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Abstract— Two classic categories of models exist for computer
networks: network information flow and network of queues.
The network information flow model appropriately captures the
multi-hop flow routing nature in general network topologies, as
well as encodable and replicable properties of information flows.
However, it assumes nodes in the network to be infinitely power-
ful and therefore does not accurately model queueing delay and
loss at nodes. The network of queue model instead focuses on
finite capacitied nodes and studies buffering and loss behaviors
from a stochastic perspective. However, existing models on
network of queues are mostly based on unrealistically simple
topologies, and lacks the multi-hop flow routing dimension. In
this work, we seek to combine advantages from both models.
We start with the network information flow model and replace
each infinitely powerful node with a finitely capacitied queue
system instead. We show that the optimal routing problems for
unicast, multiple unicasts and multicast can all be formulated as
convex optimization problems. As a necessary step in validating
the model for multicast routing, we show that network coding
does not change the memoryless nature of traffic. We examine
the correctness of the models through simulations and show
that they behave differently than traditional link-cost based
network flow models.

I. INTRODUCTION
The routing of information flows with performance objec-

tives has been an important direction in networking research.
Depending on the application, performance objectives may
include high throughput(e.g. [11]), or quality of service
objectives such as loss and delay (e.g. [13], [17]). In this
paper, we develop a new model for routing information flows
within a computer network. Our motivation originates in the
observation that existing models, including network infor-
mation flow and network of queues, each has its advantages
and disadvantages, as explained below. We wish to combine
attractive features from both models to better represent a
computer network.

The classic network flow problem [2] studies the transmis-
sion of commodity flows across a transportation network.
The goal is to maximize the end-to-end flow rate or to
minimize the transmission cost incurred while sustaining
a certain target throughput. The routing is performed in a
graph representing the network topology and is multi-hop
by nature. Constraints in optimizing the routing include flow
conservation at relay nodes and capacity limits at links [2],
[3]. In computer network research, the network flow model
has been adopted for modelling unicast routing [8], [12],
where data streams flow from one sender to one receiver.
The structure of multicast routing, where data flows from
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one sender to multiple receivers, is not a simple network
flow anymore, since information may be replicated and flow
conservation does not hold [6], [12]. Nonetheless, a recent
break through in information theory [1], [9] suggests that, by
further considering the encodable property of information
flows, multicast routing can be modelled as a union of
conceptual network flows [11], [14].

The network flow based routing model in computer net-
works successfully characterizes the general graph topology
of a network, the multi-hop flow routing nature in data
transmission, as well as the unique encodable and replicable
properties of information flows (in the case of multicast).
However, network flow based routing essentially ignores
the limited capabilities of nodes (end-hosts, routers and
switches) in the network, and assume that they are infinitely
powerful. While such assumptions may be acceptable in
commodity networks, where flows simply pass through joints
of pipes, it is less desirable in communication networks.
Information flows passing through a node in a computer net-
work need to be buffered, switched [10] and processed [1];
such node processing, along with the associated queueing
delay and packet loss, are critical features to consider in
modelling a computer network. In this paper, we leverage
classic modelling techniques in queueing theory to comple-
ment the network flow model, so that both multihop-routing
in a graph and finite node processing power are appropriately
accounted for.

Queuing theory provides a framework for modelling lim-
ited capacities at network nodes using standard queuing
models such as the M/M/1 or M/M/1/k systems. These
queuing models provide methods for evaluating the average
behaviors of a node based on the amount of workload it is
subjected to. Of particular interest to this study is the average
delay at a node; we plan to study effects of packet loss and
retransmissions in future work. Queuing models of nodes
can be extended to networks of many nodes (modelled as
queues) using networks of queues models such as Gordon-
Newell networks or Jackson networks [4]. Although these
networks of queues exist to generalize single queuing models
into networks of many queues, it is seldom that networks of
queues are modelled using general network topologies [7],
[16]. In this paper, we apply networks of queues to general
network topologies in order to perform optimal multihop
routing of information flows. As we will show in Sec. VII,
this is different than traditional link-cost based network flow
models.

This work combines the concept of network flows with
networks of queues to develop new optimization models for
routing network flows in general topologies. Our network of



queues model contrasts most network information flow stud-
ies by considering nodes with finite processing capacities.
These finite processing capacities can have implications for
the performance of network flows (especially in terms of de-
lay) and are important to consider when determining optimal
routes for network flows. We use results from queuing theory
to determine optimal routes for network flows that take into
account limited processing capacity of nodes. To the best
of our knowledge, this work represents the first attempt in
designing a computer network model that captures both of
the following features: (a) multi-hop routing of information
flows in general graphs, and (b) finite node capacities and
the associated queueing delays.

The main purpose of this work is to bring to the attention
of the networking community the above new model for
computer networks. As a proof of concept, we develop
mathematical programs that compute optimal routes for
network flows based on minimizing average delay for the
flows. Mathematical models are developed for three types
of network flows, single unicast, multiple unicast and mul-
ticast. For each model, the convexity of the mathematical
program is established and numerical results are presented.
Additionally, we prove that the output of a node after coding
together two network flows will produce an output process
that follows a Poisson distribution provided that the input
flows also follow Poisson distributions.

The rest of the paper is structured as follows. We describe
the model of network nodes and the network model in
Section II. In Sections III and IV we present our models
for optimal routing of single and multiple unicast flows in
a network of queues. Optimal routing of multicast flows is
considered in Section V. We present numerical results of our
models in Section VI. Finally, conclusions are discussed in
Section VIII.

II. NETWORK MODEL AND PRELIMINARIES
A salient feature of our work is modelling network infor-

mation flows with limited node capacities. This is accom-
plished by considering each node as an M/M/1 queuing
system. Queuing occurs when the incoming flow rate tem-
porarily exceeds the node processing capacity and packets
have to wait in the node buffer. Node processing here is
an abstraction of real-world packet processing that includes,
for example, extracting destination address from the packet
header, routing table look-up, input-output port switching
[10], and encoding/decoding over a finite field in the case
of multicast [1].

The incoming flow to a node is assumed to follow a
Poisson distribution. It is a well-known fact that if incoming
traffic to an M/M/1 system is Poisson/memoryless, then
so is the departing traffic. The special case where synchro-
nization for network coding is necessary will be analyzed
separately. No flows are prioritized at nodes and all incoming
packets to a node u will enter the same queue. The output
flow rate of a node u is denoted by, fout(u).

It is assumed that processing time per bit at each node
is constant and packet sizes are exponentially distributed.

Thus, the per packet service time can be modelled using
exponential distribution with a mean of 1

µu

, where µu

denotes the processing power of node u. Using results on the
average delay of an M/M/1 queue, we have the following
function for delay on a node u:

τ(u) =
1

µu − fin(u)

Here τ(u) includes both waiting time in the buffer and
processing time. Since our expression for τ(u) is derived
based on steady state queuing behavior, we require that the
each node be an ergodic queuing system. This means that
there must exist a steady state solution for the queuing model
on each node. This can be guaranteed by assuming that
fin(u) < µu. We are able to generalize this single node
model to an entire graph by considering it as a Gordon-
Newell network [4].

III. SINGLE UNICAST
We study the new network model, with both multi-hop

routing and node queueing elements, from the perspective of
optimal routing algorithms. We start from the simple case of
one unicast only, and generalize to multiple unicast sessions
and multicast. In each case, we show that the problem of
minimum-delay routing can be formulated into a convex
optimization problem within the new model.
A. Mathematical Program

We now develop a mathematical program for optimal
routing of a single unicast flow with respect to average
weighted delay. The mathematical program takes as input
a directed graph G = (V,E), where each edge →

uv∈ E has a
fixed capacity denoted by C(

−→
uv ). The aggregated incoming

flow for a node u can be described as:

fin(u) =
∑

v∈N(u)↑

f(
−→
vu) ∀u ∈ V, (1)

where N(u) ↑ is the set of upstream neighbours of u, and
f(

−→
vu) is the amount of flow on edge −→

vu .
The mathematical program to minimize delay for a unicast

session with sender s and receiver t is presented below in
(2). The average delay per node is weighted by the amount of
flow that is directed to a given node (henceforth referred to as
weighted delay). Such a weighted delay model implies a fair
treatment of routing algorithms that split the total throughput
into multiple paths.

SINGLE UNICAST MODEL

Minimize
X

u∈V

fin(u)τ(u) (2)

Subject to:
8

>

>

>

>

<

>

>

>

>

:

τ(u) = 1
µu−fin(u)

∀u ∈ V 2a.

fin(u) < µu ∀u ∈ V 2b.

f(
−→

ts ) = xput 2c.
fin(u) = fout(u) ∀u ∈ V 2d.

f(
−→
uv ) ≤ C(

−→
uv ) ∀

−→
uv∈ E 2e.



τ(u), f(
−→
uv ) ≥ 0 ∀u, ∀

−→
uv

The first constraint in the Single Unicast model is on
the average delay of nodes in the network, defined by
the steady-state behavior of an M/M/1 queueing system.
Constraint 2b requires that arrivals to a node do not exceed
its processing capabilities. This constraint is required in
order to ensure the system is ergodic. The third constraint
places a virtual link between the receiver and the sender
with flow rate equal to the target throughput of the flow,
denoted as xput. This constraint is required for the model
to satisfy the flow balance constraints given in constraint
2d. Finally, constraint 2e ensures the flow along an edge
−→
uv does not exceed its capacity.

Theorem 1: The Single Unicast Model is a convex
optimization problem.
Proof of Theorem 1:
We essentially need to check that both the feasibility region
and the objective function in the model are convex. First,
consider the convexity of the constraints in the Single
Unicast Model. Clearly, constraints 2b-2e are convex since
they are linear. Since constraint 2a can be substituted in
to the objective function we consider them together. It can
be verified that each term in the second derivative of the
objective function is,

(fin(u)τ(u))
′′

=

(

fin(u)

µu − fin(u)

)′′

=
2µu

(µu − fin(u))3

which is positive when fin(u) < µu. Thus the Single Unicast
Model is a convex optimization problem and can be solved
using convex programming methods. ut

We have solved this convex program using the interior-
point algorithm, as implemented in cvx [5], a modelling and
solution tool for convex programming in Matlab. This is
demonstrated in Section VI, where we present numerical
results of our models.

IV. MULTIPLE UNICAST
In this section we extend the Single Unicast Model to

support s concurrent unicast sessions. To accomplish this
fin(u) is redefined as follows:

fin(u) =
s
∑

i=1

f i
in(u) ∀u ∈ V (3)

where

f i
in(u) =

∑

v∈N(u)

f i(
−→
vu) ∀i ∈ [1..s]. (4)

Here f i(
−→
vu) denotes the flow rate on link −→

vu of session i.
The mathematical formulation for multiple unicast strives to
minimize the weighted delay for each flow where each flow
is also given a weight, wi. The Multiple Unicast Model for
s concurrent unicast flows is presented in Equation 5.

MULTIPLE UNICAST MODEL

Minimize
s

X

i=1

d
i
w

i (5)

Subject to:
8

>

>

>

>

>

<

>

>

>

>

>

:

di =
P

u∈V f i
in(u)τ(u) ∀i ∈ [1..s] 5a.

τ(u) = 1
µu−fin(u)

∀u ∈ V 5b.

f(
−→

tisi) = xputi ∀i ∈ [1..s] 5c.

f i
in(u) = f i

out(u) ∀u ∈ V, i ∈ [1..s] 5d.
Ps

i=1 f i(
−→
uv ) ≤ C(

−→
uv ) ∀

−→
uv∈ E 5e.

τ(u), f i(
−→
uv ) ≥ 0 ∀i, ∀u, ∀

−→
uv

The first constraint of the Multiple Unicast Model defines
the weighted delay for each flow i. The weight depends on
f i

in while the node delay depends on fin. Similar to the
Single Unicast Model, constraint 5b defines the delay at
each node as a function of the incoming flow to the node,
fin(u), and the capacity of the node, µu. Next, in the third
constraint, virtual links are placed between the receiver
and sender for each flow i. Finally, the last two constraints
ensure flow balance as well as ensuring that flow along an
edge −→

uv will not exceed its capacity. The convexity of the
multiple unicast model can be numerically verified, and is
confirmed by cvx . Below we provide a proof on the case
of uniform session weights.

Theorem 2: The Multiple Unicast Model is a convex
optimization problem when wi = wj ∀i, j ≤ s.
Proof of Theorem 2:
Clearly, constraints 5c-e are convex since they are linear.
Next, we turn our attention to the objective function and
constraints 5a and 5b. Consider wi = K, ∀i ∈ [1..s] where
K is a constant.

h =
s
∑

i=1

diwi = K
s
∑

i=1

di (6)

By the first constraint:

di =
∑

u∈V

f i
in(u)τ(u) ∀ i ∈ [1..s]

Substituting di into equation 6 gives the following:

K

s
∑

i=1

(

∑

u∈V

f i
in(u)τ(u)

)

= K
∑

u∈V

(

s
∑

i=1

fin(u)iτ(u)

)

(7)
Using constraint 2 it follows that τ(u) = 1/(µu − fin(u)).
Substituting τ(u) into equation 7 we get the following:

K
∑

u∈V

(

s
∑

i=1

f i
inτ(u)

)

= K
∑

u∈V

(

s
∑

i=1

f i
in(u)

µu − fin(u)

)

By equation 3 this is equivalent to,

K
∑

u∈V

(

1

µu − fin(u)

(

s
∑

i=1

f i
in(u)

))

= K
∑

u∈V

fin(u)

µu − fin(u)



...

...

0

1a 2a

1b 2b

 

λ
λ λ

λ λλ
λ

λ

λ

λ

λ
λa

a

a a

a a

b b b

b
b b

Fig. 1. Markov chain representing the amount of unmatched packets from
flow a and flow b at the coding node u.

h = K
∑

u∈V

fin(u)τ(u)

This is equivalent to the Single Unicast objective function
which we have already shown to be convex. ut

V. SINGLE MULTICAST
A. Preliminaries

It has been shown in previous work that network coding
facilitates optimal multicast algorithm design [1], [9], [12].
We consider a model for multicast that incorporates network
coding while minimizing the overall multicast flow delay.
Since the network is modelled as a network of queues,
we first examine whether or not this model is applicable
when network coding is considered, i.e., whether traffic flows
remain memoryless after processing due to network coding.

In network coding, nodes in a network may encode two
network flows together and forward the encoded packet to
the next hop in the route. Encoding requires that at least
one packet from each flow to be encoded is present at the
encoding node. Otherwise synchronization of the flows is
required at the encoding node, before the encoded packet
can leave the node. For the network of queues model to be
applied, it is necessary that the output flows of all nodes
still follow a Poisson distribution. We now prove that the
output process of an encoding node will indeed converge
to Poisson, hence making the network of queues model
applicable to coded multicast.

Theorem 3: The process generated by coding together
multiple flows following Poisson arrivals will also converge
to a Poisson process.
Proof of Theorem 3:
For a network of queues model to be applied to multicast
routing with network coding, it is necessary to examine
the output process of a node after multiple network flows
(following Poisson arrivals) are synchronized and coded
together. For simplicity we consider the case where two
flows are coded together, however our proof can be
generalized to the case where more than two flows are
coded together.

Consider a node u with two incoming data flows a and
b with arrival rates λa and λb, respectively. Node u will
encode these flows together and output the encoded flow,
e(a, b). The state of node u can be represented by the
Markov chain shown in Figure 1. In the Markov chain,

each state keeps track of how many packets from flow a
or flow b are waiting to be coded at node u. At state ia,
we have i unmatched packets of flow a, waiting for packets
from flow b to arrive and then coded together. If the system
stays at any state except state 0, the inter-packet times will
follow the same distribution in the departing flow as in the
non-backlogged flow.

We now consider 3 possible scenarios.
• λa < λb. Consider a cut between any pair of neigh-

boring states in the Markov chain when λa < λb. In
this case, flows (probability transitions) across the cut
will not be balanced. As a consequence, the system
moves toward states that are in the bottom branch and
continues to progress down the bottom branch as the
probability of moving further down the branch is greater
than the probability of moving back toward state 0.
Eventually the probability for the system to be at state
0 at steady-state is 0. As a result, the output process
of node u will be a Poisson distribution with λ = λa.
The flow with the lower arrival rate limits the amount
of coded packets that the node may output.

• λb < λa. By similar arguments as in the case above,
the output flow will eventually approach a Poisson flow
with rate λb.

• λa = λb. For the situation we have a symmetric random
walk on a line. From the classical results on random
walks, we know that as sufficiently long time elapses,
the probability of being at any state will tend to 0. In
particular, the system is “almost surely” not at state
0. Following the argument before, the system’s output
process will converge to Poisson process, with rate
λ = λa = λb.

Above we have shown that regardless of the relationship
between the rates of the flows to be coded, the output of
node u will follow a Poisson process. Thus the network of
queues model may be applied to coded multicast. ut

B. Mathematical Model

We now extend our previous models to support a multicast
session with k receivers. The formulation of the model is
presented in Equation 8.

Single Multicast

Minimize
X

u∈V

fin(u)τ(u) (8)

Subject to:

8

>

>

>

>

<

>

>

>

>

:

τ(u) = 1
µu−fin(u)

∀u ∈ V 8a.

fin(u) < µu ∀u ∈ V 8b.

f(
−→

tis) = xput ∀i ∈ [1..k] 8c.

f i
in(u) = f i

out(u) ∀u ∈ V i ∈ [1..k] 8d.

f i(
−→
uv ) ≤ C(

−→
uv ) ∀

−→
uv∈ E i ∈ [1..k] 8e.

τ(u), f i(
−→
uv ) ≥ 0 ∀u, ∀i, ∀

−→
uv
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Fig. 2. Weighted delay for a single session as the throughput of the session
is increased.

The objective function is the overall multicast flow delay
across the network. The first constraint, similar to our
previous models, defines the delay at a node based on
results from queuing theory. Constraint 8b ensured that the
system will be ergodic as the processing capacity of the
node is not exceeded. Virtual links are defined between
the receiving nodes and the sender, with flow rate equal to
the desired throughput for each receiver. The flow balance
constraint is enforced on the conceptual flows of each of
the k receivers in constraint 8d. Finally, it must be the case
that no single flow can exceed the capacity of a link. In
this model each f i is a conceptual unicast flow from s to
ti. Note that constraint 8e requires each conceptual flow
rate be upper-bounded by link capacity, instead of having
the summation of them bounded by link capacity. This is
due to the celebrated multicast feasibility characterization
with network coding[1], [9]: a multicast rate is feasible
in a directed network if and only if it is feasible as an
independent unicast to each receiver.

Theorem 4: The Single Unicast Model is a convex
optimization problem.
Proof of Theorem 4:
It is clear that constraints 8b-8e are convex because they
are linear. Similar to the Single Unicast model, when the
first constraint is substituted into the objective function the
result will also be a convex function. Therefore, the Single
Multicast Model is also a convex program and may be
solved using standard techniques. ut

VI. NUMERICAL RESULTS
In this section, we numerically solve our models to exam-

ine their performance under varying conditions. We use the
cvx [5] package for Matlab to solve our convex optimization
problems. The cvx package provides a convenient way to
represent and solve convex optimization problems. Sample
network topologies are generated using the BRITE [15]
topology generation tool. We also generate µu for each node
u using a uniform distribution between 1000 and 1500.

First, results are derived for the Single Unicast Model,
as shown in Figure 2. We consider the weighted delay for
a session as its throughput is increased from 100 to 1000.
In this test, we fix the number of nodes in the topology
at 50. We observe that the weighted delay for the unicast
session increases in an exponential fashion as the throughput

B2

S1 S2 S3

I2

T1 T2 T3

I1

B1

I3 I4

Fig. 6. Example graph to compare our model to previous models

of the session is increased linearly. This is consistent with
the behavior of an M/M/1 queue as the load on the server
increases.

The Multiple Unicast Model is solved in Figures 3 and 4.
Impacts of multiple sessions competing for network re-
sources are shown in Figure 3. Each session has a throughput
requirement of 500 and the network has 50 nodes. The num-
ber of sessions in the network is increased from 1 to 10 and
the weighted delay for the first session is plotted. Weighted
delay for the first session remains relatively constant until
the around 8-9 sessions. At this point, the load placed on the
network by the additional sessions begins to have an adverse
impact on the existing session by increasing queuing delay
at nodes along the flow’s route.

We now consider the inter-session fairness of the Multiple
Unicast Model. We examine the situation where 2 sessions
share a network of 50 nodes. The first session has a constant
throughput of 100 while the throughput of the second session
is varied from 100 to 1000. Figure 4 illustrates the results
of this simulation. We observe that the weighted delay for
session 2 increases exponentially, similar to results seen
in the single unicast case, while the weighted delay for
session 1 remains relatively constant. Increased throughput
of the second session does not have an adverse impact on
the performance of the first session with lower throughput
requirements.

Performance of the Single Multicast Model is considered
in Figure 5. We examine impacts of increasing the throughput
for each receiver on the weighted delay of the entire multicast
session. For the evaluation we use a network of 20 nodes
and a multicast session with 5 receivers. The throughput
to each receiver is varied from 100 to 1000. We observe
an increase in weighted delay that is roughly exponential
for linear increase in the throughput of the session. This
is to be expected given results from queuing theory and
is consistent with observations for the Single and Multiple
Unicast Models.

VII. COMPARISON WITH LINK BASED MODEL
A unique characteristic of our model is that we consider

queuing delays on nodes instead of links in the network.
In this section we compare our node based approach to a
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Fig. 7. Amount of data from flow 1 routed toward the bottleneck as the
throughput of session 2 is increased.

traditional link-delay based model, and show that they are
different.

We consider a formulation of the link based model for
multiple sessions where each session is given an equal
weight. The problem can be expressed by the convex pro-
gram presented below which supports s concurrent sessions:

LINK BASED MODEL

Minimize
X

∀
−→

uv ∈E

f(
−→
uv )t(

−→
uv ) (9)

Subject to:
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

t(
−→
uv ) = 1

C(
−→

uv )−f(
−→

uv )
∀

−→
uv∈ E 9a.

f(
−→
uv ) =

Ps

i=1 f i(
−→
uv ) ∀

−→
uv∈ E 9b.

f(
−→
uv ) ≤ C(

−→
uv ) ∀

−→
uv∈ E 9c.

f(
−→

tisi) = xputi ∀i ∈ [1..s] 9d.

f i
in(u) = f i

out(u) ∀u ∈ V, i ∈ [1..s] 9e.

τ(u), f i(
−→
uv ) ∀i, ∀u, ∀

−→
uv

The convex program above aims to minimize the total
weighted delay of the links. Each link is modelled as an
M/M/1 queue with a mean service time given by C(

−→
uv ). It

is subject to similar constraints as our previous models. Delay
is modelled using the M/M/1 queue formula for average
delay. Flow along links is constrained by the capacity of the
link as well as by flow balance constraints. Also similar to
our previous models, a virtual link is placed between the
receiver and sender of each session with a flow rate equal to
the target throughput of the session.

We now consider the behavior of our Multiple Unicast
node based model with the behavior of the Link Based
Model. The graph we choose for the comparison is given
in Figure 6. This graph is considered with three sessions
with senders S1, S2 and S3 and receivers T1, T2 and T3,
respectively. We select this graph because of the bottleneck
link that may be shared by all three sessions. The bottleneck
consists of 1 link but 2 nodes. Intuitively, this bottleneck will
have a higher cost for the node based model than it will for
the link based model.

The impact of the bottleneck link on the two different
models is examined by numerically solving the model on
the sample graph. These results consider the graph when all
nodes and links having equal capacity of 60. Sessions 1 and
3 have a constant throughput requirement of 10. However,
the throughput for session 2 is varied from 1 to 25. The
flow directed toward the bottleneck by session 1 for each
value of session 2 throughput is considered for each value
of session 2 throughput. Our example graph is symmetric, so
the amount of flow directed toward the bottleneck by session
3 is equivalent to the amount directed toward the bottleneck
by session 1.

Figure 7 plots the amount of flow directed toward the
bottleneck link by session 1 for both of the models and
the various values of session 2 throughput. As we expect
the amount of flow directed toward the bottleneck by the
Link Based Model is greater than the amount directed toward
the bottleneck in the Multiple Unicast Model. The Multiple
Unicast Model stops sending data to the bottleneck when
the throughput of session 2 is approximately 10. Session
2 throughput when the Link Based Model stops directing
flow toward the bottleneck is twice as large. This scenario
illustrates the importance of considering network delays both
on nodes and links. If only one of these delays is considered
it is possible that the full impact of a bottleneck link on
performance may not be realized.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS
This work is mainly intended to bring to the attention

of the networking community a new network model, which
leads to different optimal routing algorithm design and new
understandings of multi-hop routing of stochastic informa-
tion flows. In short, the new model is derived by combining
advantages from both the network information flow model



and network of queues model. It takes into account both the
multi-hop routing nature and the stochastic processing nature
of information flows across a general network topology. As
a proof of concept, we show that minimum delay routing
in the new model can be casted into convex programs, and
solve them using the interior-point algorithm. A side result
we also presented is that the flow synchronization due to
network coding does not disturb the memoryless property of
stochastic information flows.
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