service for replay traffic.
To address this, we exploit the VPN connection that Meddle
provides as follows. When the VPN is enabled, the ISP can-
not inspect flow contents and thus cannot differentiate based
on the above factors except total bandwidth and time-of-day.
We then compare this performance to the case when we send
traffic untunneled. Using multiple successive trials of tun-
neled and untunneled replay experiments, we can determine
the noise inherent in performance metrics in each type of
experiment (tunneled vs not tunneled), then identify cases
where there are statistically significant differences between
them, indicating differentiation.

2.2 Replay and methodology

We support both UDP and TCP flows in our replay sys-
tem, which consists of a client app running on the mobile
device and a replay server written in Python in a event-
driven fashion using Gevent [2], which performs efficiently
with many concurrent clients. The server also performs UDP
hole punching to support clients behind a NAT. The client
and server coordinate to replay the original flows to repro-
duces packet timings, sequence of bytes, ports and client IPs.
Since our replay is limited to using our own replay servers,
we cannot detect differentiation based on arbitrary server
IPs (a topic of ongoing work). Note, however, that if our
replay servers are co-located with servers contacted in our
traces, we do not suffer from this limitation. For example, if

o
g 16 .
s 14 4 s e
i

D 12 rd - o

el
s 10 P
L 8 i '
[Yaw d
5 4 V4 preserved i
(_:‘: f not preserved FOTTrTT
£ g original s
=3
o 0 5 10 15 20 25 30 35 40 45

Time (seconds)

Figure 2: Cumulative byte-transfer plot of YouTube trace replays
with inter-packet timing preserved vs. not preserved. The x-axis
is time and y-axis is the total number of bytes transferred to that
point. Observe that the original packet trace looks identical to
the replay when timing is preserved.

we use EC2 servers and the tested app streams video from a
server in the same data center (and/or same block of IP ad-
dresses), we may be able to trigger the same differentiation
in our replays.

We detect differentiation according to the following met-
rics. First, we verify that the bytes sent/received at each
endpoint during the replay are the same as the original trace.
If not, we flag a case of content manipulation/blocking. Sec-
ond, we compute summary statistics on throughput, loss,
and RTT. Unlike manipulation/blocking, there are confound-
ing factors other than differentiation that may causes changes
in these statistics between the record and replay. To address
this issue, we run multiple replay trials (10 total, though we
are investigating dynamically adjusting the number of tri-
als in response to observed noise), alternating between using
a VPN connection (Rr) and an untunneled one (Ry). By
computing statistics over multiple trials of one category (Rr
or Ry) we can quantify natural variations in performance
that are not a result of differentiation. Having computed
the variance over Rr and Ry, we can compare the sum-
mary statistics (mean/median) of Ry and Ry and use the
variance in each category to determine if the differences are
statistically significant. Note that ISPs may apply differen-
tiation to all VPN traffic, e.g., by throttling. To detect this,
we group all Ry samples and compare them to all Ry sam-
ples across all applications and use the analysis described
above.

2.3 Feasibility

We now demonstrate that our replay module performs as
expected and can detect differentiation.

By preserving packet ordering and timing, our system pro-
duces very similar results to the original traffic. Figure 2
shows a YouTube trace replayed in both conditions side-
by-side. Of course, a variety of factors can differ between
record and replay, including network conditions and access
technology. In particular, apps may change their behavior
in response to network technology and available bandwidth.
In such cases, we must ensure that we replay traffic that was
originally captured over similar network conditions. In our
experiments, YouTube was the only app that exhibited such
behavior (due to adaptive bitrate streaming).

We next tested whether we can detect differentiation in
a controlled environment. We ran a full replay test with
YouTube in a test environment where we inject a simple
form of differentiation by adding a 3% packet loss and 10ms
of delay. Figure 3 shows CDFs of throughput during the
replays, with and without differentiation. The effect of dif-

0.8
0.6 (T

5 el
© o4 NoVPN .
[VPN
0.2 / NoVPN w/ differentiation m!
0) VPN w/ differq,ntiation ----------
0 500 1000 1500 2000

Throughput (KB/sec)

Figure 3: CDF of throughput over time, with and without extra
delay and packet loss induced at the server. Our approach allows
us to detect differences in throughput sample distributions when
differentiation is applied.

ferentiation on the distribution is clear, indicating that our
system and metrics allow us to distinguish between differen-
tiation and noise. Last, we tested our approach using several
application traces on Verizon in Boston. Figure 4 shows our
replay results for two of those services, and we are able to
confirm that there is no differentiation.

08 / _ 0.8 L
w06 [W 06
a b= a
© 04 S o4
0.2 NoVPN —— 0.2 NoVPN ——
‘VPN s ‘VPN‘ e

0 0
0 500 1000 1500 2000 0 100 200 300 400 500 600
Throughput (KB/sec) Throughput (KB/sec)

(a) (b)

Figure 4: CDF of throughput over time for Verizon (left: Netflix,
right: Spotify). Our tests show that Verizon does not differentiate
traffic for these apps.

3. FUTURE WORK

To address the limitation that we cannot detect differenti-
ation based on server ports, our future work includes lever-
aging source-spoofing such that the source IP in the server’s
packets are the same as in the original traces. Additionally,
because the VPN itself may be subject to differentiation
(or blocked), we are investigating using multiple differen-
tiation detection approaches, including randomizing packet
payloads and ports in the replay. We are also developing an
app that allows average users to create and conduct tests
from an mobile provider worldwide, and that efficiently uses
scarce available data quota to run those tests. We plan to
use the results to produce a Web site informing consumers
of ISP policies.

4. REFERENCES

[1] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi,

R. Mahajan, , and S. Saroiu. Glasnost: Enabling end users
to detect traffic differentiation. In NSDI, 2010.

[2] http://www.gevent.org.

[3] M. B. Tarig, M. Motiwala, N. Feamster, and M. Ammar.
Detecting network neutrality violations with causal
inference. In CoNEXT, 2009.

[4] http://www.meddle.mobi/papers/meddle-main.pdf.

[5] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting traffic

differentiation in backbone isps with netpolice. In
SIGCOMM, 2009.

