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Abstract

Latent sector errors (LSEs) refer to the situation where

particular sectors on a drive become inaccessible. LSEs

are a critical factor in data reliability, since a single LSE

can lead to data loss when encountered during RAID re-

construction after a disk failure. LSEs happen at a sig-

nificant rate in the field [1], and are expected to grow

more frequent with new drive technologies and increas-

ing drive capacities. While two approaches, data scrub-

bing and intra-disk redundancy, have been proposed to

reduce data loss due to LSEs, none of these approaches

has been evaluated on real field data.

This paper makes two contributions. We provide an

extended statistical analysis of latent sector errors in the

field, specifically from the view point of how to protect

against LSEs. In addition to providing interesting in-

sights into LSEs, we hope the results (including param-

eters for models we fit to the data) will help researchers

and practitioners without access to data in driving their

simulations or analysis of LSEs. Our second contribution

is an evaluation of five different scrubbing policies and

five different intra-disk redundancy schemes and their

potential in protecting against LSEs. Our study includes

schemes and policies that have been suggested before,

but have never been evaluated on field data, as well as

new policies that we propose based on our analysis of

LSEs in the field.

1 Motivation

Over the past decades many techniques have been pro-

posed to protect against data loss due to hard disk fail-

ures [3, 4, 8, 9, 14, 15, 18]. While early work focused on

total disk failures, new drive technologies and increasing

capacities have led to new failure modes. A particular

concern are latent sector errors (LSEs), where individual

sectors on a drive become unavailable. LSEs are caused,

for example, by write errors (such as a high-fly write) or

by media imperfections, like scratches or smeared soft

particles.

There are several reasons for the recent shift of at-

tention to LSEs as a critical factor in data reliability.

First and most importantly, a single LSE can cause

data loss when encountered during RAID reconstruc-

tion after a disk failure. Secondly, with multi-terabyte

drives using perpendicular recording hitting the markets,

the frequency of LSEs is expected to increase, due to

higher areal densities, narrower track widths, lower fly-

ing heads, and susceptibility to scratching by softer par-

ticle contaminants [6]. Finally, LSEs are a particularly

insidious failure mode, since these errors are not detected

until the affected sector is accessed.

The mechanism most commonly used in practice to

protect against LSEs is a background scrubber [2, 12,

13, 17] that continually scans the disk during idle peri-

ods in order to proactively detect LSEs and then correct

them using RAID redundancy. Several commercial stor-

age systems employ a background scrubber, including,

for example, NetApp’s systems.

Another mechanism for protection against LSEs is

intra-disk redundancy, i.e. an additional level of redun-

dancy inside each disk, in addition to the inter-disk re-

dundancy provided by RAID. Dholakia et al. [5, 10] re-

cently suggested that intra-disk redundancy can make a

system as reliable as a system without LSEs.

Devising effective new protection mechanisms or ob-

taining a realistic understanding of the effectiveness of

existing mechanisms requires a detailed understanding

of the properties of LSEs. To this point, there exists only

one large-scale field study of LSEs [1], and no field data

that is publicly available. As a result, existing work typ-

ically relies on hypothetical assumptions, such as LSEs

that follow a Poisson process [2, 7, 10, 17]. None of the

approaches described above for protecting against LSEs

has been evaluated on field data.

This paper provides two main contributions. The first

contribution is an extended statistical study of the data



in [1]. While [1] provides a general analysis of the data,

we focus in our study on a specific set of questions that

are relevant from the point of view of how to protect

against data loss due to LSEs. We hope that this analy-

sis will help practitioners in the field, who operate large-

scale storage systems and need to understand LSEs, as

well as researchers who want to simulate or analyze sys-

tems with LSEs and don’t have access to field data. It

will also give us some initial intuition on the real-world

potential of different protection schemes that have been

proposed and what other schemes might work well.

The second contribution is an evaluation of different

approaches for protecting against LSEs, using the field

data from [1]. Our study includes several intra-disk re-

dundancy schemes (simple parity check schemes, inter-

leaved parity [5, 10], maximum distance separable era-

sure codes, and two new policies that we propose) and

several scrubbing policies, including standard sequen-

tial scrubbing, the recently proposed staggered scrub-

bing [13] and some new policies.

The paper is organized as follows. We provide some

background information on LSEs and the data we are us-

ing in Section 2. Section 3 presents a statistical anal-

ysis of the data. Section 4 evaluates the effectiveness

of intra-disk redundancy for protecting against LSEs and

Section 5 evaluates the effectiveness of proactive error

detection through scrubbing. We discuss the implications

of our results in Section 6.

2 Background and Data

For our study, we obtained a subset of the data that was

used by Bairavasundaram et al. [1]. While we refer the

reader to [1] for a full description of the data, the sys-

tems it comes from and the error handling mechanisms

in those systems, we provide a brief summary below.

Bairavasundaram et al. collected data on disk errors

on NetApp production storage systems installed at cus-

tomer sites over a period of 32 months. These systems

implement a proprietary software stack consisting of the

WAFL filesystem, a RAID layer and the storage layer.

The handling of latent sector errors in these systems de-

pends on the type of disk request that encounters an er-

roneous sector and the type of disk. For enterprise class

disks, the storage layers re-maps the disk request to an-

other (spare) sector. For read operations, the RAID layer

needs to reconstruct the data before the storage layer can

remap it. For nearline disks, the process for reads is sim-

ilar, however the remapping of failed writes is performed

internally by the disk and transparent to the storage layer.

All systems periodically scrub their disks to proactively

detect LSEs. The scrub is performed using the SCSI ver-

ify command, which validates a sector’s integrity with-

out transferring data to the storage layer. A typical scrub

interval is 2 weeks. Bairavasundaram et al. found that

the majority of the LSEs in their study (more than 60%)

were detected by the scrubber, rather than an application

access.

In total the collected data covers more than 1.5 million

drives and contains information on three different types

of disk errors: latent sector errors, not-ready-condition-

errors and recovered errors. Bairavasundaram et al. find

that a significant fraction of drives (3.45%) develops la-

tent sector errors at some point in their life and that the

fraction of drives affected by LSEs grows as disk capac-

ity increases. They also study some of the temporal and

spatial dependencies between errors and find evidence of

correlations between the three different types of errors.

For our work, we have been able to obtain a subset of

the data used in [1]. This subset is limited to informa-

tion on latent sector errors (no information on not-ready-

condition-errors and recovered errors) and contains for

each drive that developed LSEs information on the time

when the error was detected and the logical block number

of the sector that was affected. Note that since LSEs are

by definition latent errors, i.e. errors that are unknown to

the system until it tries to access the affected sector, we

cannot know for sure when exactly the error happened.

The timestamps in our data refer to the time when the er-

ror was detected, not necessarily when it first happened.

We can, however, narrow down the time of occurrence to

a 2-week time window: since the scrub interval in Ne-

tApp’s systems is two weeks, any error must have hap-

pened within less than two weeks before the detection

time. For applications in this paper where the timestamp

of an error matters we use three different methods for

approximating timestamps, based on the above observa-

tion, in addition to using the timestamps directly from

the trace. We describe the details in Section 5.1.

We focus in our study on drives that have been in the

field for at least 12 months and have experienced at least

one LSE.We concentrate on the four most common near-

line drive models (the models referred to as A-1, D-2, E-

1, E-2 in [1]) and the four most common enterprise drive

models (k-2, k-3, n-3, and o-3). In total, the data covers

29,615 nearline drives and 17,513 enterprise drives.

3 Statistical properties of LSEs

We begin with a study of several statistical properties of

LSEs. Many baseline statistics, such as the frequency

of LSEs and basic temporal and spatial properties, have

been covered by Bairavasundaram et al. in [1], and we

are not repeating them here. Instead we focus on a spe-

cific set of questions that is relevant from the point of

view of how to protect against data loss due to LSEs.
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Figure 1: Distribution of the number of contiguous errors in a burst (left), cumulative distribution function of the sector

distance between errors that occur within same 2-week interval (middle), and the location of errors on the drive (right)

3.1 How long are error bursts?

When trying to protect against LSEs, it is important to

understand the distribution of the lengths of error bursts.

By an error burst we mean a series of errors that is con-

tiguous in logical block space. The effectiveness of intra-

disk redundancy schemes, for example, depends on the

length of bursts, as a large number of contiguous errors

likely affects multiple sectors in the same parity group

preventing recovery through intra-disk redundancy.

Figure 1(left) shows for each model the cumulative

distribution function of the length of error bursts. We

observe that in 90–98% of cases a burst consists of one

single error. For all models, except A-1 and n-3, less than

2.5% of runs consist of two errors and less than 2.5%

have more than 2 errors.

An interesting question is how to best model the length

of an error burst and the number of good sectors that sep-

arate two bursts. Themost commonly usedmodel is a ge-

ometric distribution, as it is convenient to use and easy to

analyze. We experimented with 5 different distributions

(Geometric, Weibull, Rayleigh, Pareto, and Lognormal),

that are commonly used in the context of system reliabil-

ity, and evaluated their fit through the total squared dif-

ferences between the actual and hypothesized frequen-

cies (χ2 statistic). We found consistently across all mod-

els that the geometric distribution is a poor fit, while the

Pareto distribution provides the best fit. For the length

of the error bursts, the deviation of the geometric from

the empirical distribution was more than 13 times higher

than that of the Pareto (13.50 for nearline and 14.34 for

enterprise), as measured by the χ2 statistic. For the dis-

tance between bursts the geometric fit was even worse.

The deviation under the geometric distribution compared

to the Pareto distribution is 46 and 110 times higher for

nearline and enterprise disks, respectively. The geomet-

ric distribution proved such a poor fit because it failed to

capture the long tail behavior of the data, i.e. the pres-

ence of long error bursts and the clustering of errors.

The top two rows in Table 1 summarize the parame-

ters for the Pareto distribution that provided the best fit.

For the number of good sectors between error bursts the

parameter in the table is the α parameter of the Pareto

distribution. For modeling the burst lengths we used two

parameters. The first parameter p gives the probability

that the burst consists of a single error, i.e. (1− p) is

the probability that an error burst will be longer than one

error. The second parameter is the α parameter of the

Pareto distribution that best fits the number of errors in

bursts of length > 1.

3.2 How far are errors spaced apart?

Knowing at what distances errors are typically spaced

apart is relevant for both scrubbing and intra-disk re-

dundancy. For example, errors that are close together

in space are likely to affect several sectors in the same

parity group of an intra-disk redundancy scheme. If they

also happen close together in time it is unlikely that the

system has recovered the first error before the second er-

ror happened.

Figure 1 (middle) shows the cumulative distribution

function (CDF) of the distance between an error and

the closest neighbor that was detected within a 2-week

period (provided that there was another error within 2

weeks from the first). We chose a period of 2 weeks,

since this is the typical scrub interval in NetApp’s filers.

Not surprisingly we find that very small distances are

the most common. Between 20–60% of all errors have

a neighbor within a distance of less than 10 sectors in

logical sector space. However, we also observe that al-

most all models have pronounced “bumps” (parts where

the CDF is steeper) indicating higher probability mass in

these areas. For example, model o-2 has bumps at dis-

tances of around 103 and 105 sectors. Interestingly, we

also observe that the regions where bumps occur tend

3



Variable Dist./Params. A-1 D-2 E-1 E-2 k-2 k-3 n-3 o-2

Error burst length Pareto p, α 0.9, 1.21 0.98, 1.79 0.98, 1.35 0.96, 1.17 0.97, 1.2 0.97, 1.15 0.93, 1.25 0.97, 1.44

Distance btw. bursts Pareto α 0.008 0.022 0.158 0.128 0.017 0.00045 0.077 0.05

#LSEs in 2 weeks Pareto α 0.73 0.93 0.63 0.82 0.80 0.70 0.45 0.22

#LSEs per drive Pareto α 0.58 0.81 0.34 0.44 0.63 0.58 0.31 0.11

Table 1: Parameters from distribution fitting

to be consistent for different models of the same family.

For example, the CDFs of models E-1 and E-2 follow a

similar shape, as do the CDFs for models k-2 and k-3.

We therefore speculate that some of these distances with

higher probability are related to the disk geometry of a

model, such as the number of sectors on a track.

3.3 Where on the drive are errors located?

The next question we ask is whether certain parts of the

drive are more likely to develop errors than others. Un-

derstanding the answer to this question might help in

devising smarter scrubbing or redundancy schemes that

employ stronger protection mechanisms (e.g. more fre-

quent scrubbing or stronger erasure codes) for those parts

of the drive that are more likely to develop errors.

Figure 1 (right) shows the CDF of the logical sector

numbers with errors. Note that the X-axis does not con-

tain absolute sector numbers, since this would reveal the

capacity of the different models, information that is con-

sidered confidential. Instead, the X-axis shows percent-

age of the logical sector space, i.e. the point (x,y) in the

graph means that y% of all errors happened in the first

x% of the logical sector space.

We make two interesting observations: The first part

of the drive shows a clearly higher concentration of er-

rors than the remainder of the drive. Depending on the

model, between 20% and 50% of all errors are located

in the first 10% of the drive’s logical sector space. Sim-

ilarly, for some models the end of the drive has a higher

concentration. For models E-2 and k-3, 30% and 20%

of all errors, respectively, are concentrated in the highest

10% of the logical sector space. The second observa-

tion is that some models show three or four “bumps” in

the distribution that are equidistant in logical sector space

(e.g. model A-1 has bumps at fractions of around 0.1, 0.4

and 0.7 of the logical sector space).

We speculate the areas of the drive with an increased

concentration of errors might be are areas with different

usage patterns, e.g. filesystems often store metadata at

the beginning of the drive.

3.4 What is the burstiness of errors in time?

While Bairavasundaram et al. [1] provide general evi-

dence of temporal locality between errors, the specific

question we are interested in here is how quickly exactly

the probability of seeing another error drops off with time

and how errors are distributed over time. Understanding

the conditional probability of seeing an error in a month,

given that there was an error x months ago, is useful for

scrubbing policies that want to adapt the scrubbing rate

as a function of the current probability of seeing an error.

To answer the question above, Figure 2 (left) consid-

ers for each drive the time of the first error and shows for

each subsequent 2-week period the probability of see-

ing an additional error. We chose 2-week intervals, since

this is the typical scrubbing interval in NetApp’s systems,

and hence the resolution of the error detection time. We

observe that after the first month after the first error is

detected, the probability of seeing additional errors drops

off exponentially (note the log-scale on theY -axis), drop-

ping close to 1% after only 10 weeks and below 0.1%

after 30 weeks.

Figure 2 (middle) illustrates how errors are distributed

over time. We observe each drive for one year after its

first error and count how many 2-week scrub intervals in

this time period encounter any errors. We observe that

for 55–85% of drives, all errors are concentrated in the

same 2-week period. Only 10–15% of drives experience

errors in two different 2-week periods, and for most mod-

els less than 15% see errors in more than two 2-week

periods.

Summarizing the above observations, we find that the

errors a drive experiences occur in a few short bursts,

i.e. errors are highly concentrated in a few short time in-

tervals. One might suspect that this bursty behavior is

poorlymodeled by a Poisson process, which is often used

in modeling LSE arrivals [2,7,10,17]. The reason for the

common use of Poisson processes in modeling LSEs is

that they are easy to analyze and that so far little data has

been available that allows the creation of more realistic

models. We fitted a Poisson distribution to the number

of errors observed in a 2-week time interval and to the

number of errors a drive experiences during its lifetime,

and found the Poisson distribution to be a poor fit in both

cases. We observe that the empirical distribution has a

significantly longer tail than a Poisson distribution, and

find that instead a Pareto distribution is a much better

fit. For illustration, Figure 2 (right) shows for model n-3

the empirical distribution for the number of errors in a

disks’s lifetime and the Poisson and Pareto distributions
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Figure 2: The probability of seeing an error x 2-week periods after first error (left), the number of 2-week periods in a

disk’s life with at least one error (middle), and the distribution of the number of errors a disk sees in its lifetime (right).

fitted to it. We provide the Pareto α parameter for both

empirical distributions for all models in Table 1.

3.5 What causes LSEs?

This is obviously a broad question that we cannot hope

to answer with the data we have. Nevertheless, we want

to address this question briefly, since our observations in

Section 3.3 might lead to hasty conclusions. In particu-

lar, a possible explanation for the concentration of errors

in certain parts of the drive might be that these areas see a

higher utilization. While we do not have access to work-

load data for NetApp’s systems, we have been able to

obtain two years of data on workload, environmental fac-

tors and LSE rates for five large (> 50,000 drives each)

clusters at Google containing five different drive models.

None of the clusters showed a correlation between either

the number of reads or the number of writes that a drive

sees (as reported by the drive’s SMART parameters) and

the number of LSEs it develops. We plan a detailed study

of workload and environmental factors and how they im-

pact LSEs as part of future work.

3.6 Does close in space mean close in time?

Prior work [1] and the questions above have focused on

spatial and temporal correlations in isolation. For most

error protection schemes, it is crucial to understand the

relationship between temporal and spatial correlation.

For example, for intra-disk redundancy schemes it does

not only matter how long a burst of errors is (i.e. the num-

ber of consecutive errors in the burst), but also howmuch

time there is between errors in a burst. More time be-

tween errors increases the chance that the first error is

detected and corrected before the second error happens.

Figure 3 (left) shows the distribution of the time an

error burst spans, i.e. the time difference between the

first and last error in a burst. We observe that in more

than 90% of the bursts the errors are discovered within

the same 2-week scrub interval and in more than 95%

of bursts the errors are detected within a month from

each other. Less than 2% of error bursts span more than

3 months. These observations indicate that the errors

in most bursts are likely caused by the same event and

hence occurred at the same time.

Figure 3 (right) shows a more general view of the cor-

relation between spatial and temporal locality. The graph

shows for radii ranging from one sector to 50GB two

bars: the first gives the probability that an error has at

least one neighbor within this radius at some point dur-

ing the disk’s lifetime; the second bar gives the proba-

bility that an error has at least one neighbor within this

radius within 2 weeks of time. As the graph shows, for

small radii the two bars are virtually identical, indicat-

ing that errors that happened close in space were likely

caused by the same event and hence happened at nearly

the same time. We also observe that even for larger radii

the two bars are still very close to each other. The figure

shows results for model n-3, but we found results to be

similar for all other models.

4 Protecting against LSEs with Intra-disk

Redundancy

While inter-disk redundancy has a long history [3,4,8,9,

14, 14, 15, 18], there are much fewer instances of intra-

disk redundancy. Some filesystems [11] create in-disk

replicas of selected metadata, IRON file systems [16]

suggest to add a parity block per file, and recent work

by Dholakia et al. [5, 10] introduces a new intra-disk re-

dundancy scheme for all data blocks in a drive.

The motivation behind intra-disk redundancy is to re-

duce data loss when LSEs are encountered during RAID

reconstruction, or where there is no inter-disk redun-

dancy available. Dholakia et al. [5, 10] predict that with
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Figure 3: Distribution of the time spanned by an error burst (left), and comparison of the probability of seeing another

error within radius x in the 2 weeks after first error versus entire disk life (right)

the use of intra-disk redundancy a system could achieve

essentially the same reliability as that of a system oper-

ating without LSEs. Highly effective intra-disk redun-

dancy might obviate the need for a background scrubber

(and its potential impact on foreground traffic); in the

best case, they might also enhance the reliability of a

single parity RAID system sufficiently to make the use

of double parity (e.g. RAID-4 or RAID-5) unnecessary,

thereby avoiding the overheads and additional power us-

age of the second parity disk.

The intra-disk redundancy schemes we consider di-

vide a disk into segments of k contiguous data sectors

followed by m redundant sectors. The m redundant sec-

tors are typically obtained using XOR-based operations

on the data sectors. Different schemes vary in their reli-

ability guarantees and their overhead depending on how

the parity sectors are computed.

In our work, we evaluate 5 different intra-disk re-

dundancy schemes. Three of the schemes (SPC, MDS,

IPC) have been previously proposed, but have never been

evaluated on field data. Two of the schemes are new

schemes (MDS+SCP, CDP) that we suggest based on re-

sults from Section 3. All schemes are described below.

We would like to note at this point, that while we do dis-

cuss the difference in overheads introduced by the differ-

ent schemes, the focus of this section is to compare the

relative degree of protection they can offer, rather than a

detailed evaluation of their impact on performance.

Single parity check (SPC): A k+1 SPC scheme stores

for each set of k contiguous data sectors one parity sector

(typically a simple XOR on all data sectors). We refer to

the set of k contiguous data sectors and the corresponding

parity sector as a parity group. SPC schemes can tolerate

a single error per parity group. Recovery from multiple

errors in a parity group is only possible if there’s an addi-

tional level of redundancy outside the disk (e.g. RAID).

SPC schemes are simple and have little I/O overhead,

since a write to a data sector requires only one additional

write (to update the corresponding parity sector). How-

ever, a common concern is that due to spatial locality

among sector errors, an error event will frequently affect

multiple sectors in the same parity group.

Maximum distance separable (MDS) erasure codes:

A k+m MDS code consisting of k data sectors and m

parity sectors can tolerate the loss of any m sectors in the

segment. A well-known member of this code family are

Reed-Solomon codes. While MDS codes are stronger

than SPC they also create higher computational over-

heads (for example in the case of Reed-Solomon codes

involving computations on Galois fields) and higher I/O

overheads (for each write to a data sector all m parity

sectors need to be updated). In most environments, these

overheads make MDS codes impractical for use in intra-

disk redundancy. Nevertheless, MDS codes provide an

interesting upper bound on what reliability levels one can

hope to achieve with intra-disk redundancy.

Interleaved parity check codes (IPC): A scheme pro-

posed by Dholakia et al. [5, 10], specifically for use in

intra-disk redundancy with lower overheads than MDS,

but potentially weaker protection. The key idea is to en-

sure that the sectors within a parity group are spaced

further apart than the length m of a typical burst of er-

rors. A k+m IPC achieves this by dividing k consecutive

data sectors into l = k/m segments of size m each, and

imagining the l ×m sectors s1, ...,sl×m layed out row-

wise in an l×m matrix. Each one of the m parity sec-

tors is computed as an XOR over one of the columns of

this imaginary matrix, i.e. parity sector pi is an XOR of

si,si+m,si+2m, ...,si+(l−1)m. We refer to the data sectors in

a column and the corresponding parity sector as a parity

6



Data Data Data Data Row Par. Diag. Par.

Disk Disk Disk Disk Disk Disk

0 (s0) 1 (s4) 2 (s8) 3 (s12) 4 (p0) 0 (p4)

1 (s1) 2 (s5) 3 (s9) 4 (s13) 0 (p1) 1 (p5)

2 (s2) 3 (s6) 4 (s10) 0 (s14) 1 (p2) 2 (p6)

3 (s3) 4 (s7) 0 (s11) 1 (s15) 2 (p3) 3 (p7)

Figure 5: Illustration of how to adapt RAID R-DP [4]

with p = 5 for use in our intra-disk redundancy scheme

CDP. The number in each block denotes the diagonal

parity group a block belongs to. The parentheses show

how an intra-disk redundancy segment with data sectors

s0, ...,s15 and parity sectors p0, ..., p7 is mapped to the

blocks in R-DP.

group, and the l×m data sectors and the m parity sectors

together as a parity segment. Observe, that all sectors in

the same parity group have a distance of at least m. IPC

can tolerate up to m errors provided they all affect differ-

ent columns (and therefore different parity groups), but

IPC can tolerate only a single error per column.

Hybrid SPC and MDS code (MDS+SPC): This

scheme is motivated by Section 3.3, where we observed

that for many models a disproportionately large fraction

of all errors is concentrated in the first 5-15% of the log-

ical block space. This scheme therefore uses a stronger

(MDS) code for this first part of the drive, and a simple

8+1 SPC for the remainder of the drive.

Column Diagonal Parity (CDP): The motivation here

is to provide a code that can tolerate a more diverse set

of error patterns than IPC, but with less overhead than

MDS. Our idea is to adapt the row-diagonal parity algo-

rithm (R-DP) [4], which was developed to tolerate dou-

ble disk failures in RAID, for use in intra-disk redun-

dancy. R-DP uses p+ 1 disks, where p is a prime num-

ber, and assigns each data block to one row parity set and

one diagonal parity set. R-DP uses p− 1 disks for data,

and two disks for row and diagonal parity. Figure 5 il-

lustrates R-DP for p = 5. The row disk holds the parity

for each row, and the number in each block denotes the

diagonal parity group that the block belongs to.

We translate an R-DP scheme with parameter p to an

intra-disk redundancy scheme with k= (p−1)2 data sec-
tors and m = 2(p− 1) parity sectors by mapping sec-

tors to blocks as follows. We imagine traversing the

matrix in Figure 5 column-wise and assigning the data

sectors s0, ...,s15 consecutively to the blocks in the data

disks and the parity sectors p0, ..., p7 to the blocks in

the parity disks. The resulting assignment of sectors to

blocks is shown in parentheses in the figure. Observe

that without the diagonal parity, this scheme is identical

to IPC: the row-parity of R-DP corresponds to to the par-

ity sectors that IPC computes over the columns of the

(p−1)× (p−1) matrix formed by rows of the data sec-

tors. We therefore refer to our scheme as the column-

diagonal parity (CDP) scheme.

CDP can tolerate any two error bursts of length p− 1

that remove two full columns in Figure 5 (corresponding

to two total disk failures in the R-DP scheme). In

addition, CDP can tolerate a large number of other error

patterns. Any data sector, whose corresponding column

parity group has less than two errors or whose diagonal

parity group has less than two errors, can be recovered1.

Moreover, in many cases it will be possible to recover

sectors where both the column parity group and the

diagonal parity group have multiple errors, e.g. if the

other errors in the column parity group can be recovered

using their respective diagonal parity.

Note that for all codes there is a trade-off between the

storage efficiency (i.e. k/(k+m)), the I/O overheads and

the degree of protection a code can offer, depending on

its parameter settings. Codes with higher storage effi-

ciency generally have lower reliability guarantees. For

a fixed storage efficiency, codes with larger parity seg-

ments provide stronger reliability for correlated errors

that appear in bursts. At the same time, larger parity

segments usually imply higher I/O overheads, since data

sectors and the corresponding parity sectors are spaced

further apart, requiring more disk headmovement for up-

dating parity sectors. The different schemes also differ

in the flexibility that their parameters offer in control-

ling those trade-offs. For example, CDP cannot achieve

any arbitrary combination of storage efficiency and par-

ity segment size, since its only parameter p controls both

the storage efficiency and the segment size.

4.1 Evaluation of redundancy schemes

4.1.1 Simple parity check (SPC) schemes

The question we want to answer in this section is what

degree of protection simple parity check schemes can

provide, Towards this end we simulate SPC schemes

with varying storage efficiency, ranging from 1+1 to

128+1 schemes. While we explore the whole range of

k from 1 to 128, in most applications the low storage ef-

ficiency of codes with values of k below 8 or 9 would

probably render them impractical. Figure 4 shows the

fraction of disks with uncorrectable errors (i.e. disks that

have at least one parity group with multiple errors), the

fraction of parity groups that have multiple errors, and

the number of sectors per disk that cannot be recovered

with SPC redundancy.

We observe that for values of k in the practically fea-

sible range, a significant fraction of drives (about a quar-

1Exceptions are sectors in the diagonal parity group p−1, as R-DP

stores no parity for this group.

7



20 40 60 80 100 120
10

−2

10
−1

10
0

k

F
ra

c
ti
o

n
 o

f 
d

is
k
s
 w

it
h

 u
n

c
o

rr
e

c
ta

b
le

 e
rr

o
rs

 

 

A1
D2
E1
E2
k2
n3
o2
k3

20 40 60 80 100 120
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

k

F
ra

c
ti
o
n
 o

f 
g
ro

u
p
s
 w

it
h
 m

u
lt
ip

le
 e

rr
o
rs

 

 

A1
D2
E1
E2
k2
n3
o2
k3

20 40 60 80 100 120
10

−1

10
0

10
1

10
2

k

N
u

m
b

e
r 

o
f 

s
e

c
to

rs
 l
o

s
t 

p
e

r 
d

is
k

 

 

A1
D2
E1
E2
k2
n3
o2
k3

Figure 4: Evaluation of k+ 1 SPC for different values of k. Fig. 4 (left) shows the fraction of disks with at least one

uncorrectable error, i.e. disks that have at least one parity group with multiple errors; Fig. 4 (middle) shows the

fraction of parity groups with multiple (and hence uncorrectable) errors; and Fig. 4 (right) shows the average number

of sectors with uncorrectable errors per disk (due to multiple errors per parity group)

ter averaged across all models) sees at least one uncor-

rectable error (i.e. a parity group with multiple errors).

For some models (E-1, E-2, n-3, o-2) nearly 50% of

drives see at least one uncorrectable error. On average

more than 5 sectors per drive cannot be recovered with

intra-disk redundancy. Even under the 1+ 1 scheme,

which sacrifices 50% of disk space for redundancy, on

average 15% of disks have at least one parity group with

multiple errors. It is noteworthy that there seems to be lit-

tle difference in the results between enterprise and near-

line drives.

The potential impact of multiple errors in a parity

group depends on how close in time these errors occur.

If there is ample time between the first and the second

error in a group there is a high chance that either a back-

ground scrubber or an application access will expose and

recover the first error, before the second error occurs.

Figure 6 (left) shows the cumulative distribution function

of the detection time between the first and the second er-

ror in parity groups with multiple errors. We observe that

the time between the first two errors is small. More than

90% of errors are discovered within the same scrub in-

terval (2 weeks, i.e. around 2.4×106 seconds). We con-

clude from Figure 6 that multiple errors in a parity group

tend to occur at the same time, likely because they have

been caused by the same event.

We are also interested in the distribution of the num-

ber of errors in groups that have multiple errors. If in

most cases most of the sectors in a parity group are er-

roneous, even stronger protection schemes would not be

able to recover those errors. On the other hand, if typi-

cally only a small number of sectors (e.g. 2 sectors) are

bad, a slightly stronger code would be sufficient to re-

cover those errors. Figure 6 (right) shows a histogram of

the number of errors in parity groups with multiple er-

rors for the 8+1 SPC scheme. We observe that across all

models the most common case is that of double errors

with about 50% of groups having two errors.

The above observations motivate us to look at stronger

schemes in the next section.

4.1.2 More complex schemes

This section provides a comparative evaluation of IPC,

MDS, CDP and SPC+MDS for varying segment sizes

and varying degrees of storage efficiency. Larger seg-

ments have the potential for stronger data protection, as

they space data and corresponding parity sectors further

apart. At the same time larger segments lead to higher

I/O overhead, as a write to a data sector requires updat-

ing the corresponding parity sector(s), which will require

more head movement if the two are spaced further apart.

For CDP, the segment size and the storage efficiency

are both determined by its parameter p (which has to be

a prime number), while the other schemes are more flex-

ible. In our first experiment we therefore start by vary-

ing p and adjusting the parameters of the other schemes

to achieve the same m and k (i.e. k = (p − 1)2 and

m = 2(p− 1)). The bottom row in Figure 7 shows the

results for p ranging from 5 to 23, corresponding to a

range of storage efficiency from 66% to 92%, and seg-

ment sizes ranging from 24 to 528 sectors. In our sec-

ond experiment, we keep the storage efficiency constant

at 87% (i.e. on average 1 parity segment for 8 data seg-

ments), and explore different segment sizes by increasing

m and k. The results are shown in the top row of Figure 7.

For both experiments we show three different metrics:

the fraction of disks with uncorrectable errors (graphs in

left column), the average number of uncorrectable sec-

tors per drive (middle column), and the fraction of parity
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Figure 6: Distribution of time between the first and second error in 8+1 SPC parity groups with multiple errors (left)

and number of errors within a parity group with multiple errors for the case of an 8+1 SPC (right).

segments with uncorrectable errors (right column).

We observe that all schemes provide clearly superior

performance to SPC (for m = 1, IPC and MDS reduce

to SPC). We also observe that MDS consistently pro-

vides the best performance, which might not be surpris-

ing as it is the scheme with the highest computational and

I/O overheads. Among the remaining schemes CDP per-

forms best, with improvements of an order of magnitude

over IPC and SPC+MDS for larger p. SPC+MDS is not

as strong, however its improvements of around 25% over

simple SPC are impressive given that it applies stronger

protection than SPC to only 10% of the total drive.

A surprising result might be the weak performance

of IPC compared to MDS or CDP. The original pa-

pers [5, 10] proposing the idea of IPC predict the proba-

bility of data loss under IPC to be nearly identical to that

of MDS. In contrast, we find that MDS (and CDP) con-

sistently outperform IPC. For example, simply moving

from an 8+1 to a 16+2 MDS scheme reduces nearly all

metrics by 50%. Achieving similar results with an IPC

scheme requires at least a 56+7 or 64+8 scheme. For

larger segment sizes, MDS and CDP outperform IPC by

an order of magnitude.

One might ask why IPC does not perform better.

Based on our results in Section 3 we believe there are

two reasons. First, the work in [5, 10] assumes that the

only correlation between errors is that within an error

burst and that different bursts are identically and inde-

pendently distributed. However, as we saw in Section 3

there are significant correlations between errors that go

beyond the correlation within a burst. Second, [5,10] as-

sumes that the length of error bursts follows a geometric

distribution. Instead we found that the distribution of the

length of error bursts has long tails (recall Figure 1) and

is not fit well by a geometric distribution. As the authors

observe in [10] the IPC scheme is sensitive to long tails

in the distribution. The above observations underline the

importance of using real-world data for modeling errors.

5 Proactive error detection with scrubbing

Scrubbing has been proposed as a mechanism for en-

hancing data reliability by proactively detecting er-

rors [2, 12, 17]. Several commercial systems, including

NetApp’s, are making use of a background scrubber. A

scrubber periodically reads the entire disk sequentially

from the beginning to the end and uses inter-disk redun-

dancy (e.g. provided by RAID) to correct errors. The

scrubber runs continuously at a slow rate in the back-

ground as to limit the impact on foreground traffic, i.e.

for a scrubbing interval s and drive capacity c, a drive is

being scrubbed at a rate of c/s. Common scrub intervals

are one or two weeks. We refer to a scrubber that works

as described above as a standard periodic scrubber. In

addition to standard periodic scrubbing, we investigate

four additional policies.

Localized scrubbing: Given the spatial and temporal

locality of LSEs, one idea for improving on standard pe-

riodic scrubbing is to take the detection of an error dur-

ing a scrub interval as an indication that there are likely

more errors in the neighborhood of this error. A scrubber

could therefore decide upon the detection of an error to

immediately scrub also the r sectors that follow the er-

roneous sector. These neighboring sectors are read at an

accelerated rate a, rather than the default rate of c/s.
Accelerated scrubbing: This policy can be viewed as

an extreme form of localized scrubbing: Once a bad sec-

tor is detected in a scrubbing interval, the entire remain-
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Figure 7: Comparison of IPC, MDS, SPC+MDS, and CDP under three different metrics: the fraction of disks with at

least one uncorrectable error (left), the number of sectors with unrecoverable errors per disk (middle), and the fraction

of parity segments that have an unrecoverable error (right). In the top row, we keep the storage efficiency constant by

varying m and adjusting k = 8×m. In the bottom row, we vary the p parameter of CDP and adjust all other policies

to have the same m and k values, i.e. k = (p−1)2 and m = 2(p−1).

der of the drive is scrubbed immediately at an accelerated

rate a (rather than the default rate of c/s).

Staggered scrubbing: This policy has been proposed

very recently by Oprea et al. [13] and aims to exploit the

fact that errors happen in bursts. Rather than sequentially

reading the disk from the beginning to the end, the idea is

to quickly “probe” different regions of the drive, hoping

that if a region of the drive has a burst of errors we will

find one in the probe and immediately scrub the entire

region. More formally, the drive is divided into r regions

each of which is divided into segments of size s. In each

scrub interval, the scrubber begins by reading the first

segment of each region, then the second segment of each

region, and so on. The policy uses the standard scrub

rate of c/s and depends on two additional parameters,

the segment size s and the number of regions r.

Accelerated staggered scrubbing: A combination of

the two previous policies. We scrub segments in the or-

der given by staggered scrubbing. Once we encounter an

error in a region we immediately scrub the entire region

at an increased scrub rate a (instead of the default c/s).

5.1 Evaluation methodology

Our goal is to evaluate the relative performance of the

four different scrubbing policies described above. Any

evaluation of scrubbing policies presents two difficulties.

First, the performance of a scrub policy will critically

depend on the temporal and spatial properties of errors.

While our data contain logical sector numbers and times-

tamps for each reported LSE, the timestamps correspond

to the time when an error was detected, not necessarily

the time when it actually happened. While we have no

way of knowing the exact time when an error happened

we will use three different methods for approximating

this time. All methods rely on the fact that we know

the time window during which an error must have hap-

pened: since the scrub interval on NetApp’s systems is

two weeks, an error can be latent for at most 2 weeks be-

fore it is detected. Hence an error must have happened

within 2 weeks before the timestamp in the trace. In ad-

dition to running simulations directly on the trace we use

the three methods below for approximating timestamps:

Method 1: The strong spatial and temporal local-

ity observed in Section 3, indicate that errors that are
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Figure 8: Comparison of all policies for varying scrub intervals (results averaged across all disk models)

detected within the same scrub period are likely to be

caused by the same error event (e.g. a scratch in the

surface or a high-fly write). Method 1 assumes that all

errors that happened within a radius of 50MB of each

other in the same scrub interval were caused by the same

event and assigns all these errors the same timestamp (the

timestamp of the error that was detected first).

Method 2: This method goes one step further and as-

sumes that all errors that are reported in the same scrub

interval happened at the same time (not an unlikely as-

sumption, recall Figure 3) and assigns all of them the

timestamp of the first error in the scrub interval.

Method 3: The last method takes an adversary’s

stance andmakes the (unlikely) assumption that all errors

in a scrub interval happened completely independently

and assigns each error a timestamp that lies randomly in

the 2-week interval before the error was detected.

The second difficulty in evaluating scrubbing policies

is that there is a possibility that the scrubbing frequency

itself affects the rate at which errors happen, i.e. the ad-

ditional workload created by frequent scrubbing might

cause additional errors. After talking to vendors and

studying reports [6, 7] on the common error modes lead-

ing to LSEs, it seems unlikely that the read frequency in

a system (in contrast to the write frequency) would have

a major impact on errors. The majority of reported er-

ror modes are either directly related to writes (such as

high-fly writes) or can happen whenever the disk is spin-

ning, independent of whether data is being read or writ-

ten (such as thermal asperities, corrosion, and scratches

or smears). Nevertheless we are hesitant to assume that

the scrub frequency has zero impact on the error rate.

Since the goal of our study is not to determine the op-

timal scrub frequency, but rather to evaluate the rela-

tive performance of the different policies, we only com-

pare the performance of different policies under the same

scrub frequency. This way, all policies would be equally

affected by an increase in errors caused by additional

reads.

The main metric we use to evaluate the effectiveness

of a scrub policy is the mean time to error detection (MT-

TED). The MTTED will be a function of the scrub in-

terval since for all policies more frequent scrubs are ex-

pected to lead to shorter detection times.

5.2 Comparison of scrub policies

Figure 8 shows a comparison of the four different scrub

policies described in the beginning of this section. The

graphs, from left to right, show the mean time to error

detection (MTTED), the reduction in MTTED (in hours)

that each policy provides over standard periodic scrub-

bing, and the percentage improvement in MTTED over

standard periodic scrubbing. We vary the scrub interval

from one day to 50 days. The scrub radius in the local

policy is set to 128MB. The accelerated scrub rate a for

all policies is set to 7000 sectors/sec, which is two times

slower than the read performance2 reported for scrubs

in [13]. For the staggered policies we chose a region

size of 128MB and a segment size of 1MB (as suggested

in [13]). We later also experiment with other parame-

ter choices for the local and the staggered scrub algo-

rithms. When generating the graphs in Figure 8, we took

the timestamps verbatim from the trace. In Section 5.2.4

we will discuss how the results change when we use one

of the three methods for approximating timestamps, as

described in Section 5.1.

5.2.1 Local scrubbing

The performance of the local scrub policy turns out to

be disappointing, being virtually identical to that of stan-

dard scrubbing. We explain this with the fact that its only

potential for improvements lies in getting faster to errors

that are within a 128MB radius of a previously detected

error. However, errors within this close neighborhood

2The SCSI verify command used in scrubs is faster than a read oper-

ation as no data is transferred, so this estimate should be conservative.
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will also be detected quickly by the standard sequential

scrubber (as they are in the immediate neighborhood).

To evaluate the broader potential of local scrubbing,

we experimented with different radii, to see whether this

yields larger improvements. We find that only for very

large radii (on the order of several GB) the results are

significant and even then only some of the models show

improvements of more than 10%.

5.2.2 Accelerated scrubbing

Similar to local scrubbing, also accelerated scrubbing

(without staggering) does not yield substantial improve-

ments. The reasons are likely the same as those for lo-

cal scrubbing. Once it encounters an error, accelerated

scrubbing will find subsequent errors quicker. However,

due to spatial locality most of the subsequent errors will

be in the close neighborhood of the first and will also be

detected soon by standard scrubbing. We conclude that

the main weakness of local and accelerated scrubbing is

that they only try to minimize the time to find additional

errors, once the first error has been found. On the other

hand, staggered scrubbing minimizes the time it takes to

determine whether there are any errors and in which part

of the drive they are.

5.2.3 Staggered scrubbing

We observe that the two staggered policies both provide

significant improvements over standard scrubbing for all

scrubbing frequencies. For commonly used intervals in

the 7-14 day range, improvements in MTTED for these

policies range from 30 to 70 hours, corresponding to an

improvement of 10–20%. These improvements increase

with larger scrubbing intervals. We also note that even

simple (non-accelerated) staggered scrubbing yields sig-

nificantly better performance than both local or acceler-

ated scrubbing, without using any accelerated I/Os.

Encouraged by the good performance of staggered

scrubbing, we take a closer look at the impact of the

choice of parameters on its effectiveness, in particular the

choice of the segment size, as this parameter can greatly

affect the overheads associated with staggered scrubbing.

From the point of view of minimizing overhead intro-

duced by the scrubber, one would like to choose the seg-

ments as large as possible, since the sectors in individ-

ual segments are read through fast sequential I/Os, while

moving between a large number of small segments re-

quires slow random I/Os. On the other hand if the size

of segments becomes extremely large, the effectiveness

of staggered scrubbing in detecting errors early will ap-

proach that of standard scrubbing (the extreme case of

one segment per region leads to a policy identical to stan-

dard scrubbing.)

We explore the effect of the segment size for several

different region sizes. Interestingly, we find consistently

for all region sizes that the segment size has a relatively

small effect on performance. As a rough rule of thumb,

we observe that scrubbing effectiveness is not negatively

affected as long as the segment size is smaller than a

quarter to one half of the size of a region. For example,

for a region size of 128MB, we find the effectiveness of

scrubbing to be identical for segment sizes ranging from

1KB to 32MB. For a segment size of 64MB, the level of

improvement that staggered scrubbing offers over stan-

dard scrubbing drops by 50%. Oprea [13] reports exper-

imental results showing that for segment sizes of 1MB

and up, the I/O overheads of staggered scrubbing are

comparable to that of standard scrubbing. That means

there is a large range of segment sizes that are practically

feasible and also effective in reducing MTTED.

5.2.4 Approximating timestamps

In our simulation results in Figure 8, we assume that the

timestamps in our traces denote the actual times when

errors happened, rather than the time when they were de-

tected. We also repeated all experiments with the three

methods for approximating timestamps described in Sec-

tion 5.1.

We find that under the two methods that try to make

realistic assumptions about the time when errors hap-

pened, based on the spatio-temporal correlations we ob-

served in Section 3, the performance improvements of

the scrub policies compared to standard scrubbing either

stays the same or increases. When following method 1

(all errors detected in the same scrub interval within a

50MB-radius are assigned the same timestamp), the im-

provements of staggered accelerated scrubbing increase

significantly, for somemodels as much as 50%, while the

performance of all other policies stays the same. When

following method 2 (all errors within the same scrub

interval are assigned the same timestamp) all methods

see a slight increase of around 5% in their gains com-

pared to standard scrubbing. When making the (unre-

alistic) worst case assumption of method 3 that errors

are completely uncorrelated in time, the performance im-

provements of all policies compared to standard scrub-

bing drop significantly. Local and accelerated scrubbing

show no improvements, and the MTTDE reduction of

staggered scrubbing and accelerated staggered scrubbing

drops to 2–5%.

6 Summary and discussion

The main contributions of this paper are a detailed sta-

tistical analysis of field data on latent sector errors and a
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comparative evaluation of different approaches for pro-

tecting against LSEs, including some new schemes that

we propose based on our data analysis.

The statistical analysis revealed some interesting prop-

erties. We observe that many of the statistical aspects

of LSEs are well modeled by power-laws, including the

length of error bursts (i.e. a series of contiguous sectors

affected by LSEs), the number of good sectors that sep-

arate error bursts, and the number of LSEs observed per

time. We find that these properties are poorly modeled

by the most commonly used distributions, geometric and

Poisson. Instead we observe that a Pareto distribution fits

the data very well and report the parameters that provide

the best fit. We hope this data will be useful for other

researchers who do not have access to field data. We

find no significant difference in the statistical properties

of LSEs in nearline drives versus enterprise class drives.

Some of our statistical observations might also hold

some clues as to what mechanisms cause LSEs. For ex-

ample, we observe that nearly all drives with LSEs, expe-

rience all LSEs in their lifetime within the same 2-week

period, indicating that for most drives most errors have

been caused by the same event (e.g. one scratch), rather

than a slow and continuous wear-out of the media.

An immediate implication of the above observation is

that both approaches commonly used to model LSEs are

unrealistic. The first approach ties LSE arrivals to the

workload process, by assuming a certain bit error rate,

and assuming that each read or write has the same fixed

probability p of causing an LSE. The second approach

models LSEs by a separate arrival process, most com-

monly a Poisson process. Both will result in a much

smoother process than the one seen in practice.

In our comparative study of the effectiveness of intra-

disk redundancy schemes we find that simple parity

check (SPC) schemes still leave a significant fraction of

drives (50% for some models) with errors that cannot be

recovered by intra-disk redundancy. An observation in

our statistical study that a large fraction of errors (for

some models 40%) is concentrated in a small area of the

drive (the bottom 10% of the logical sector space) leads

us to a new scheme that uses stronger codes for only this

part of the drive and reduces the number of drives with

unrecoverable errors by 30% compared to SPC.

We also evaluate the interleaved-parity check (IPC)

scheme [5,10] that promises reliability close to the pow-

erful maximum distance separable erasure codes (MDS),

with much less overhead. Unfortunately, we find IPC’s

reliability to be significantly weaker than that of MDS.

We attribute the discrepancy between our results and

those in [5, 10] to the difference between the statistical

assumptions (e.g. geometric distribution of error bursts)

in [5,10] and the properties of LSEs in the field (long tails

in error burst distributions). Finally, we present a new

scheme, based on adaptations of the ideas behind row-

diagonal parity [4], with significantly lower overheads

than MDS, but very similar reliability.

In our analysis of scrubbing policies, we find that a

simple policy, staggered scrubbing [13], can improve the

mean time to error detection by up to 40%, compared

to standard sequential scrubbing. Staggered scrubbing

achieves these results just by changing the order in which

sectors are scrubbed, without changing the scrub fre-

quency or introducing significant I/O overhead.

Our work opens up a number of avenues for future

work. Our long-term goal is to understand how scrub-

bing and intra-disk redundancy interact with the redun-

dancy provided by RAID, how different redundancy lay-

ers should be integrated, and to quantify how different

approaches affect the actual mean time to data loss. An-

swering these questions is not easy, as it will require a

complete statistical model that captures spatial and tem-

poral locality, and total disk failures, as well as LSEs.
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