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Abstract
With a cryptographic root-of-trust for Internet routing
(RPKI [20]) on the horizon, we can finally start planning the
deployment of one of the secure interdomain routing proto-
cols proposed over a decade ago (Secure BGP [26], secure
origin BGP [46]). However, if experience with IPv6 is any
indicator, this will be no easy task. Security concerns alone
seem unlikely to provide sufficient local incentive to drive
the deployment process forward. Worse yet, the security
benefits provided by the S*BGP protocols do not even kick
in until a large number of ASes have deployed them.

Instead, we appeal to ISPs’ interest in increasing revenue-
generating traffic. We propose a strategy that governments
and industry groups can use to harness ISPs’ local business
objectives and drive global S*BGP deployment. We evalu-
ate our deployment strategy using theoretical analysis and
large-scale simulations on empirical data. Our results give
evidence that the market dynamics created by our proposal
can transition the majority of the Internet to S*BGP.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms: Economics, Security

1. INTRODUCTION
The Border Gateway Protocol (BGP), which sets up routes

from autonomous systems (ASes) to destinations on the In-
ternet, is amazingly vulnerable to attack [7]. Every few
years, a new failure makes the news; ranging from misconfig-
urations that cause an AS to become unreachable [40, 35],
to possible attempts at traffic interception [11]. To rem-
edy this, a number of widely-used stop-gap measures have
been developed to detect attacks [24, 30]. The next step is
to harden the system to a point where attacks can be pre-
vented. After many years of effort, we are finally seeing the
initial deployment of the Resource Public Key Infrastruc-
ture (RPKI) [4, 32, 41, 2], a cryptographic root-of-trust for
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Internet routing that authoritatively maps ASes to their IP
prefixes and public keys. With RPKI on the horizon, we
can now realistically consider deploying the S*BGP proto-
cols, proposed a decade ago, to prevent routing failures by
validating AS-level paths: Secure BGP (S-BGP) [26] and
Secure Origin BGP (soBGP) [46].

1.1 Economic benefits for S*BGP adoption.
While governments and industry groups may have an in-

terest in S*BGP deployment, ultimately, the Internet lacks
a centralized authority that can mandate the deployment
of a new secure routing protocol. Thus, a key hurdle for
the transition to S*BGP stems from the fact that each AS
will make deployment decisions according to its own local
business objectives.

Lessons from IPv6? Indeed, we have seen this problem
before. While IPv6 has been ready for deployment since
around 1998, the lack of tangible local incentive for IPv6
deployment means that we are only now starting to see the
seeds of large-scale adoption. Conventional wisdom suggests
that S*BGP will suffer from a similar lack of local incentives
for deployment. The problem is exacerbated by the fact that
an AS cannot validate the correctness of an AS-level path
unless all the ASes on the path deployed S*BGP. Thus, the
security benefits of S*BGP only apply after a large fraction
of ASes have already deployed the protocol.

Economic incentives for adoption. We observe that,
unlike IPv6, S*BGP can impact routing of Internet traf-
fic, and that this may be used to drive S*BGP deployment.
These crucial observations enable us to avoid the above is-
sues and show that global S*BGP deployment is possible
even if local ASes’ deployment decisions are not motivated
by security concerns! To this end, we present a prescriptive
strategy for S*BGP deployment that relies solely on Inter-
net Service Providers’ (ISPs) local economic incentives to
drive global deployment; namely, ISP’s interest in attract-
ing revenue-generating traffic to their networks.

Our strategy is prescriptive (Section 2). We propose guide-
lines for how (a) ASes should deploy S*BGP in their net-
works, and (b) governments, industry groups, and other in-
terested parties should invest their resources in order to drive
S*BGP deployment forward.

1. Break ties in favor of secure paths. First, we
require ASes that deploy S*BGP to actually use it to inform
route selection. However, rather than requiring security be
the first criterion ASes use to select routes, we only require
secure ASes to break ties between equally-good routes in
favor of secure routes. This way, we create incentives for



ISPs to deploy S*BGP so they can transit more revenue-
generating customer traffic than their insecure competitors.

2. Make it easy for stubs to adopt S*BGP. 85% of
ASes in the Internet are stubs (i.e., ASes with no customers)
[9]. Because stubs earn no revenue from providing Internet
service, we argue for driving down their deployment costs
by having ISPs sign BGP announcements on their behalf or
deploy a simplex (unidirectional) S*BGP [31] on their stub
customers. In practice, such a simplex S*BGP must either
be extremely lightweight or heavily subsidized.

3. Create market pressure via early adopters. We
propose that governments and industry groups concentrate
their regulatory efforts, or financial incentives, on convincing
a small set of early adopters to deploy S*BGP. We show
that this set of early adopters can create sufficient market
pressure to convince a large fraction of ASes to follow suit.

1.2 Evaluation: Model and simulations.
To evaluate our proposal, we needed a model of the S*BGP

deployment process.

Inspiration from social networks? At first glance, it
seems that the literature on technology adoption in social
networks would be applicable here [36, 25, 45, 42, 47, 21].
However, in social networks models, an entity’s decision to
adopt a technology depends only on its immediate neighbors
in the graph; in our setting, this depends on the number of
secure paths. This complication means that many elegant
results from this literature have no analogues in our setting
(Section 9).

Our model. In contrast to earlier work that assumes
that ASes deploy S*BGP because they are concerned about
security [8, 5], our model assumes that ISPs’ local deploy-
ment decisions are based solely on their interest in increasing
customer traffic (Section 3).

We carefully designed our model to capture a few crucial
issues, including the fact that (a) traffic transited by an ISP
can include flows from any pair of source and destination
ASes, (b) a large fraction of Internet traffic originates in a
few large content provider ASes [29, 28], and (c) the cost
of S*BGP deployment can depend on the size of the ISP’s
network. The vast array of parameters and empirical data
relevant to such a model (Section 8) mean that our analysis
is not meant to predict exactly how the S*BGP deployment
process will proceed in practice; instead, our goal was to
evaluate the efficacy of our S*BGP deployment strategy.

Theorems, simulations and examples. We explore
S*BGP deployment in our model using a combination of
theoretical analysis and simulations on empirical AS-level
graphs [9, 3] (Sections 5-7). Every example we present comes
directly from these simulations. Instead of artificially reduc-
ing algorithmic complexity by subsampling [27], we ran our
simulations over the full AS graph (Section 4). Thus, our
simulations ran in time O(N3) with N = 36K, and we de-
voted significant effort to developing parallel algorithms that
we ran on a 200-node DryadLINQ cluster [48].

1.3 Key insights and recommendations.
Our evaluation indicates that our strategy for S*BGP

deployment can drive a transition to S*BGP (Section 5).
While we cannot predict exactly how S*BGP deployment
will progress, a number of important themes emerge:

1. Market pressure can drive deployment. We found
that when S*BGP deployment costs are low, the vast major-
ity of ISPs have incentives to deploy S*BGP in order to dif-
ferentiate themselves from, or keep up with, their competi-
tors (Section 5). Moreover, our results show this holds even
if 96% of routing decisions (across all source-destination AS
pairs) are not influenced by security concerns (Section 6.6).

2. Simplex S*BGP is crucial. When deployment costs
are high, deployment is primarily driven by simplex S*BGP
(Section 6).

3. Choose a few well-connected early adopters. The
set of early adopters cannot be random; it should include
well-connected ASes like the Tier 1’s and content providers
(Section 6). While we prove that it is NP-hard to even ap-
proximate the optimal set of early adopters (Section 6.1),
our results show that even 5-10 early adopters suffice when
deployment costs are low.

4. Prepare for incentives to disable S*BGP. We show
that ISPs can have incentives to disable S*BGP (Section 7).
Moreover, we prove that there could be deployment oscilla-
tions (where ASes endlessly turn S*BGP on and off), and
that it is computationally hard to even determine whether
such oscillations exist.

5. Minimize attacks during partial deployment. Even
when S*BGP deployment progressed, there were always some
ASes that did not deploy (Section 5, 6). As such, we expect
that S*BGP and BGP will coexist in the long term, suggest-
ing that careful engineering is required to ensure that this
does not introduce new vulnerabilities into the interdomain
routing system.

Paper organization. Section 2 presents our proposed
strategy for S*BGP deployment. To evaluate the proposal,
we present a model of the deployment process in Section 3.
In Section 5-7 we explore this model using theoretical anal-
ysis and simulations, and present an in-depth discussion of
our modeling assumptions in Section 8. Section 9 presents
related work. The appendices contains implementation de-
tails for our simulations and proofs of all our theorems.

2. S*BGP DEPLOYMENT STRATEGY

2.1 S*BGP: Two possible solutions.
With RPKI providing an authoritative mapping from ASes

to their cryptographic public keys, two main protocols have
been proposed that prevent the propagation of bogus AS
path information:

Secure BGP (S-BGP) [26]. S-BGP provides path val-
idation, allowing an AS a1 that receives a BGP announce-
ment a1a2...akd to validate that every AS aj actually sent
the announcement in the path. With S-BGP, a router must
cryptographically sign each routing message it sends, and
cryptographically verify each routing message it receives.

Secure Origin BGP (soBGP) [46]. soBGP provides
a slightly weaker security guarantee called topology valida-
tion, that allows an AS to validate that a path it learns
physically exists in the network. To do this, soBGP requires
neighboring ASes to mutually authenticate a certificate for
the existence of a link between them, and validate every path
it learns from a BGP announcement against these crypto-
graphic certificates.



Because our study is indifferent to attacks and adversaries,
it applies equally to each of these protocols. We refer to
them collectively as S*BGP, and an AS that deploys them
as secure.

2.2 How to standardize S*BGP deployment.
To create local economic incentives for ISPs to deploy

S*BGP, we propose that Internet standards should require
ASes to deploy S*BGP as follows:

2.2.1 Simplex S*BGP for stubs.
For stubs, Internet access is a cost, rather than a revenue

source, and it seems unlikely that security concerns alone
will suffice to motivate stubs to undertake a costly S*BGP
deployment. However, because stubs propagate only outgo-
ing BGP announcements for their own IP prefixes we sug-
gest two possible solutions to this problem: (1) allow ISPs
to sign on behalf of their stub customers or (2) allow stubs
to deploy simplex (unidirectional) S*BGP. Indeed, the lat-
ter approach has been proposed by the Internet standards
community [31].

Simplex S-BGP. For S-BGP, this means that stubs need
only sign outgoing BGP announcements for their own IP
prefixes, but not validate incoming BGP announcements for
other IP prefixes1. Thus, a stub need only store its own
public key (rather than obtaining the public keys of each
AS on the Internet from the RPKI) and cryptographically
sign only a tiny fraction of the BGP announcements it sees.
Simplex S-BGP can significantly decrease the computational
load on the stub, and can potentially be deployed as a soft-
ware, rather than hardware, upgrade to its routers.

Simplex soBGP. For soBGP, this means that a stub need
only create certificates for its links, but need not need val-
idate the routing announcements it sees. Simplex soBGP
is done offline; once a stub certifies his information in the
soBGP database, its task is complete and no router upgrade
is required.

The objective of simplex S*BGP is to make it easy for stubs
to become secure by lowering deployment costs and compu-
tational overhead. While we certainly allows for stubs (e.g.,
banks, universities) with an interest in security to move from
simplex S*BGP to full S*BGP, our proposal does not require
them to do so.

Impact on security. With simplex S*BGP, a stub lacks
the ability to validate paths for prefixes other than its own.
Since stubs constitute about 85% of ASes [9], a first glance
suggests that simplex S*BGP leads to significantly worse
security in the global Internet.

We argue that this is not so. Observe that if a stub s has
an immediate provider p that has deployed S*BGP and is
correctly validating paths, then no false announcements of
fully secure paths can reach s from that provider, unless p
himself maliciously (or mistakenly) announces false secure
paths to s. Thus, in the event that stubs upgrade to simplex
S*BGP and all other ASes upgrade to full S*BGP, the only
open attack vector is for ISPs to announce false paths to
their own stub customers. However, we observe the impact
of a single misbehaving ISP is small, since 80% of ISPs have

1A stub may even choose to delegate its cryptographic keys
to its ISPs, and have them sign for him; while this might be
a good first step on the path to deployment, ceding control
of cryptographic keys comes at the cost of reduced security.

less than 7 stub customers, and only about 1% of ISPs have
more than 100 stub customers [9]. Compare this to the
insecure status quo, where an arbitrary misbehaving AS can
impact about half of the ASes in the Internet (around 15K
ASes) on average [16].

2.2.2 Break ties in favor of fully secure paths.
In BGP, an AS chooses the path to a given destination AS

d based on a ranking on the outgoing paths it learns from
its neighbors (e.g., Appendix A). Paths are first ranked ac-
cording to interdomain considerations (local preference, AS
path length) and then according to intradomain considera-
tions (e.g., MEDs, hot-potato routing)2.

Secure paths. We say that a path is secure iff every
AS on that path is secure. We do this because an AS can-
not validate a path unless every AS on the path signed the
routing announcement (S-BGP) or issued certificates for the
links on the path (soBGP).

Security as part of route selection. The next part
of our proposal suggests that once an AS has the ability
to validate paths, it should actually use this information to
inform its routing decisions. In principle, an AS might even
modify its ranking on outgoing paths so that security is its
highest priority. Fortunately, we need not go to such lengths.
Instead, we only require secure ASes to break ties between
equally good interdomain paths in favor of secure paths.
This empowers secure ISPs to attract customer traffic away
from their insecure competitors. To ensure that a newly-
secure AS can regain lost customer traffic, we require that
original tie-break criteria (e.g., intradomain considerations)
be employed in the case of equally good, secure interdomain
paths. Thus, the size of the set of equally-good interdomain
paths for a given source-destination pair (which we call the
tiebreak set) gives a measure of competition in the AS graph.

Route selection at stubs. For stubs running simplex
S*BGP, we consider both the case where they break ties in
favor of secure paths (i.e., because they trust their providers
to verify paths for them) and the case where they ignore
security altogether (i.e., because they do not verify paths)
(Section 6.7).

Partially secure paths. We do not allow ASes to
prefer partially-secure paths over insecure paths, to avoid
introducing new attack vectors that do exist even without
S*BGP (e.g., attack in Appendix B).

We shall show that S*BGP deployment progresses quite ef-
fectively even if stubs ignore security and tiebreak sets are
very small (Section 6.7-6.6).

2.3 How third parties should drive deployment.
Early adopters. To kick off the process, we suggest
that interested third parties (e.g., governments, regulators,
industry groups) focus regulation, subsidies, or external fi-
nancial incentives on convincing a set of early adopter ASes
to deploy S*BGP. One regulatory mechanism may be for
the government to require their network providers to deploy
S*BGP first. In the AS graph ([9, 3]), providers to the gov-
ernment include many Tier 1 ISPs who may be difficult or
expensive to persuade via other means.

2For simplicity, we do not model intradomain routing con-
siderations. However, it should be explored in future work.



ISPs upgrade their stubs. Next, we suggest that a
secure ISP should be responsible for upgrading all its in-
secure stub customers to simplex S*BGP. To achieve this,
interested third parties should ensure that simplex S*BGP
is engineered to be as lightweight as possible, and poten-
tially provide additional subsidies for ISPs that secure their
stubs. (ISPs also have a local incentives to secure stubs, i.e.,
to transit more revenue-generating traffic for multi-homed
stubs (Section 5.1).)

3. MODELING S*BGP DEPLOYMENT
We evaluate our proposal using a model of the S*BGP

deployment process. For brevity, we now present only the
details of our model. Justification for our modeling decisions
and possible extensions are in Section 8.

3.1 The Internetwork and entities.
The AS graph. The interdomain-routing system is mod-
eled with a labeled AS graph G(V,E). Each node n ∈ V
represents an AS, and each edge represents a physical link
between ASes. Per Figure 1, edges are annotated with
the standard model for business relationships in the Inter-
net [14]: customer-provider (where the customer pays the
provider), and peer-to-peer (where two ASes agree to tran-
sit each other’s traffic at no cost). Each AS n is also assigned
weight wn, to model the volume of traffic that originates at
each AS. For simplicity, we assume ASes divide their traffic
evenly across all destination ASes. However, our results are
robust even when this assumption is relaxed (Section 6.8).

We distinguish three types of ASes:

Content providers. Content providers (CPs) are ASes
whose revenue (e.g., advertising) depends on reliably deliv-
ering their content to as many users as possible, rather than
on providing Internet transit. While a disproportionately
large volume of Internet traffic is known to originate at a
few CPs, empirical data about Internet traffic volumes re-
mains notoriously elusive. Thus, based on recent research
[29, 28, 43] we picked five content providers: Google (AS
15169), Facebook (AS 32934), Microsoft (AS 8075), Akamai
(AS 20940), and Limelight (AS 22822). Then, we assigned
each CP weight wCP , so that the five CPs originate an x
fraction of Internet traffic (equally split between them), with
the remaining 1− x split between the remaining ASes.

Stubs. Stubs are ASes that have no customers of their
own and are not CPs. Every stub s has unit weight ws = 1.
In Figure 1, ASes 34376 and 31420 are stubs.

ISPs. The remaining ASes in the graph (that are not
stubs or CPs) are ISPs. ISPs earn revenue by providing In-
ternet service; because ISPs typically provide transit service,
rather that originating traffic (content), we assume they
have unit weight wn = 1. In Figure 1, ASes 25076, 8866
and 8928 are ISPs.

3.2 The deployment process.
We model S*BGP deployment as an infinite round pro-

cess. Each round is represented with a state S, capturing
the set of ASes that have deployed S*BGP.

Initial state. Initially, the only ASes that are secure are
(1) the ASes in the set of early adopters and (2) the direct
customers of the early adopter ISPs that are stubs. (The
stubs run simplex S*BGP.) All other ASes are insecure. For

8928 15169 8928 15169

886622822 886622822

L d 31420 25076 31420 25076Legend
Peer           Peer
Cust Prov 34376 34376Cust Prov

Traffic
34376 34376

Figure 1: Destinations (left) 31420, (right) 22822.

example, in Figure 1, early adopters ISP 8866 and CP 22822
are secure, and stub 31420 runs simplex S*BGP because its
provider is secure.

Each round. In each round, every ISP chooses an ac-
tion (deploy S*BGP or not) that improves its utility relative
to the current state. We discuss the myopic best-response
strategy that ISPs use to choose their actions in Section 3.3.
Once an ISP becomes secure, it deploys simplex S*BGP at
all its stub customers (Section 2.3). Because CPs do not
earn revenues by providing Internet service, some external
incentive (e.g., concern for security, subsidies) must moti-
vate them to deploy S*BGP. Thus, in our model, a CP may
only deploy S*BGP if it is in the set of early adopters.

Once ASes choose their actions, paths are established from
every source AS i to every destination AS d, based on the
local BGP routing policies of each AS and the state S of the
AS graph. We use a standard model of BGP routing poli-
cies, based on business relationships and path length (see
Appendix A). Per Section 2.3, we also assume that routing
policies of secure ASes require them to break ties by prefer-
ring fully secure paths over insecure ones, so that the path to
a given destination d depends on the state S. Paths to a des-
tination d form a tree rooted at d, and we use the notation
Tn(d, S) to represent the subtree of ASes routing through
AS n to a destination d when the deployment process is in
state S. Figure 1 (right) shows part of the routing tree for
destination 22822; notice that T8866(22822, S) contains ASes
31420, 25076, 34376.

Termination. We proceed until we reach a stable state,
where no ISP wants to deploy (or disable) S*BGP.

3.3 ISP utility and best response.
We model an ISP’s utility as related to the volume of

traffic it transits for its customers; this captures the fact that
many ISPs either bill their customers directly by volume,
or indirectly through flat rates for fixed traffic capacities.
Utility is a function of the paths chosen by each AS. Because
path selection is a function of routing policies (Appendix A)
and the state S, it follows that the utility of each ISP is
completely determined by the AS weights, AS graph topology,
and the state S.

We have two models of ISP utility that capture the ways
in which an ISP can transit customer traffic:

Outgoing utility. ISP n can increase its utility by for-
warding traffic to its customers. Thus, we define outgoing
utility as the amount of traffic that ISP n routes to each
destination d via a customer edge. Letting D̂(n) be the set



of such destinations, we have:

un(S) =
∑

Destns

d ∈ D̂(n)

∑
Sources

i ∈ Tn(d, S)

wi (1)

Let’s use Figure 1 to find the outgoing utility of ISP n =
8866 due to destinations 31420 and 22822. Destination 31420
is in D̂(n) but destination 22822 is not. Thus, two CPs
(Google AS 15169 and Limelight 22822), and 3 other ASes
(i.e., AS 8928, 25076, 34376) transit traffic through n =
8866 to destination d = 31420, contributing a 2wCP + 3
outgoing utility to n = 8866.

Incoming utility. An ISP n can increase its utility by for-
warding traffic from its customers. Thus, we define incoming
utility as the amount of traffic that ISP n receives via cus-
tomer edges for each destination d. We restrict the subtree
Tn(d, S) to branches that are incident on n via customer

edges to obtain the customer subtree T̂n(d, S) ⊂ Tn(d, S),
we have:

un(S) =
∑

Destns
d

∑
Sources

i ∈ T̂n(d, S)

wi (2)

Let’s compute outgoing utility of n = 8866 due to destina-
tions 31420 and 22822 in Figure 1. For destination 31420,
ASes 25076 and 34376 are part of the customer subtree
T̂n(d, S), but 15169, 8928 and 22822 are not. For destina-
tion d = 22822, ASes 31420, 25076, 34376 are part of the
customer subtree. Thus, these ASes contribute 2 + 3 incom-
ing utility to ISP n = 8866.

Realistically, ISP utility is some function of both of these
models; to avoid introducing extra parameters into our model,
we consider each separately.

Myopic best response. We use a standard game-
theoretic update rule known as myopic best response, that
produces the most favorable outcome for a node in the next
round, taking other nodes’ strategies as given [19]. Let
(¬Sn, S−n) denote the state when n ‘flips’ to the opposite
action (either deploying or undeploying S*BGP) that it used
in state S, while other ASes maintain the same action they
use in state S. ISP n changes its action in state S iff its
projected utility un(¬Sn, S−n) is sufficiently high, i.e.,

un(¬Sn, S−n) > (1 + θ) · un(S) (3)

where θ is a threshold denoting the increase in utility an
ISP needs to see before it is willing to change its actions.
Threshold θ captures the cost of deploying BGP security;
e.g., an ISP might deploy S*BGP in a given round if S*BGP
deployment costs do not exceed θ = 5% of the profit it earns
from transiting customer traffic. Since θ is multiplicative,
it captures the idea that deployment costs are likely to be
higher at ISPs that transit more traffic. The update rule is
myopic, because it focuses on increasing ISP n’s utility in
the next round only. It is best-response because it does not
require ISP n to speculate on other ASes’ actions in future
rounds; instead, n takes these actions as given by the current
state S.

Discussion. Our update rule requires ASes to predict
their future utility. In our model, ASes have full informa-
tion of S and G, a common approach in game theory, which

enables them to project their utility accurately. We discuss
the consequences of our update rule, and the impact of par-
tial information in Sections 8.1-8.2.

4. SIMULATION FRAMEWORK
Computing utility un(S) and projected utility un(¬Sn, S−n)

requires us to determine the path from every source AS to
every destination AS, for every ISP n’s unique projected
state (¬Sn, S−n). Thus, our simulations had complexity
O(|V |3) on an AS graph G(V,E). To accurately simulate
our model, we chose not to ‘sample down’ the complexity of
our simulations:

Projecting utility for each ISP. If we had computed
the utility for only a few sampled ISPs, this would reduce
the number of available secure paths and artificially prevent
S*BGP deployment from progressing.

Simulations over the entire AS graph. Our proposal
is specifically designed to leverage the extreme skew in AS
connectivity (i.e., many stubs with no customers, few Tier
1s with many customers), to drive S*BGP deployment. To
faithfully capture the impact of this skew, we computed util-
ity over traffic from all sources to all destination ASes. Fur-
thermore, we ran our simulations on the full empirical AS
graph [9], rather than a subsampled version [27], or a smaller
synthetic topology (e.g., BRITE [33], GT-ITM [49]), as in
prior work [8, 5]. We used the Cyclops AS graph (with its
inferred AS relationships) from Dec 9, 2010 [9], with an ad-
ditional 16K peering edges discovered at Internet exchange
points (IXPs) [3], as well as an additional peering-heavy AS
graph described in Section 6.8. (See also Appendix D.)

The AS graph G(V,E) had |V | = 36K; to run O(|V |3)-
simulations at such a scale, we parallelized our algorithms on
a 200-node DryadLINQ cluster [48] that could run through
a single simulation in 1-12 hours. (Details of our implemen-
tation are in Appendix C.)

5. CASE STUDY: S*BGP DEPLOYMENT
We start by showing that even a small set of early adopters

can create enough market pressure to transition the vast
majority of ASes to S*BGP.

Case study overview. We focus on a single simulation
where the early adopters are the five CPs (Google, Facebook,
Microsoft, Limelight, Akamai, see Section 3.1), and the top
five Tier 1 ASes in terms of degree ( Sprint (1239), Verizon
(701), AT&T (7018), Level 3 (3356), Cogent (174)). Every
ISP uses an update rule with a relatively low threshold θ =
5%, that the five CPs originate x = 10% of the traffic in
the Internet, and that stubs do break ties in favor of secure
routes. We now show how even a small set of ten early
adopters (accounting for less that 0.03% of the AS graph)
can convince 85% of ASes to deploy S*BGP, and secure 65%
of all paths in the AS graph.

5.1 Competition drives deployment.
We start by zooming in on S*BGP deployment at two

competing ISPs, in a scenario we call a Diamond.

Figure 5: Two ISPs, AS 8359 and AS 13789, compete
for traffic from Sprint (AS 1239) to their stub customer, AS
18608. Sprint is an early adopter of S*BGP, and initially
the three other ASes are insecure. Both ISPs offer Sprint
equally good two-hop customer paths to the stub, and AS
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Figure 5: A Diamond: ISPs 13789 and 8359 compete
for traffic from Sprint (AS 1239).

Table 1: Occurrences of the Diamond scenario for
early adopter ASes (sorted by degree).

Tier 1s AS 174 878 CPs AS 22822 175
AS 3356 1,400 AS 15169 892
AS 7018 340 AS 20940 178
AS 701 706 AS 8075 1,149
AS 1239 728 AS 32934 82

8359 is chosen to carry traffic by winning the tie break. In
the first round, AS 13789 computes its projected utility, and
realizes it can gain Sprint’s traffic by adopting S*BGP and
upgrading its stub to simplex S*BGP. (See Section 8.2 for
more discussion on how ISPs compute projected utility.) By
the fourth round, AS 8359 has lost so much utility (due to
traffic lost to ASes like 13789) that he decides to deploy
S*BGP.

Of course, Figure 5 is only a very small snapshot of the
competition for traffic destined to a single stub AS 18608;
utility for each ISPs is based on customer traffic transited
to all destinations in the AS graph. Indeed, this Diamond
scenario is quite common. In Table 1, we summarize the
number of diamonds we counted, each involving at two ISPs,
a stub and one of the early adopters.

5.2 Global deployment dynamics.
Figure 2: We show the number of ASes (i.e., stubs,
ISPs and CPs) and the number of ISPs that deploy S*BGP
at each round. In the first round, 548 ISPs become secure;
because each of these ISPs deploy simplex S*BGP in their
stubs, we see that over 5K ASes become secure by the end
of the first round. In subsequent rounds, hundreds of ISPs
deploy S*BGP in each round; however, the number of newly
secure stubs drops dramatically, suggesting that many ISPs
deploy S*BGP to regain traffic lost when their stubs were
secured by competitors. After the 17th iteration, the pro-
cess tapers off, with fewer than 50 ASes becoming secure in
each round. The final surge in deployment occurs in round
25, when a large AS, 6939, suddenly became secure, caus-
ing a total of 436 ASes to deploy S*BGP in the remaining
six rounds. When the process terminates, 85% of ASes are
secure, including 80% of the 6K ISPs in the AS graph.

5.3 Impact of ISP degree on deployment.
The reader might be surprised to find that ISPs with high

degree are more likely to deploy S*BGP:

Figure 6: We consider the cumulative fraction of ISPs
adopting S*BGP in each round, separated by degree. In-
terestingly, ISPs with low degree (≤ 10) are less likely to
become secure. Indeed, we found a consistent set of about
1000 ISPs that never deploy S*BGP in any of our simula-
tions (not shown). These ISPs had average degree 6, and
remained insecure because they never had to compete for
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Figure 6: Cumulative fraction of ISPs that deploy
S*BGP by degree.
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Figure 7: A newly created four-hop secure path.

customer traffic; indeed, they were usually providers to only
single-homed stub customers.

5.4 Longer secure paths sustain deployment.
In Figure 2 we observed rapid, sustained deployment of

S*BGP in the first 17 iterations. This happens because
longer secure paths are created as more ASes deploy S*BGP,
thus creating incentives for S*BGP at ASes that are far away
from the early adopters:

Figure 7: We once again encounter AS 8359 from Figure 5.
We show how AS 8359’s decision to deploy S*BGP in round
4 allows a new ISP (AS 6371) to compete for traffic. In round
5 AS 6731 sees a large increase in utility by becoming secure.
This occurs, in part, because AS 6371 can now entice six of
the early adopters to route through him on a total of 69
newly-secure paths. Indeed, when AS 6731 becomes secure,
he continues the chain reaction set in motion by AS 8359;
for instance, in round 7 (not shown), AS 6371’s neighbor AS
41209 becomes secure in order to offer Sprint a new, secure
four-hop path to one of 41209’s own stubs.

5.5 Keeping up with the competition.
Two behaviors drive S*BGP deployment in a Diamond.

First, an ISP becomes secure to steal traffic from a com-
petitor, and then the competitor becomes secure in order to
regain the lost traffic. We can watch this happening for the
ISPs from Figure 5 and 7:

Figure 3: We show the utilities of ISPs 8359, 6731, and
8342 in each round, normalized by starting utility i.e., the
utility before the deployment process began (when all ASes,
including the early adopters, were still insecure). As we saw
in Figure 5, AS 8359 deploys S*BGP in round 4 in order to
regain traffic he lost to his secure competitors; here we see
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that in round 4, AS 8359 has lost 3% of his starting utility.
Once AS 8359 deploys S*BGP, his utility jumps up to more
than 125% of his starting utility, but these gains in utility are
only temporary, disappearing around round 15. The same is
true in round 6 for AS 6371 from Figure 7. By round 15, 60%
ISPs in the AS graph are already secure (Figure 2), and our
ISPs can no longer use security to differentiate themselves,
causing their utility to return to within 3% of their starting
utility.

This is also true more generally:

Figure 4: For each round i, we show the median utility
and median projected utility for ISPs that become secure in
round i+1, each normalized by starting utility. (Recall from
(3) that these ISPs have projected utility at least 1+θ times
their utility in round i.) In the first 9 rounds, ISPs mainly
deploy S*BGP to steal traffic from competitors; that is, their
projected utility in the round before they deploy S*BGP is
at least 1 + θ = 105% times their starting utility. However,
as deployment progresses, ASes increasingly deploy S*BGP
in order to recover lost traffic and return to their starting
utility; that is, in rounds 10-20 ISP utility drops to at least
θ = 5% less than starting utility, while projected utility
approaches starting utility (y=1).

5.6 Is S*BGP deployment a zero-sum game?
Our model of S*BGP deployment is indeed a zero-sum

game; we assume that ISPs compete over a fixed set of cus-
tomer traffic. Thus, when the vast majority of ASes have
deployed S*BGP, ISPs can no longer use security to distin-
guish themselves their from competitors (Figure 3). At the
termination of this case study, only 8% of ISPs have an in-
crease in utility of more than θ = 5% over their starting
utility. On the other hand, 85% of ASes now benefit from a
(mostly) secure Internet. Furthermore, like ASes 8359 and
6731 in Figure 3, many of these secure ASes enjoyed a pro-
longed period of increased utility that could potentially help
defray the costs of deploying S*BGP.

It is better to deploy S*BGP. One might argue that
a cynical ISP might preempt the process by never deploy-
ing S*BGP. However, a closer look shows that its almost
always in the ISPs interest to deploy S*BGP. ISPs that de-
ploy S*BGP usually return to their starting utility or slightly
above, whereas ISPs that do not deploy S*BGP lose traffic
in the long term. For instance, AS 8342 in Figure 7 never
deploys S*BGP. As shown in Figure 3, when the deployment

process terminates, AS 8342 has lost 4% of its starting util-
ity. Indeed, another look at the data (not shown) shows that
the ISPs that remain insecure when the process terminates
lose on average 13% of their starting utility!

6. CHOOSING EARLY ADOPTERS
Next, we consider choosing the set of ASes that should be

targeted to become early adopters of S*BGP.

6.1 It’s hard to choose early adopters.
Ideally, we would like to choose the optimal set of early

adopters that could cause the maximum number of other
ASes to deploy S*BGP. We show that this is NP-hard, by
presenting a reduction from the ‘set cover’ problem (proof
in Appendix E):

Theorem 6.1. For an AS graph G(V,E) and a parameter
1 ≤ k ≤ |V |, finding a set of early adopter ASes of size k
that maximizes the number of ASes that are secure when the
deployment process terminates is NP-hard. Approximating
the solution within a constant factor is also NP-hard.

As such, we use simulations3 of the deployment process to
investigate heuristic approaches for choosing early adopters,
including AS degree (e.g., Tier 1s) and volume of traffic
originated by an AS (e.g., content providers).

6.2 The parameter space.
We consider how the choice of early adopters is impacted

by assumptions on (1) whether or not stubs running simplex
S*BGP break ties based on security, (2) the AS graph, and
(3) traffic volumes sourced by CPs.

Outgoing utility. Also, recall that we have two models
of ISP utility (Section 3.3). In this section, we dive into
the details of the outgoing utility model because it has the
following very nice property:

Theorem 6.2. In the outgoing utility model, a secure node
will never have an incentive to turn off S*BGP.

As a consequence of this theorem (proof in Appendix H), it
immediately follows that (a) every simulation must termi-
nate, and (b) we can significantly reduce compute time by
not computing projected utility for ISPs that are already

3Since there is no sampling involved, there is no variability
between simulations run with the same set of parameters.



secure. (We discuss complications that arise from the in-
coming utility model in Section 7.)

Deployment threshold θ. Our update rule (3) is such
that ISPs change their actions if they can increases utility
by at least θ. Thus, to gain insight into how ‘difficult’ it
is to convince ISPs to deploy S*BGP, we assume that each
ISP uses the same threshold θ, and sweep through different
values of θ (but see also Section 8.2).

6.3 Comparing sets of early adopters.
We next explore the influence of different early adopters:

Figure 8 (top): We show the fraction of ASes that
adopt S*BGP for different values of θ. We consider no early
adopters, the top 5-200 ISPs in terms of degree, the five
CPs, five CPs in combination with the top five ISPs, and
200 random ISPs.

There are incentives to deploy S*BGP. For low values
of θ < 5%, we observe that there is sufficient competition
over customer traffic to transition 85% of ASes to S*BGP.
Moreover, this holds for almost every set of early adopters we
considered. (Note that in the unrealistic case where θ = 0,
we see widespread S*BGP deployment even with no early
adopters, because we assume the stubs break ties in favor
of secure paths. But see also Section 6.7.) Furthermore, we
find that the five CPs have approximately the same amount
of influence as the case where there are no early adopters;
we investigate this in more detail in Section 6.8.

Some ISPs always remain insecure. We find 20%
of the 6K ISPs in the AS graph [9, 3] never deploy S*BGP,
because they are never subject to competition for customer
traffic. This highlights two important issues: (1) some ISPs
may never become secure (e.g., ASes whose customers are
exclusively single-homed) (2) S*BGP and BGP will coexist
in the long term.

Choice of early adopters is critical. For higher values
of θ ≥ 10%, it becomes important to choose ISPs with high
customer degree as early adopters. In fact, Figure 8 shows
a set of 200 random ASes has significantly lower influence
than a set containing only the five top ASes in terms of
degree. For large values of θ ≥ 30%, a larger set of high-
degree early adopters is required, with the top 200 ASes in
terms of degree causing 53% of the ASes to deploy S*BGP
for θ = 50%. However, to put this observation in some
perspective, recall that θ = 30% suggests that the cost of
S*BGP deployment exceeds 30% of an ISP’s profit margin
from transiting customer traffic.

6.4 How much security do we get?
We count the number of secure paths at the end of the

deployment process, as a measure of the efficacy of S*BGP
deployment. (Of course, this is not a perfect measure of the
AS graph’s resiliency to attack; quantifying this requires ap-
proaches similar to [16, 8], an important direction for future
work.) Figure 9: We show the fraction of the (36K)2

paths between ASes that are secure, for the different sets
of early adopters. As expected, we find that the fraction of
secure path is only slightly lower than f2, where f is the
fraction of ASes that have deployed S*BGP. (The f2 follows
from the fact that for a path to be secure, both its source AS
and its destination AS must be secure.) Indeed, the fact the
number of secure paths is only 4% lower than f2 suggests
that the majority of secure paths are likely to quite short.
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Figure 8: Fraction of ASes (top) and ISPs (bottom)
that deploy S*BGP for varying θ and early adopters.

6.5 Market pressure vs. simplex S*BGP
The cause of for global S*BGP deployment differs for low

and high values of the deployment threshold θ:

Figure 8 (bottom): We show the fraction of ISPs (not
ASes) that deploy S*BGP for the early adopter sets and
varying values of θ. For low values of θ, market pressure
drives a large fraction of ISPs to deploy S*BGP. In contrast,
for higher values of θ very few ISPs deploy S*BGP, even for
large sets of well-connected early adopters. In these cases,
most of the deployment is driven by ISPs upgrading their
stub customers to simplex S*BGP. For example, for the top
200 ISPs, when θ = 50%, only a small fraction of secure
ASes (4%) deploy S*BGP because of market pressure, the
vast majority (96%) are stubs running simplex S*BGP.

6.6 The source of competition: tie break sets.
Recall that the tiebreak set is the set of paths on which

an AS employs the security criterion to select paths to a
destination AS (Section 2.2.2). A tiebreak set with multiple
paths presents opportunities for ISPs to compete over traffic
from the source AS.

Figure 10: We show distribution of tiebreak set size for
all source-destination pairs of ASes. (This result holds for
the AS graph [9, 3] under the assumption that ASes use the
routing policies of Appendix A.) Noting that this graph has
a log-log scale, observe that tiebreak sets are typically very
small. ISPs have slightly larger tiebreak sets than stubs: an
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Figure 10: Probability density function of tie break
set size in the AS graph [9, 3] for different source-
destination pairs (log-log scale).

average of 1.30 for ISPs and 1.16 for stubs. Moreover, only
20% tiebreak sets contain more than a single path.

This striking observation suggests that even a very limited
amount of competition suffices to drive S*BGP deployment
for low θ. Furthermore, we speculate that this might also
explain why there is limited market pressure for S*BGP de-
ployment at ISPs when θ > 10%.

6.7 Stubs don’t need to break ties on security.
So far, we have focused on the case where secure stubs

break ties in favor of secure paths. Indeed, given that stubs
typically make up the majority of secure ASes, one might
expect that their routing decisions can have a major impact
of the success of the S*BGP deployment process. Surpris-
ingly, we find that this is not the case. Indeed, our results
are insensitive to this assumption, for θ > 0 and regardless
of the choice of early adopter (Figure 11). We explain this
by observing that stubs both (a) have small tiebreak sets,
and (b) transit no traffic.

Security need only effect a fraction of routing deci-
sions! Thus, only 15% of ASes (i.e., the ISPs) need to
break ties in favor of secure routes, and only 23% of ISP
tiebreak sets contain more than one path. Combining these
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Figure 11: Fraction of ASes that deploy S*BGP for
different early adopters (dashed lines stubs do not
prefer secure paths).

observations, we find that S*BGP deployment can progress
even if only 0.15 × 0.23 = 3.5% of routing decisions are ef-
fected by security considerations!

6.8 Robustness to traffic and connectivity

6.8.1 Varying parameters.
To understand the sensitivity of our results we varied the
following parameters:

1. Originated traffic volumes. We swept through
different values x = {10%, 20%, 33%, 50%} for the fraction
of traffic originated by the five CPs (Section 3.1); recent
work suggests a reasonable range is x =10-20% [29, 28] .

2. Traffic destinations. Initially, we assume ASes uni-
formly spread their traffic across all potential destinations.
We test the robustness of our results to this assumption by
modeling traffic locality. We model locality by assuming
ASes send traffic proportional to 1/k to destination ASes
that are k hops away.

3. Connectivity of content providers. Published
AS-level topologies are known to have poor visibility into
peering links at the edge of the AS-level topology [37]. This
is particularly problematic for CPs, who in recent years,
have shifted towards peering with many other ASes to cut
down content delivery costs [12, 15] . Indeed, while the
CPs known to have short path lengths [38], their average
path length in our AS graph (with routing policies as in
Appendix A) was 2.7 hops or more. Thus, for sensitivity
analysis, we created a peering-heavy AS graph with 19.7K
artificial peering edges from the five CPs to 80% of ASes
found to be present at IXPs [3]. In our augmented AS graph,
(described in Appendix D) the average path length of the
CPs dropped to about 2, and their degree increased to be
as high as the largest Tier 1 ISPs.

6.8.2 Impact of traffic volumes and connectivity

Figure 12: We sweep through values of θ to compare
the five CPs and top five Tier 1s as early adopters for (a)
different traffic volumes, (b) in our augmented AS graph vs.
the original graph. We find the following:
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Figure 12: Fraction of ASes that deploy S*BGP for
the five content providers and five Tier 1s in the
peering-heavy, augmented topology.
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Figure 13: Fraction of ASes that deploy S*BGP
with the five content providers and five Tier 1s as
early adopters for both the Cyclops+IXP [9, 3] and
peering-heavy, augmented topology

1. Originated traffic volumes vs. degree. Surprisingly,
when the five CPs source x = 10% of traffic, they are much
less effective as early adopters than the top five Tier 1 ASes.
Even though in the augmented topology the Tier 1s and
CPs have about equal degree, the dominant factor here is
traffic; even though the CPs originate 10% of traffic, the
Tier 1s still transit 2-9X times more traffic. As x increases
to 50%, the Tier 1s only transit 0.3-1.2X more traffic than
is originated by the CPs. Thus, the CPs tend to have more
influence for lower values of θ ≤ 10%.

2. Localized interdomain traffic. We consider the number
of ASes that deploy S*BGP with the five content providers
and five Tier 1s as early adopters for both the original graph
and the peering-heavy, augmented topology for a range of
values of θ (Figure 13). We compare the model where ASes
send traffic uniformly to all destinations to the case where
ASes send more traffic to destinations within a few hops of
themselves. For both the original and augmented topology,

Akamai

9498

29144755

24 stubs

45210

45210

Akamai

9498

29144755

24 stubs

45210

45210

UNDEPLOY Example!!

Figure 14: AS 4755 incentives turn off S*BGP.

our results are robust even when ASes direct most of their
traffic to nearby destinations.

3. Impact of peering-heavy structure on simplex S*BGP.
Figure 12 indicates the five Tier 1 consistently outperform
the CPs as early adopters when θ ≥ 0.3. The explanation
for this is simple; Tier 1s have a large number of stub cus-
tomers that they immediately upgrade to simplex S*BGP.
This suggests that having CPs to upgrade their stub peers to
simplex S*BGP could potentially drive S*BGP deployment
further.

6.9 Summary and recommendations.
We make two key observations regarding selection of early

adopters. First, only a small number of ISPs suffice as early
adopters when deployment thresholds θ are small. Second,
to withstand high θ, Tier 1 ASes should be targeted. This is
due to the high volumes of traffic they transit and the many
stubs they upgrade to simplex S*BGP. Finally, we note that
our results hold even if more than 96% of routing decisions
are insensitive to security considerations!

7. OTHER COMPLICATIONS
Intuition suggests that a secure ISP will observe increased

utility because secure ASes transit traffic through it. While
this is true in the outgoing utility model (Theorem 6.2), it
turns out that this is not the case for the incoming util-
ity model. We now discuss complications that might arise
because we require S*BGP to play a role in route selection.

7.1 Buyer’s Remorse: Turning off S*BGP.
We present an example of a severe obstacle to S*BGP

deployment: an secure ISP that has incentive to turn off
S*BGP. The idea here is that when an ISP n becomes secure,
some of n’s incoming traffic might change its path, and enter
n’s network along peer/provider edges instead of customer
edges, thus reducing n’s utility. This causes the secure ISP’s
utility to satisfy Equation 3, resulting in the ISP opting to
undeploy S*BGP.

Figure 14: We show that AS 4755, a Telecom provider
in India, has an incentive to turn off S*BGP in its network.
We assume content providers have wCP = 821 which corre-
sponds to 10% of Internet traffic originating at the big five
CPs (including Akamai’s AS 20940).

In the state S on the left, Akamai, AS 4755, and NTT
(AS 2914) are secure, the stub customers of these two secure
ISPs run simplex S*BGP, and all other ASes are insecure.
Here, AS 4755 transits traffic sourced by Akamai from his
provider NTT AS 2914, to a collection of twenty-four of its
stub customers (including AS 45210). Akamai’s traffic does
not increase AS 4755’s utility because it arrives at AS 4755
along a provider edge.

In the state (¬S4755, S−4755) on the right, AS 4755 turns
S*BGP off. If we assume that stubs running simplex S*BGP
do not break ties based on security, then the only ASes that



could potentially change their routes are the secure ASes
20940 and 2914. Notice that when AS 4755 turns S*BGP
off, Akamai’s AS 20940 has no secure route to AS 4755’s
stub customers (including AS 45210). As such, Akamai will
run his usual tie break algorithms, which in our simulation
came up in favor of AS 9498, a customer of AS 4755. Because
Akamai’s traffic is now enters AS 4755 on customer edges,
AS 4755’s incoming utility increases by a factor of 205% per
each of the 24 stub destinations.

Turning off the entire network. Our simulations con-
firmed that, apart from Akamai changing its chosen path
these twenty-four stubs, all other ASes use the same routes
in state S and state (¬S4755, S−4755). This means that AS
4755 has an incentive to turn off S*BGP in his entire net-
work ; no routes other than those ones Akamai uses to reach
the twenty-four stubs are impacted by his decision. Indeed,
we found that the utility of AS 4755 increase by a total of
0.5% (over all destinations) when he turns off S*BGP!

Turning off a destination. AS 4775 could just as well
turn off S*BGP on a per destination basis, i.e., by refusing to
propagate S*BGP announcements for the twenty-four stubs
in Figure 14, and sending insecure BGP messages for these
destinations instead.

7.2 Turning off S*BGP can cause oscillations.
To underscore the seriousness of an ISP turning off S*BGP

in his entire network, we now argue that a group of ISPs
could oscillate, alternating between turning S*BGP on and
off, and never arriving at a stable state. In Appendix F, we
exhibit an example AS graph and state S that proves that
oscillations could exist. Worse yet, we show that it is hard
to even determine whether or not the deployment process
will oscillate!

Theorem 7.1. Given an AS graph and state S, it is PSPACE-
complete to decide if the deployment process will terminate
at a stable state in the incoming utility model.

Our proof, in Appendix K is by reduction to the PSPACE-
complete problem of determining whether a space-bounded
Turing Machine will halt for a given input string. The com-
plexity class PSPACE consists of all decisions problems that
can be solved using only polynomial space, but in unbounded
time. PSPACE-complete problems (intuitively, the hard-
est problems in PSPACE) are at least as hard as the NP-
complete problems, and widely believed to be even harder.

7.3 How common are these examples?
At this point, the reader may be wondering how often an

AS might have incentives to turn off S*BGP.

Turning off an entire network? Figure 14 proves that
cases where an ISP has an incentive to turn off S*BGP in
its entire network do exist in realistic AS-level topologies
[9]. However, we speculate that such examples will occur
infrequently in practice. While we cannot provide any con-
crete evidence of this, our speculation follows from the fact
that an ISP n obtains utility from many destinations. Thus,
even if n has increased its utility by turning OFF S*BGP
for destinations that are part of subgraphs like Figure 14, he
will usually obtain higher utility by turning ON S*BGP for
the other destinations that are not part of such subgraphs.
(In Figure 14, this does not happen because the state S is
such that only a very small group of ASes are secure; thus,
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Figure 15: Projected utility normalized by actual
utility after an AS deploys S*BGP.

no routes other than the ones pictured are effected by AS
4755’s decision to turn off S*BGP.)

Turning off a destination is likely. On the other hand,
it is quite easy to find examples of specific destinations for
which an ISP might want to turn off S*BGP. Indeed, a search
through the AS graph found that at least 10% of the 5,992
ISPs could find themselves in a state where they have incen-
tives to turn off S*BGP for at least one destination!

8. DISCUSSION OF OUR MODEL
The wide range of parameters involved in modeling S*BGP

deployment means that our model (Section 3) cannot be
predictive of S*BGP deployment in practice. Instead, our
model was designed to (a) capture a few of the most crucial
issues that might drive S*BGP deployment, while (b) taking
the approach that simplicity is preferable to complexity.

8.1 Myopic best response.
For simplicity, we used a myopic best-response update rule

that is standard in the game-theory literature [19]. In Sec-
tion 5.6, we discussed the consequences of the fact that ISPs
only act to improve their utility in the next round, rather
than in long run. Another potential issue is that our up-
date rule ignores the possibility that multiple ASes could
deploy S*BGP in the transition from a round i to round
i + 1, resulting in the gap between the projected utility,
and the actual utility in the subsequent round. Fortunately,
our simulations show projected utility un(¬Sn, S−n) is usu-
ally an excellent estimate of actual utility in the subsequent
round. For example, in the case study of Section 5, 80% of
ISPs overestimate their utility by less than 2%, 90% of ISPs
overestimate by less than 6.7%. This observation also holds
more generally across simulations:

Figure 15: We show the projected utility normalized by
the utility nodes observed once they deployed S*BGP for
different sets of early adopters when θ = 0. In most cases
ASes projected utilities that are within a few percentage
points of what they actually received in the next round.

8.2 Computing utility locally.
Because we lack information about interdomain traffic

flows in the Internet, our model uses weighted counts of



the subtrees of ASes routing through ISP n as a stand-in
for traffic volumes, and thus ISP utility. While computing
these subtrees in our model requires global information that
would be unavailable to the average ISP (e.g., the state S,
the AS graph topology, routing policies), in practice, an ISP
can just compute its utility by locally observing traffic flows
through its network.

Computing projected utility. Computing projected
utility un(¬Sn, S−n) in practice is significantly more com-
plex. While projected utility gives an accurate estimate
of actual utility when it is computed using global informa-
tion, ISPs may inaccurately estimate their projected utility
when using only local information. Our model can accom-
modate these inaccuracies by rolling them into the deploy-
ment threshold θ. (That is, if projected utility is off by a
factor of ±ε, model this with threshold θ ± ε.) Thus, while
our approach was to sweep through a common value of θ for
every ISP (Section 6.2), extensions might capture inaccu-
rate estimates of projected utility by randomizing θ, or even
by systematically modeling an ISP’s estimation process to
obtain a measure for how it impacts θ.

Practical mechanisms for projecting future traffic
patterns. Because S*BGP deployment can impact route
selection, it is crucial to develop mechanisms that allow ISPs
predict how security will impact traffic patterns through it’s
network. Moreover, if ISPs could use such mechanisms to
estimate projected utility, they would also be an important
driver for S*BGP deployment. For example, an ISP might
set up a router that listens to S*BGP messages from neigh-
boring ASes, and then use these message to predict how
becoming secure might impact its neighbors’ route selec-
tions. A more sophisticated mechanism could use extended
“shadow configurations” with neighboring ASes [1] to gain
visibility into how traffic flows might change.

8.3 Alternate routing policies and actions.
Routing policies. Because our model of ISP utility
depends on traffic volumes (Section 3.3), we need to a model
for how traffic flows in the Internet. In practice, traffic flow
is determined by the local routing policies used by each AS,
which are arbitrary and not publicly known. Thus, we use a
standard model of routing policies (Appendix A) based on
business relationship and path length [16, 6].

Routing policies are likely to impact our results by de-
termining (a) AS path lengths (longer AS paths mean it
is harder to secure routes), and (b) tiebreak set size (Sec-
tion 6.6). For example, we speculate that considering short-
est path routing policy would lead to overly optimistic re-
sults; shortest-path routing certainly leads to shorter AS
paths, and possibly also to larger tiebreak sets. On the other
hand, if a large fraction of multihomed ASes always use one
provider as primary and the other as backup (irrespective of
the AS path lengths etc.) then our current analysis is likely
to be overly optimistic. (Of course, modeling this is difficult
given a dearth of empirical data on backup paths).

Choosing routing policies. An AS might cleverly
choose its routing policies to maximize utility. However, the
following suggests that this is intractable:

Theorem 8.1. When all other ASes’ routing policies are
as in Appendix A, it is NP hard for any AS n to find the
routing policy that maximizes its utility (in both the incoming

and outgoing utility models). Moreover, approximating the
optimal routing policy within any constant factor is also NP
hard.

The proof (in Appendix I) shows that this is NP-hard even
if n has a single route to the destination, and must only
choose the set of neighbors to which it announces the route.
(Thus, the problem is tractable when the node’s neighbors
set is of constant size.)

Per-link S*BGP deployment. An ISP might be able
to optimize its utility by turning ON S*BGP on a per link
basis, i.e., with only a subset of its neighbors. (For instance,
a second look at Figure 14 suggests that AS 4775 improve
his utility by turning off S*BGP on the link to his provider
AS 2914.) Once again, this is intractable when an ISP has
a large number of neighbors (Proof in Appendix J ):

Theorem 8.2. Given an AS graph and state S, it is NP-
hard to choose the set of neighbors for which ISP n should
deploy S*BGP so as to maximize its incoming utility. More-
over, approximating the optimum within any constant factor
is also NP hard.

Lying and cheating. While it is well known that an AS
can increase the amount of traffic it transits by manipulating
its BGP messages [7], we avoided this issue because our focus
is on technology adoption by economically-motivated ASes,
not BGP manipulations by malicious or misconfigured ASes.

8.4 Other extensions to our model.
Static AS graph. Our model of interdomain routing
assumes that the AS graph does not change. Because the
time-scale of the deployment process can be quite large (e.g.,
years), extensions to our model might also model the evo-
lution of the AS graph with time, and possible incorporate
issues like the addition of new edges if secure ASes manage
to sign up new customers.

Mapping revenue to traffic volume. Our model
of ISP utility is based on the idea that revenue is related
to the total volume of customer traffic the ISP transits. In
practice, ISPs may use a variety of pricing policies, e.g.,
by volume, flat rates based on discrete units of capacity.
Thus, extensions might consider collecting empirical data
on pricing policies to more accurately map revenue to traffic
volumes.

9. RELATED WORK
Social networks. The diffusion of new technologies
in social networks has been well studied in economics and
game theory (e.g., [36, 25] and references therein). The
idea that players will myopically best-respond if their utility
exceeds a threshold is standard in this literature (cf., our
update rule (3)). However, in a social network, a player’s
utility depends only on its immediate neighbors, while in
our setting it depends on the set of secure paths. Thus,
while [25] finds approximation algorithms for choosing an
optimal set of early adopters, this is NP-hard in our setting
(Theorem 6.1).

Protocol adoption in the Internet. The idea that
competition over customer traffic can drive technology adop-
tion in the Internet has appeared in many places in the lit-
erature [10, 39]. Ratnasamy et al. [39] suggest using com-
petition for customer traffic to drive protocol deployment



(e.g., IPv6) at ISPs by creating new mechanisms for direct-
ing traffic to ASes with IPv6. Leveraging competition is
much simpler with S*BGP, since it directly influences rout-
ing decisions without requiring adoption of new mechanisms.

Multiple studies [23, 22, 44] consider the role of converters
(e.g., IPv4-IPv6 gateways) on protocol deployment. While
S*BGP must certainly be backwards compatible with BGP,
the fact that security guarantees only hold for fully-secure
paths (Section 2.2.2) means that there is no reason to con-
vert BGP messages to S*BGP messages. Thus, we do not
expect converters to drive S*BGP deployment.

Guérin and Hosanagar [18] consider the role of quality dif-
ferentials in IPv6 migration. They observe that if content
delivery quality is higher for native IPv6 services that con-
tent providers will have incentive to deploy IPv6 for clients
running the newer protocol. While this work sets the bar
for IPv6 performance, achieving the required performance
increases for migration remains an engineering task. In con-
trast, the incentives we observe for S*BGP adoption are
inherent in BGP’s influence on route selection.

S*BGP adoption. Perhaps most relevant is Chang et
al.’s comparative study on the adoptability of secure inter-
domain routing protocols [8]. Like [8], we also consider how
early adopters create local incentives for other ASes to de-
ploy S*BGP. However, our study focuses on how S*BGP de-
ployment can be driven by (a) simplex S*BGP deployment
at stubs, and (b) the requirement that security plays a role in
routing decisions. Furthermore, in [8] ISP utility depends on
the security benefits offered by the partially-deployed pro-
tocol. Thus, the utility function in [8] depends on possible
attacker strategies (i.e., path shortening attacks) and at-
tacker location (i.e., random, or biased towards small ISPs).
In contrast, our model of utility is based solely on economics
(i.e., customer traffic transited). Thus, we show that global
S*BGP deployment is possible even if ISPs’ local deploy-
ment decisions are not driven by security concerns. Also,
complementary to our work is [5]’s forward-looking proposal
that argues that extra mechanisms (e.g., secure data-plane
monitoring) can be added to S*BGP to get around the prob-
lem of partially-secure paths (Appendix B). Finally, we note
both our work and [5, 8] find that ensuring that Tier 1 ASes
deploy S*BGP is crucial, a fact that is not surprising in light
of the highly-skewed degree distribution of the AS graph.

10. CONCLUSION
Our results indicate that there is hope for S*BGP de-

ployment. We have argued for (1) simplex S*BGP to secure
stubs, (2) convincing but a small, but influential, set of ASes
to be early adopters of S*BGP, and (3) ensuring that S*BGP
influences traffic by requiring ASes to (at minimum) break
ties between equally-good paths based on security.

We have shown that, if deployment cost θ is low, our
proposal can successfully transition a majority of ASes to
S*BGP. The transition is driven by market pressure created
when ISPs deploy S*BGP in order draw revenue-generating
traffic into their networks. We also pointed out unexplored
challenges that result from S*BGP’s influence of route se-
lection (e.g., ISPs may have incentives to disable S*BGP).

We hope that this work motivates the standardization and
research communities to devote their efforts along three key
lines. First, effort should be spent to engineer a lightweight
simplex S*BGP. Second, with security impacting route selec-

tion, ISPs will need tools to forecast how S*BGP deployment
will impact traffic patterns (e.g., using “shadow configura-
tions”, inspired by [1], with cooperative neighboring ASes)
so they can provision their networks appropriately. Finally,
our results suggest that S*BGP and BGP will coexist in the
long term. Thus, effort should be devoted to ensure that
S*BGP and BGP can coexist without introducing new vul-
nerabilities into the interdomain routing system.
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APPENDIX
A. A MODEL OF ROUTING WITH BGP.

We follow [17] by assuming that each AS a computes paths
to a given destination AS d based a ranking on outgoing
paths, and an export policy specifing the set of neighbors to
which a given path should be announced.

Rankings. AS a selects a path to d from the set of simple
paths it learns from its neighbors as follows:

LP Local Preference. Paths are ranked based on their
next hop: customer is chosen over peer which is chosen
over provider.

SP Shortest Paths. Among the paths with the highest
local preference, prefer the shortest ones.

SecP Secure Paths. If there are multiple such paths,
and node a is secure, then prefer the secure paths.

TB Tie Break. If there are multiple such paths, node a
breaks ties: if b is the next hop on the path, choose the
path where hash, H(a, b) is the lowest.4

This standard model of local preference [14] captures the
idea that an AS has incentives to prefer routing through a
customer (that pays it) over a peer (no money is exchanged)
over a provider (that it must pay).

Export Policies. This standard model of export policies
captures the idea that an AS will only load its network with
transit traffic if its customer pays it to do so [14]:

GR2 AS b announces a path via AS c to AS a iff at least
one of a and c are customers of b.

B. ATTACKS ON PARTIALLY SECURE PATHS
We show how preferring partially secure paths over in-

secure paths can introduce new attack vectors that do not
exist even without S*BGP:

Figure 16: Suppose that only ASes p and q are se-
cure, and that malicious AS m falsely announces the path
(m, v), and suppose that p’s tiebreak algorithm prefers paths
through r over paths through q. Then, p has a choice be-
tween two paths; a partially-secure false path (p, q,m, v),
and and insecure true path (p, r, s, v). If no AS used S*BGP,

4In practice, this is done using the distance between routers
and router IDs. Since we do not incorporate this information
in our model we use a randomized tie break which prevents
certain ASes from “always winning”.
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Figure 16: A new attack vector.

p would have chosen the true path (per his tiebreak algo-
rithm); if p prefers partially secure paths, he will be fooled
into routing to AS m.

C. IMPLEMENTING OUR SIMULATIONS
We present implementation details for our simulations.

C.1 On the scale of our simulations.
Our model introduces a number of scaling challenges:

1. Aggregating utility for each destination. Thus,
to compute the utility function un(S) or un(¬Sn, S−n), we
need to determine Tn(d, S), the subtree of nodes routing
through ISP n in state S, for every destination in the AS
graph G(V,E) (see section 3.3). Thus, we need to do this
|V | ≈ 30K, since every AS can be a destination.

2. Computing projected utility for each ISP. Worse
yet, notice that projected utility un(¬Sn, S−n) is computed
in a unique state (¬Sn, S−n) for each ISP n in the AS graph.
Since about 15% of ASes are ISPs, this results in 0.15 · |V | =
4.5K unique states (¬Sn, S−n).

3. Computing the subtree Tn(d, S). Combining
the above, it follows that we need to compute the subtree
Tn(d, S) about 0.15|V |2 = 135M times in each round. To
understand the scale of this computation, an algorithm that
computes Tn(d, S) in 10ms would take 375 hours to run a
single round of our simulations.

To effectively run simulations at such a scale, we heavily op-
timized the algorithms used to compute Tn(d, S), and paral-
lelized our simulations on a cluster of 200 machines running
DryadLINQ, a recent research platform for distributed com-
puting developed for the .NET (C#) framework.

C.2 The fast routing tree algorithm.
Our optimized algorithm for computing Tn(d, S) is based

on the following observation:

Observation C.1. If ASes using the routing policies of
Appendix A, the length and type ( i.e., customer, peer, provider)
of any node i’s path to a destination d is independent of the
state S of the AS graph.

(Discussion is in Appendix G.) [16] has an O(3|V | + |E|)
algorithm that computes the routing tree of paths from every
source AS in the AS graph G(V,E) to a given destination d.
To further optimize this, we ran a modified version of [16]’s
algorithm only once per destination d in order to obtain
the following per-destination information: the (a) length (b)
type (i.e., customer, peer, provider), and (c) tiebreak set of
potential next hops for each node i’s path to destination d.
Given the per-destination information, we used the following
algorithm to compute Tn(d, S):

Fast routing tree algorithm: Since every node in i’s
tiebreak set has a path to d that is one-hop shorter than

node i’s path, we start at the destination d and proceed
through each node i in ascending order of path length. For
each node i in the AS graph, we determine (a) which AS in
i’s tiebreak set that i chooses as its next hop to d, and (b)
whether i has a fully-secure path to d, by checking if (1) i is
secure in state S, and (2) there are nodes in i’s tiebreak set
with a secure path to d.

The complexity of the fast routing tree algorithm is O(t|V |),
where t is the average size of the tiebreak sets in the AS
graph. The average tiebreak set size is t = 1.18 (across all
source-destination AS pairs, see also Section 6.6), and for
our graph |E| ≈ 4|V |, so our optimized algorithm is almost
6 times faster than the O(3|V |+|E|) algorithm of [16]. After
platform-specific optimizations, our C# implementation ran
in about 2ms.

C.3 Parallelizing our simulations.
We parallelized our simulations using DryadLINQ, an ap-

proach similar to the Map-Reduce paradigm. That is, we
parallelized (i.e., mapped) our computation of the subtrees
Tn(d, S) and Tn(d, (¬Sn, S−n)) across destinations d, and
then aggregated (i.e., reduced) them to obtain utility un(S)
and projected utility un(S). We ran our code on a shared
cluster of about 200 machines running DryadLINQ; by par-
allelizing across destinations, each machine was roughly as-
signed computation for about |V |/200 = 150 destinations
(but see [48] for details on how exactly this implemented in
DryadLINQ).

Initialization. We initialize the simulation by comput-
ing the per-destination information for each destination in
the AS graph. Thus, each machine runs a modified ver-
sion of the O(3|V | + |E|) algorithm from [16] to obtain the
per-destination information for each of the |V |/200 = 150
destinations it is assigned. This step typically ran in under
five minutes.

Per-round computation. For each round of the
simulation, we start the ‘Map’ step of the computation by
shipping out the state S and about |V |/200 = 150 sets of
per-destination information to each machine in the cluster.
Then, for each destination, the each machine does the fol-
lowing:

• The fast routing tree algorithm is run once on state
S. Then, a single pass is taken over the output to
determine Tn(d, S) for each ISP n in the AS graph by
counting the number of chosen paths that contain n.

• For each ISP n, the fast routing tree algorithm is run
on state (¬Sn, S−n). Tn(d, (¬Sn, S−n)) is obtained by
counting the number of paths in the output that con-
tain n.

Thus, we require O(t|V | × 0.15|V |) computation for each of
the |V | destinations.

For the ‘Reduce’ step, we aggregate Tn(d, S) (resp., Tn(d, (¬Sn, S−n)))
for each destination to obtain the utility un(S) (resp., pro-
jected utility un(¬Sn, S−n)) for each ISP n. Finally, we use
the utility and projected utility to determine whether an ISP
n deploys S*BGP or not, per the update rule in (3).

C.4 Optimizing the computations.
In general, we need to run the fast routing tree algorithm
|V | time for each destination in each round with state S.
However, our simulations can be optimized with the follow-
ing observations:



Table 2: Summary of AS graphs
Graph ASes peering customer-provider

Cyclops+IXP [9, 3] 36,964 58,829 72,848
Augmented graph 36,966 77,380 72,848

Table 3: Average path length from the five content
providers to all other destinations

AS Cyclops Augmented Knodes

15169 2.7 2.1 2.2
8075 2.8 2.1 2.3

20940 3.6 2.2 2.2
22822 6.9 6.8 2.3
32934 3.5 2.1 2.4

• If a destination d is not secure in state S, then there can
never be any secure paths to that destination. Thus,
Tn(d, S) = Tn(d, (¬Sn, S−n)) for all ISPs n, we only
run the fast routing tree algorithm once for destination
d in that round.

• Theorem 6.2 shows that, in the outgoing utility model,
a node never has an incentive to turn off S*BGP. Thus,
if ISP n is secure in a round with state S, we need not
run the fast routing tree algorithm on state (¬Sn, S−n)
for all destinations in all subsequent rounds.

• Consider a round with state S, where ISP n does not
have any nodes in its tiebreak set that have secure paths
to destination d. It follows that ISP n cannot offer
its neighbors any secure path in state (¬Sn, S−n), and
thus will not change their tiebreak decisions relative to
state S. Thus, we need not run the fast routing tree
algorithm for state (¬Sn, S−n) and destination d.

These optimizations significantly reduced our compute time.
As a result of these optimization, our per-destination com-
putations ran in a variable amount of time, depending on
the state S.

C.5 Putting it all together.
Overall, the complexity of our simulations is approximately

O(|V | · (3|V | + |E|)) ≈ 6B for the initialization step, and
O(0.15 · t|V |3) ≈ 5000B per round, each of which was re-
duced by a factor of 200 by parallelizing with DryadLINQ.
On an uncongested cluster, the initialization step ran in
about five minutes, and one round typically completed in
about 10 − 35 minutes, with congestion increasing running
time by about 150%. Our simulations typically arrived at a
stable state after 2-40 rounds, with simulations in where very
few nodes became secure tended to terminate more quickly
(Section C.4). Thus, we could run a simulation from start
to finish in about 1-12 hours.

D. AS GRAPH SENSITIVITY ANALYSIS.
Incompleteness of AS-level topologies. It is widely
reported that AS-level graphs of the Internet are incom-
plete [37], but a ground truth for AS-level connectivity re-
mains elusive. This is especially problematic for large con-
tent providers that primarily peer with large numbers of
ASes to drive down costs for both themselves and the net-
works they peer with. Since peering links are only exported
to customers [37] and content providers do not generally
have customers, this is potentially a large blind spot in

Table 4: Degree of five CPs in original and aug-
mented graph with Tier 1s for comparison

Cyclops+IXP Cust. Peer Prov. Total

Tier 1s
174 2,928 377 12 3,317

3356 2,936 119 0 3,055
7018 2,407 135 0 2,542
701 2,069 72 0 2,141

1239 1,243 90 0 1,333
CPs

15169 0 244 3 247
8075 0 90 2 92

32934 0 49 4 53
20940 0 81 31 112
22822 0 567 10 577

Augmented Cust. Peer Prov. Total

15169 0 3,931 3 3,934
8075 0 3,927 2 3,929

32934 0 3,922 4 3,926
20940 0 3,895 31 3,926
22822 0 3,917 10 3,927

the existing data. Indeed, we observed that average path
lengths for the five CPs in the AS graph (according to the
routing policies of Appendix A) were around 2.7-3.5 hops
whereas they are reported to be much lower, around 2.2-2.4
hops [38]. The reported value we consider is the Knodes
index [38], which uses public and private BGP data to mea-
sure the number of hops that must be traversed between IP
addresses in a given network and all other IP addresses.

Creating the augmented graph. To understand how
incompleteness of the AS-level toplogy impacts our results,
we developed an augmented topology with particular focus
on more accurate connectivity for the five CPs. Our strat-
egy for augmenting the AS-level topology leveraged recent
research on IXPs that finds that many CPs are joining IXPs
and peering with a large fraction of their members [3].

We used the Cyclops AS graph from Dec. 9, 2010 with
additional peering edges from [3]. In the Cyclops graph,
the content providers have some customers, mainly owing
to company acquisitions (e.g., YouTube’s AS 35361 is a cus-
tomer of Google). Since the CPs do not generally provide
transit to other ASes, we remove these 79 customer ASes
from the graph. We summarize the resulting Cyclops+IXP
graph in Table 2.

Starting with this graph, the five CPs were then connected
randomly to ASes present at IXPs [3] until their average
path length to all destinations on the Internet decreased
to around 2.1-2.2 hops. The path lengths in the original
and augmented topologies as well as the reported Knodes
index [38] (an approximation of path length) are shown in
Table 3.

Properties of the augmented graph. In our aug-
mented AS graph, the five CPs have higher degree than
even the largest Tier 1s (summarized in Table 4). However,
unlike the Tier 1s the five CPs edges are primarily peering
edges. The five CPs also do not provide transit. Note also
that the path lengths for LimeLight (AS 22822) are longer
than paths observed by other ASes. This may be caused by
the AS-level topology not being particularly complete for
LimeLight or more likely, that Limelight’s routing policies
are very different from those of Appendix A.



E. CHOOSING EARLY ADOPTERS IS HARD!
We now prove that finding the optimal set of early adopters

is NP-hard.

Theorem E.1. For an AS graph G(V,E) and a param-
eter 1 ≤ k ≤ |V |, finding a set of early adopter ASes of
size k that maximizes the number of ASes that are secure
when the deployment process terminates is NP-hard, both in
the incoming and outgoing utility model. Approximating the
solution within a constant factor is NP-hard as well.

Proof. We prove the theorem via reduction from the
NP-complete SET-COVER. In SET-COVER we are given
m subsets of a universe U , S1, . . . , Sm, and an integer k.
The objective is to find a collection of k of the subsets that
covers the most elements in U .

Given an instance of SET-COVER, our reduction to the
problem of finding a set of early adopters is as follows. We
create a network with a single destination node d, 2 nodes,
si1 and si2, for each Si, and a node u for every element in
U (plus some additional nodes, as we now explain). Our
construction is described in Figure 17.
d is a stub customer of all si1’s, and each si1 is a customer

of si2. Each si2 is a provider of every stub u that corresponds
to an element in the universe U (in SET-COVER) that be-
longs to Si. Observe that each node u has a 4-hop provider
route to d through every node si2 such that u ∈ Si. We shall
assume that each node u has another 4-hop provider route
that does not go through any of the aforementioned nodes,
and that this route is preferable to all other routes. We also
assume that all of these additional routes are disjoint. For
simplicity, we do not include these routes in the figure.

We restrict our attention to the case that there exist a
collection C of k sets in S1, . . . , Sm (in the SET-COVER
instance) that together cover all elements in U . (The proofs
establishing the NP-completeness of SET-COVER actually
show that even when guaranteed that k such sets exist find-
ing them is NP-hard.) We observe that in this case, the
optimal choice of early set of adopters of size k (in both the
incoming and outgoing utility models) is to select each si1
such that Si ∈ C to be an early adopter. Observe that fol-
lowing this choice of early adopters, at the first time step all
their si2 providers will deploy S*BGP and consequently all
the u nodes will upgrade to S*BGP. Observe also that every
other choice of k nodes to secure leads to worse end results.

Hence, an optimal set of early adopters implies an optimal
solution to SET-COVER. SET-COVER is not only NP-hard
to solve exactly but also NP-hard to approximate within any
constant factor. That is, even finding a collection of sets of
size αk, where α is a constant, that covers all elements in U
is NP hard. We make the following important observation.
Our reduction is such that a constant approximation solu-
tion to our problem guarantees a constant approximation to
SET-COVER. To see this, observe that every choice of αk
si1’s leads the corresponding αk si2’s and their customers
(that correspond to the covered elements in SET-COVER)
to deploy in the next time step. Thus, eventually, the num-
ber of nodes to deploy is 2αk plus the number of covered ele-
ments in U . Hence, a constant factor approximation for our
problem implies a constant factor approximation to SET-
COVER. The theorem follows.

d

s11 s12

sm1 sm2

u

…

Figure 17: Proof of Theorem E.1.
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Figure 18: Phases of the Oscillator.

F. OSCILLATIONS EXIST
We prove that oscillations exist in the incoming utility

model. Our proof is an scenario we call the Oscillator; a
group of nodes that alternates between turning S*BGP ON
and OFF, and never arrives at a stable state:5

Figure 18 There are three source of traffic s1, s2, s3,
trees of nodes connected by customer-provider edges (so that
all nodes in the customer tree are transitive customers of
the root). There are two stub destinations d1 and d2. For
simplicity, assume that s1 and s3 send traffic to d1 via the
nodes shown, and that they have some better path to d2
(not shown). Similarly suppose s2 sends traffic to d2 via the
nodes shown. Suppose that s3 contains many more nodes
than s1, and that each of s1, s2, s3 has a tiebreak algorithm
that prefers paths through nodes with the lowest AS number.
We’ll also assume that nodes 11, 21 are stuck in an insecure

5This example was not taken from our simulations.



state, while nodes 24 is stuck in a secure state, and show an
oscillation involving nodes 1 and 2:

Phase 1: Initially, both 1 and 2 are insecure. Here,
ISP 1’s incoming utility increases from (customer) traffic
originating at s3 and node 2 obtains incoming utility from
customer traffic originating at s2.

Phase 2: Node 1 now becomes secure in order to attract
customer traffic from s1. Note that node 2 has now lost in-
coming utility, because node 1 has stolen away the customer
traffic from s3.

Phase 3: Node 2 now becomes secure in order in order
to get back the traffic from s3. In doing this, node 2 loses
incoming utility from nodes in s2 (since their traffic now
enters s3 along a peer edge) but since s3 has more nodes
than s2, node 2 is still better off. Notice that node 1 has
now lost the customer traffic from s3.

Phase 4: Now, node 1 turns on S*BGP in order to get
back the customer traffic from s3; (by becoming insecure,
s3 choosing paths according to his tiebreak algorithm, that
comes up in favor of node 11, cf., Figure 14). Notice that
node 2 has lost the customer traffic from s3; furthermore,
traffic from s2 has no impact on his utility, because he re-
ceives it via a peering edge.

Phase 5: Finally, node 2 increases his incoming utility
by turning off S*BGP (again cf., Figure 14). This follows
because he convinces s2 to route to him along a customer
edge (rather than a peer edge, as in Phase 3), and we are
back in Phase 1!

G. A NOTE ON BGP CONVERGENCE
In this section, we make a number of observations about

route selection when ASes use the routing policies of Ap-
pendix A. Namely, we show that when ASes use these rout-
ing policies, (1) it follows that BGP converges to a stable
state (i.e., no AS will want to change its path selection in
order to obtain a path that is more preferred according to its
ranking function [17]), and (2) we discuss Observation C.1,
that was the basis of our optimized simulation algorithms.

Preliminaries. Since BGP sets up routes to each desti-
nation independently, we focus on routing to a unique des-
tination d. We say that a route (v0, v1, . . . , d) is exportable
if for every i ≥ 0 it holds that vi+1 announcing the route
(vi+1, . . . , d) to vi does not violate GR2. We say that a
route (v0, v1, . . . , d) is a customer route if v1 is a customer
of v0. We define peer routes and provider routes analogously.

Discussion for Observation C.1. Given a deployment
state S (i.e., the set of secure nodes), for every node i we
define the BEST − ROUTES(i, S, d) to be the set of all
exportable routes from i to d that are preferred by i over all
other exportable routes. Observe that all routes in BEST −
ROUTES(i, S, d) must belong to the same type—customer
routes, peer routes, or provider routes—and either all be
(entirely) secure or all be unsecure. Moreover, all routes
in BEST − ROUTES(i, S, d) must be of the same length.
We define NEXT (i, S, d) to be the set that contains every
node j such that j is i’s next-hop node on some route in
BEST−ROUTES(i, S, d). The following lemma shows that
we can capture the routing decisions of every AS i in the
graph by maintaining information about (a) NEXT (i, S, d),
(b) length of paths in BEST − ROUTES(i, S, d), and (c)

type of path in BEST −ROUTES(i, S, d). Furthermore, it
argues that BGP converges to a stable state:

Lemma G.1. In our routing model, BGP is guaranteed to
converge to a stable state where each node i’s next-hop is the
node in NEXT (i, S, d) that i breaks ties in favor of.

Proof. The lemma follows from the three following propo-
sitions:

Proposition G.2. In our routing model BGP is guaran-
teed to converge to a stable state where for each node i whose
BEST − ROUTES(i, S, d) consists of customer routes it
holds that i’s next-hop is in NEXT (i, S, d).

Proof. We prove this by induction on the path length.
Consider the case that BEST − ROUTES(i, S, d) consists
of a customer route of length 1. Clearly, in this case i will
select the direct route to d (that is its most preferred route),
and so its next-hop will indeed trivially be as in the state-
ment of the theorem. Next, consider the case that BEST −
ROUTES(i, S, d) consists of customer routes of length 2.
Observe that in this case each node in NEXT (i, S, d) has a
customer route of length 1 and thus will, for some moment
onwards, converge to that route (as we have established).
Thus, from some point in time forth i shall have all routes
in BEST −ROUTES(i, S, d) available to it and shall hence
have a node in NEXT (i, S, d) as a next-hop, and specifically
the node that i breaks ties in favor of. And so on.

Similar proofs establish the following.

Proposition G.3. In our routing model BGP is guar-
anteed to converge to a stable state where for each node i
whose BEST − ROUTES(i, S, d) consists of peer routes it
holds that i’s next-hop is in NEXT (i, S, d).

To see why Proposition G.3 holds, observe that if a node i
has an exportable peer route in BEST −ROUTES(i, S, d),
then the next-hop on that route has an exportable customer
route in its BEST −ROUTES set. Therefore, by Proposi-
tion G.2, the next-hop node’s route will, from some moment
in time forth, stabilize. From that moment onwards node i
will have have a route in BEST − ROUTES(i, S, d) avail-
able to it.

Proposition G.4. In our routing model BGP is guar-
anteed to converge to a stable state where for each node i
whose BEST−ROUTES(i, S, d) consists of provider routes
it holds that i’s next-hop is in NEXT (i, S, d).

The proof of Proposition G.4 is similar to that of the pre-
vious propositions. Propositions G.2 and G.3 establish that
the route of every node i whose BEST −ROUTES(i, S, d)
set only consists of customer of peer routes will eventu-
ally stabilize. We can now use induction (as in the proof
of Proposition G.2) to show that the routes nodes whose
BEST −ROUTES sets consist of provider routes will also
eventually stabilize). The induction now is on the number
of customer-provider edges on the route.

H. ISPS NEVER TURN OFF S*BGP IN THE
OUTGOING UTILITY MODEL

Theorem H.1. In the outgoing utility model, a secure
node will never have an incentive to turn OFF S*BGP.



Proof. Consider a deployment state S where a node i is
OFF and the deployment state S that is identical to state
S with the exception that node i is ON in S. We now prove
that i’s outgoing utility in S (that is, its utility from the
routing state BGP converges to when the deployment state
is S cannot possibly be less than its outgoing utility in S.
Because we establish that this is true for every node i and
every two such states S and S, it follows that a node can
never gain from deactivating S*BGP.

The above follows from Lemma G.1. To see this, con-
sider a single destination d. We have shown that when the
deployment state is S, BGP is guaranteed to converge to
a stable state where each node i’s next-hop is the node
in NEXT (i, S, d) that i breaks ties in favor of (see Ap-
pendix G). Recall that it must hold, for each node i, that
either all routes in BEST −ROUTES(i, S, d) are secure or
all routes in BEST −ROUTES(i, S, d) are insecure.

Now, consider two states S and S as above, that differ
only in that a node i becomes secure in S. Consider a node
j 6= i in the network. We handle three cases:

1. Case I: Both BEST−ROUTES(j, S, d) and BEST−
ROUTES(j, S, d) consist only of insecure routes.
That is, the fact that i turned ON in S did not cre-
ate new “best routes” for node j. Therefore, BEST −
ROUTES(j, S, d) = BEST−ROUTES(j, S, d). Lemma G.1
implies that in both S and S j will select the same next-
hop en route to d.

2. Case II: BEST − ROUTES(j, S, d) consists only
of insecure routes and BEST − ROUTES(j, S, d)
consists only of secure routes. Observe that in
this case all routes in BEST −ROUTES(j, S, d) must
traverse i (as previously j had no secure routes).

3. Case III: Both BEST−ROUTES(j, S, d) and BEST−
ROUTES(j, S, d) consist only of secure routes.
Observe that in this case BEST −ROUTES(j, S, d) ⊆
BEST − ROUTES(j, S, d) (i’s transition to S*BGP
could not have made a secure route insecure, only add
to the set of secure routes).

Observe that the above three cases imply that if i did not
create new secure “best routes” for another node j then j’s
choice of next-hop en route to d remains the same. Other-
wise, j might choose a next-hop that goes through i. Thus,
i can never lose traffic from transitioning to S*BGP. This
holds for every destination d. The theorem follows.

I. FINDING THE OPTIMAL ROUTING POL-
ICY IS HARD

We now show that it is NP-hard for a node to find a rout-
ing policy (ranking function and export policy) that is op-
timal with respect to traffic attraction. [16] shows that this
statement is correct in the outgoing utility model. (Specif-
ically, Theorem F.7 and Theorem F.8 work if the so called
“manipulator” is a customer of the destination node. This
implies that when all other ASes’ routing policies are as in
Appendix A, it is NP hard for any AS n to find the routing
policy that maximizes its outgoing utility.) We now extend
the result in [16] to the incoming utility model.

Theorem I.1. When all other ASes’ routing policies are
as in Appendix A, it is NP hard for any AS n to find the
routing policy that maximizes its incoming utility. Moreover,

1

x

d

c1
c2

2

3

Figure 19: The DILEMMA network: x cannot at-
tract both c1 and c2’s traffic simultaneously along
customer edges.

approximating the optimal routing policy within any constant
factor is also NP hard.

Proof. Our proof follows the proof in [16], that shows
that attracting traffic is NP-hard when the node has no eco-
nomic considerations, but merely wants as much traffic as
possible to flow through it. [16] shows that it is even hard
to approximate the optimum within any constant factor.
We show that this hardness result continues to hold in our
context. The key ingredient in the proof in [16] is showing
the existence of a construction called the DILEMMA net-
work. This construction is then used in a reduction from
the NP-hard INDEPENDENT-SET problem. To prove our
NP-hardness results we show that a DILEMMA network can
be constructed for our context as well. The rest of our proof
then proceeds as in [16]. The reader is referred to [16] for
an overview of the complete proof argument.

In the DILEMMA network, there exist a node x that
wishes to attract the traffic of two other nodes in the net-
work, c1 and c2. However, while x can attract the traffic
of c1 alone, or of c2 alone, it is unable to attract the traffic
of both nodes simultaneously. We now show how a network
can be constructed in our context.

Consider the network in Figure 19. Observe that node
x is directly connected to the (single) destination d, and
so its ranking function is trivial. Thus, node x’s choice of
routing policy boils down to the choice of export policy (i.e.,
which nodes to announce the route (x, d) to). Observe also
that x must clearly announce (x, d) to its customers (for
otherwise it will definitely fail in attracting traffic from c1
or c2). Hence, the only decision that x must make is whether
or not to announce (x, d) to node 1.

We assume that nodes’ tie-breaking rules are such that
they never break ties in favor of routes that have x as a next
hop. We make the following observations. If x does not
announce the route (x, d) to node 1, then x will attract c2’s
traffic along a customer edge (as c2 will have no other route
to d), but will lose c1’s traffic (as 3 will then route directly
to d and so c1 shall route through 3). If, on the other hand,
x does announce the route (x, d) to 1 then x attracts c1’s
traffic along a customer edge (as 3 will then select the long
customer route through x), but c2’s traffic shall then reach
x along the edge (1, x) (a provider edge).

The proof now follows from the arguments in [16].

J. PER-LINK DEPLOYMENT IS HARD
We consider the case that a node can deploy S*BGP on a

per-link basis. That is, instead of just turning itself ON or
OFF, the node can decide to sign/verify routes for a specific
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Figure 20: The DILEMMA network: x cannot at-
tract both c1 and c2’s traffic simultaneously along
customer edges.

neighbor, yet not to do so for another neighbor. We note,
that we focus on the case that deployment entails both sign-
ing and verification, and ignore the scenario that a node
might decide only to verify signed routes from a neighbor,
but not to sign to routes for that neighbor.

We show that in the incoming utility model, choosing
which links to deploy S-BGP on is NP-hard.

Theorem J.1. Given an AS graph and state S, it is NP-
hard to choose the set of neighbors for which ISP n should
deploy S*BGP so as to maximize its incoming utility. More-
over, approximating the optimum within any constant factor
is also NP hard.

Proof. Our proof, similarly to the proof of Theorem I.1,
follows the proof in [16]. Thus, the key is showing the exis-
tence of a DILEMMA network construction, where a node
x can attract the traffic of node c1 alone (along a customer
edge), or of a node c2 alone (along a customer edge), but is
unable to attract the traffic of both nodes simultaneously.

We present such a DILEMMA network construction in
Figure 19. Nodes c1 and c2 wish to sent traffic to destination
nodes d1 and d2, respectively. We assume that nodes’ tie-
breaking rules are such that they never break ties in favor
of routes that have x as a next hop. Observe that if node
x secures the link to node 2 then it gains c2’s traffic (to
which it can now offer a secure route to d2), yet loses c1’s
traffic (as c2 would prefer the secure route to d1 through 2).
However, if node x does not secure the link to node 2, then
it gains c1’s traffic (because of tie-breaking), but loses c2’s
traffic (also because of tie-breaking). Thus, x can indeed
attract traffic (along a customer edge) of either c1 or c2, but
cannot attract both nodes’ traffic simultaneously.

The proof now follows from the arguments in [16].

We prove that in the outgoing utility model finding the
utility maximizing per-link deployment can be done in a
computationally-efficient manner.

Theorem J.2. Given an AS graph and state S, deploying
S*BGP for all neighbors maximizes the outgoing utility for
every node in the network.

The proof of theorem J.2 uses the exact same arguments
as in the proof of Theorem H.1. (Only now we apply these
arguments on a per-link basis.)

K. DETECTING OSCILLATIONS IS HARD!
The complexity class PSPACE consists of all decisions

problems that can be solved using only polynomial space
(no limit is set on the amount of time it takes to compute
the solution). Intuitively, PSPACE-complete problems can
be viewed as the hardest problems that lie within PSPACE.
These problems are at least as hard as the notoriously NP-
complete SAT, TRAVELING-SALESMAN, and CLIQUE
problems, and are widely believed to be even harder. Hence,
if a decision problem is PSPACE-complete then it is impos-
sible to solve in a computationally-efficient manner unless
the most fundamental premises of contemporary complexity
theory (including P6=NP) collapse.

We present the following computational problem, that we
call “S*BGP ADOPTION”. In S*BGP ADOPTION, the in-
put is a network with n nodes (as described in Section 3),
and a string S = (S1, . . . , Sn) ∈ {0, 1}n. The goal in S*BGP
ADOPTION is to determine whether, when starting at a
state in which each node i is using S-BGP iff Si = 1, the de-
ployment of S-BGP can enter indefinite oscillations. S*BGP
ADOPTION can easily be shown to be in PSPACE. This
is because with polynomial space it is possible to simply
go over all possible starting states and check, for each one,
whether the deployment dynamics converge to a stable state.
We prove that S*BGP ADOPTION is, in fact, PSPACE-
complete, thus establishing the intractability of predicting
the network evolution from a given state.

Theorem K.1. Given an AS graph and state S, it is
PSPACE-complete to decide if the deployment process will
terminate at a stable state in the incoming utility model.

In the remainder of this section we prove Theorem K.1,
that is, establish that S*BGP ADOPTION is PSPACE-
complete in the incoming utility model.

K.1 Definition of STATIC-MODE.
We present a reduction to S*BGP ADOPTION from the

following problem, that we term“STATIC-MODE”and show
is PSPACE-complete. In STATIC-MODE the input is a
space-bounded Turing machine and the goal is to determine,
for a given string that is fed into the Turing machine, whether
the Turing machine eventually enters a fixed configuration.
We now present STATIC-MODE in detail.

Input:

• a specification of a space-bounded Turing machine M
in the form of an 8-tuple (Q,Γ, b,Σ, q0, F, r, δ), where

– Q is a finite, non-empty set of machine-states. |Q| =
q.

– Γ is a finite, non-empty set of the tape alphabet/symbols.
|Γ| = γ.

– b ∈ Γ is the unique blank symbol.

– Σ ⊆ Γ is the set of input symbols.

– q0 is the initial machine-state.

– F ⊆ Q is the set of final machine-states.

– r > 0 is an integer bound on the length of M ’s
tape.

– δ : {1, . . . , r} × Q × Γ → {1, . . . , r} × Q × Γ is
the transition function. δ specifies how M moves
from one configuration of M—a location of M ’s
head h ∈ {1, . . . , r}, a state s ∈ Q and a string of



symbols g ∈ Γr that specifies the cells’ contents—
to another. We restrict δ so that if δ(h, s, g) =
(h′, s′, g′), then h′ ∈ {h − 1, h, h + 1} (that is, the
head can move at most one cell at each time).

• a string x ∈ Σr that is M ’s input string (the input to
be fed into M).

Goal: We call a configuration c = (h, s, g) of the Turing
machine M static if δ(c) = c. The objective in STATIC-
MODE is to determine whether M ’s execution for the input
string x reaches a static configuration.

STATIC-MODE is closely related to the problem of de-
termining whether a space-bounded Turing machine M (as
above) will halt for a given input string, that is known to
be PSPACE-complete (see, e.g., [13, 34]). Indeed, a sim-
ple reduction from the latter (essentially guaranteeing via
easy tweaks that M enter a static mode instead of halting)
establishes that STATIC-MODE too is PSPACE-complete.

Proposition K.2. STATIC-MODE is PSPACE-complete.

K.2 High-level overview.
We now give a high-level overview of our proof that S*BGP

ADOPTION is PSPACE-complete. We present a polynomial-
time reduction from STATIC-MODE to S*BGP ADOPTION,
thus establishing that the latter is also PSPACE-complete.
We first translate the input to STATIC-MODE to an in-
put in S*BGP ADOPTION. We then show that the deploy-
ments dynamics in S*BGP ADOPTION simulate the execu-
tion of the Turing machine M in STATIC-MODE and prove
that convergence to a stable state in S*BGP ADOPTION
is achieved iff M enters a static configuration in STATIC-
MODE.

Given an input to STATIC-MODE, we construct a net-
work in S*BGP ADOPTION. We now present some key el-
ements in our construction. We discuss the details in Sec-
tion K.10. We create the following sets of nodes (we also
create additional nodes that are added to guarantee traits
discussed below):

• k head nodes, h1, . . . hr, where each node hi represents
a possible location of Turing machine M ’s head.

• q machine-state nodes, {sβ}β∈Q, where each node sβ
represents the state β ∈ Q of STATIC-MODE.

• k cell clusters, C1, . . . , Cr, where each cell cluster Ci
consists of γ symbol nodes {gi,σ}σ∈Γ, each representing
a possible symbol in cell i.

We call a state of the network in S*BGP ADOPTION
“clean” if only a single head node h is using S-BGP (is ON),
only a single machine-state node s is ON, only a single node
gi in every cell-cluster Ci is ON. Observe that every clean
state in S*BGP ADOPTION captures a configuration of the
Turing machine M is STATIC-MODE (in which the index
of the single head node using S-BGP is the location of M ’s
head, and so on).

We set the initial state of the network in S*BGP ADOP-
TION to be the clean state in which the single head node
ON is h1; the single state node ON is the node that repre-
sents q0; in each cell cluster Ci, the single symbol node ON is
gi,xi . Observe that this clean state in S*BGP ADOPTION
captures the initial configuration of M (the head is pointing
to the first cell, that contains x1, and the machine-state is
the initial machine-state q0).

We prove that, from a clean state α in S*BGP ADOP-
TION that represents a configuration c = (h, s, g) in STATIC-
MODE, the network evolves (within a constant number of
time steps) to another clean state that represents the config-
uration that immediately follows c in STATIC-MODE (after
applying δ). Thus, we show that when starting at an initial
state of the network as described above, the network evo-
lution essentially mimics the execution of M for the input
string x. In addition, we prove that if M enters a static
mode when executed on x, then the network will converge
to a stable state in S*BGP ADOPTION, and vice versa.
This reduction hence establishes that S*BGP ADOPTION
is indeed PSPACE-complete.

K.3 The AND and CHICKEN gadgets
We now present two gadgets that play a crucial role in

the proof: the And Gadget and the Chicken Gadget
. We first make the following general remarks about our
constructions below.

Fixed nodes. In all of our gadgets there are some nodes
that can sometimes be ON and sometimes be OFF, and
some nodes, that we call “fixed nodes”, whose status is fixed,
i.e., they are either ON all the time or OFF all the time.
There are many simple gadgets that we could construct to
ensure that a particular node remains stuck in a certain state
regardless of the state of the other nodes in the network. To
reduce clutter we omit these.

Routing policies. Nodes’ routing policies in all our con-
structions are as in Appendix A.

Tie-breaking. In our constructions below we shall assume
that nodes break ties between equally good routes in favor of
the route with the next hop that has the lowest AS number.

Traffic flows. To create the flows of traffic in our
gadgets, we specify a source of traffic, and a destination
of traffic. Traffic sources are trees of nodes connected by
customer-provider edges (so that all nodes in the customer
tree are transitive customers of the root). We represent such
trees as pyramids in our figures, and indicate the number of
nodes in a customer tree with a label, e.g., Cross 1 in Fig-
ure 22 has size m. Similarly, we depict traffic destinations
as pyramids. To create a traffic flow of a particular mag-
nitude in our gadgets, a customer tree will send traffic to
destination, e.g., in Figure 22 customer tree Cross 1 sends
traffic to destination d2, creating a traffic flow of size m. The
nodes in the gadgets will then (potentially) obtain utility by
attracting this traffic flow.

Getting rid of non-designated traffic. Our gadgets
will rely on the fact that only designated traffic flows affect
the decisions made by nodes in the gadget. We will always
state (in the text) exactly which flows are designated, e.g.,
Cross 1 sending traffic to d2 in Figure 22. However, we also
need a way to ensure that non-designated traffic does not
flow into the gadget and affect the decisions made by the
nodes. In the two simple two gadgets below, this can easily
be achieved. We later discuss how this is done for more
complex constructions.

K.4 The AND Gadget.
We present the And Gadget , shown in Figure 21. In

this gadget there are three“input-nodes”, 1, 2, 3, and a single
“output node” &. The And Gadget is such that node &
turns ON iff nodes 1, 2, 3 turn on (and thus, node & can
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Figure 21: States of the And Gadget .

be regarded as the AND operator for inputs 1, 2, 3). To
achieve this we create additional fixed nodes: four nodes
101, 102, 5, 6, the destination d and customer trees And i for
i = 1, 2, 3 and Hold. All fixed nodes are constantly ON, with
the exception of node 5, that is OFF.

Proposition K.3. Node & turns ON iff nodes 1, 2, 3 turn
ON.

Proof. We make the following observations.

• And traffic. For each i ∈ {1, 2, 3}, the And i customer
tree has two available routes to d: a secure route (And
i, 101, 102, d) and the route (And i, i,&, d). Observe
that the latter route is chosen iff both i and & are
ON (since the customer tree prefers secure routes over
insecure routes, and i has a lower AS number than 101.)
Observe also that if the latter route is used by customer
tree And i then & obtains 2m-units of utility.

• Hold traffic. Customer tree Hold also has two avail-
able routes to d, route (Hold, 5,&, d) and route (Hold,
6,&, d). Observe that the latter route is chosen iff both
i and & are ON (since if & is on, the hold traffic has a
secure route to d). Observe also that if the former route
is chosen, &’s utility is 5m (since it receives the traffic
from a customer), while if the latter router is chosen,
& obtains no utility (since it receives the traffic from a
peer).

Hence, & will turn ON iff & can obtain more than 5m-
units of utility (which is what & receives when it is OFF,
from the Hold traffic). This occurs iff 1, 2 and 3 are all
turned ON so that & attracts 2m+ 2m+ 2m = 6m units of
And traffic.

K.5 The CHICKEN Gadget.
We present the Chicken Gadget , shown in Figure 22.

Chicken Gadget emulates the famous two-player game of
chicken. In this gadget, there are two nodes, 10 and 20, and
some additional fixed nodes. Chicken Gadget is such that
(1) whenever both 10 and 20 are ON, or both 10 and 20 are
OFF, both nodes nodes want to change to the other action;
and (2) if one node in {10, 20} is ON, but the other is OFF,
then both nodes are content with their actions (and hence
the state of the network is stable).

Consider the Chicken Gadget construction, shown in
Figure 22. Observe that the Chicken Gadget is asym-
metrical, as node 20 is a provider of node 10. Chicken
Gadget also consists of the fixed nodes 1, 2, 3, 4, 5, 6, des-
tinations d1, d2, and four customer trees. Customer tree
Local 1 wants to reach destination d1, customer tree Local 2
wants to reach destination d2, customer tree Cross 1 wants
to reach destination d2, and customer tree Cross2 wants
to reach destination d1. The fixed Nodes 1, 2, 4 and 5 are
always OFF, and nodes 3, 6, 1000, 20 and all of the destina-
tions and customer trees are always ON. We choose ε and
m so that ε� m.

Lemma K.4. Chicken Gadget is such that

1. if both 10 and 20 are ON then both nodes wish to be
turned OFF;

2. if both 10 and 20 are OFF then both nodes wish to be
turned ON;

3. if 10 is ON and 20 is OFF, then both nodes do not wish
to select another action;

4. if 10 is OFF and 20 is ON, then both nodes do not wish
to select another action.

Proof. Figure 22 depicts all four states of the Chicken
Gadget . We make the following observations.

• Local Traffic. Traffic from Local 1 has two available
routes to d1: a secure provider route (Local 1, 1000, d1)
and an equal-length provider route through node 10
(Local 1,10, d1). Observe that the former route is cho-
sen if 10 is OFF, since in this case, it is the only secure
route, (e.g., Figure 22(b), 22(d)). Observe also that the
latter route is chosen if node 10 turns ON, since in this
case both available routes are secure, and 10 has lower
AS number than 1000 (e.g., Figure 22(a), 22(c)). Node
10’s utility increases by a small amount, ε-units, if the
latter route is chosen. The same statement is true for
Local 2 and node 20.

• Cross 1 Traffic. Consider the m-units of traffic from
Cross 1 to d2. To understand what routes are available
to Cross 1, we first need to look at the route 10 chooses
to get d2; namely, observe that 10 chooses a longer
peer route (10, 6, 20, d2) over the shorter provider route
(10, 20, d2) (see e.g., Figure 22(a)). Now we can see
that Cross 1 has two equidistant provider routes to d2,
route (Cross 1, 10, 6, 20, d2), and insecure route (Cross
1, 1, 4, 20, d2). We have two cases:

– If both nodes 10 and 20 are turned ON, the for-
mer route becomes secure, and is chosen by Cross
2 (Figure 22(a)). In this case, the utility of node 10
increases by m-units, as it receives traffic from the
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Figure 22: States of the Chicken Gadget.

directly connected Cross 1 customer tree. Mean-
while, the utility of node 20 is unchanged, because
20 receives this traffic from its provider node 6.

– If at least one of nodes 10 and 20 are turned OFF,
then the former route is insecure; thus, Cross 1
will make its route choice based on AS number,
and choose the former route through node 1 (e.g.,
Figure 22(b), 22(c), or 22(d)). In this case, node
10 receives no utility (because it is not on the route
the traffic takes), while node 20 receives m-units of
utility, as it receives this traffic from its customer
4.

• Cross 2 Traffic. Consider the 2m-units of traffic
from Cross 2 to d1. This time, we start by looking
at the routes available from 20 to d1; namely, observe
that 20 chooses the customer route (20, 10, d1) over the
provider route (20, 6, 10, d1) (see e.g., Figure 22(a)).
Now, Cross 2 has two equidistant provider routes to d2,
route (Cross 2, 3, 20, 10, d1), and insecure route (Cross
2, 2, 4, 10, d1). We again have two cases:

– If both routes 10 and 20 are turned ON, the for-
mer route becomes secure, and is chosen by Cross 2
(Figure 22(a)). In this case, the utility of node 10
is unaffected (because it receives this traffic from
its provider 20). The utility of node 20 is also un-
changed (as it receives its peer 3).

– If at least one of nodes 10 and 20 are turned OFF,
then the former route is insecure; thus, Cross 2
will make its route choice based on AS number,
and choose the former route through node 2 (e.g.,
Figure 22(b), 22(c), or 22(d)). In this case, route
10 receives 2m-units of utility (because it receives
the traffic from its customer 5), while node 20 re-
ceives no utility (as it is not on the route taken by
this traffic).

ε� m and so nodes 10 and 20 value Cross traffic signifi-
cantly more than Local traffic. From the discussion above it
is clear that when both 10 and 20 are turned ON, the Cross
traffic provides them with utility (m, 0) (i.e., 10 has utility
m, 20 has utility 0). When at least one of these nodes is
OFF, the Cross traffic provides them with utility (2m,m).
Clearly, the latter case is more desirable, and so we refer
to this as desirable Cross traffic. The former case is called
undesirable cross traffic.

Based Figure 22, and the discussion above, we can con-
struct a bi-matrix for the nodes 10 and 20 in Chicken Gad-
get . The bi-matrix is shown in Figure 5. From the bi-
matrix, it is clear that the Chicken Gadget has two stable
states, where 10 and 20’s actions are (ON, OFF) and (OFF,
ON), and that it emulates (an asymmetric version of) the
classic chicken game. Notice also that when the nodes are
attracting desirable Cross traffic (i.e., least one of them is
turned OFF), each node obtains at least m − ε-units more
utility than when it attracts undesirable cross traffic (i.e.,
both of them are ON).

K.6 The k-SELECTOR Gadget.
The Selector Gadget , shown in Figure 23, is a gen-

eralization of the Chicken Gadget . In the k-Selector
Gadget there are k nodes 1, . . . , k and, for each node i ∈



10 ON 10 OFF

20 ON m+ ε, ε 2m,m+ ε
20 OFF 2m+ ε,m 2m,m

Table 5: Chicken Gadget matrix. Assume m� ε.

p

X < y  , W < v ; note that i prefers a longer peer path (p, j, d(j) ) over the shorter prov path, (j,d(j))

pij

i
v

j
zvij

10j 
yij

xij

zij

10i wij
ε ε

Local(j) d(j)Local(j)d(i)

Legend

ε ε

Cross( j, i )Cross( i, j )

Legend

Per player

Per pair of players

d(ℓ)
m 2m

Chicken Gadget – take 3 Connecting the Gadgets togetherFigure 23: Chicken Gadget between nodes i < j of
Selector Gadget

{1, . . . , k}, there is an additional node 10i, a destination d(i)
and a customer tree Local(i) (as shown with solid lines in
Figure 23). ∀i, j ∈ {1, . . . , k} such that i < j, k-Selector
Gadget contains a Chicken Gadget that includes the
nodes pij , xij , yij , vij , wij , zij and customer trees Cross(i,j)
and Cross(j,i) (as shown with dotted lines in Figure 23).

Intuitively, k-Selector Gadget generalizes Chicken Gad-
get in that all nodes are incentivized to be at a state in
which exactly a single node in 1, . . . , k in ON and all other
nodes in 1, . . . , k are OFF.

Lemma K.5. k-Selector Gadget is such that

1. there are k stable states, each where one of the nodes in
{1, . . . , k} is ON and all other nodes in {1, . . . , k} are
OFF.

2. in states in which more than one node in {1, . . . , k} in
ON, all nodes wish to turn OFF.

Proof. To construct the Selector Gadget , we use a
clique of Chicken Gadget . Figure 23 shows the Chicken
Gadget that is used as building block in the Selector
Gadget . It is easy to see that this gadget works identically
to that of Figure 22, if we ensure that:

• Node xij has lower AS number than node yij .

• Node wij has lower AS number than node i.

Before proving the correctness of the lemma, we discuss
how to handle non-designated traffic. We want to ensure
that traffic from one Chicken Gadget does not flow into
another Chicken Gadget , e.g., that traffic from Cross(i,j)
to some destination d`, ` 6= j, k, does not flow through the
gadgets. We have a simple fix; simply connect the offend-
ing pair (e.g., Cross(i,j) to d`) with a peer-to-peer edge.
Clearly, doing this cannot introduce new customer provider
loops into the network; furthermore, this peer route will be
preferred by the pair over the provider route through the
nodes in the gadget. Finally, this ensure that customer trees
and destination nodes may only have peers and providers;
as such they cannot be used to transit other traffic (i.e., one
of the offending pair, e.g., d`, cannot carry traffic from some
node or customer tree a to some other node or customer tree
b) and potentially create problems for our gadgets.6

6We observe that our construction does not introduce any

We say the the Selector Gadget is set to state ` ∈
{1, . . . , k}, if only node ` is turned ON, and all other nodes
in {1, . . . , k} are turned OFF. The basic idea of the proof
is that each node wants to retain desirable cross traffic at
all costs; thus, if more than one node turns ON, pairs of
these ON nodes will be connected by a Chicken Gadget
in which they lose the desirable cross traffic, and thus want
to turn OFF. We now argue that each state ` is stable, and
all other states are unstable. We handle three cases:

• All nodes are OFF. Here, every Chicken Gadget
is in the (OFF, OFF) state, so that every node in
{1, . . . , k} receives desirable cross traffic from each Chicken
Gadget . That is, each node j ∈ {1, . . . , k} gets 2m-
units of cross traffic from each of the (j − 1) Chicken
Gadget with nodes i < j, and m-units of cross traffic
from each of the (k− j) Chicken Gadget with nodes
j < i. Thus, each node j has utility m(k−1)+m(j−1).
However, this state is unstable; if a node in {1, . . . , k}
turns ON unilaterally, it increase its utility by ε-units
by attracting local traffic while still retaining desirable
cross traffic.

• Only node ` is ON. In this case, there is at least one
OFF node in each Chicken Gadget , so all nodes in
{1, . . . , k} receive desirable cross traffic. The utility of
all nodes in {1, . . . , k} except ` remains as in the ‘All
nodes OFF’ state, except node ` that obtains additional
local traffic, slightly increasing its utility to ε+m(k −
1) +m(`− 1).

• More than one node is ON. Here, there is at
least one pair of nodes (i, j) in {1, . . . , k} connected via
Chicken Gadget in the (ON,ON) state, thus receiv-
ing undesirable cross traffic. This is an unstable state,
since the utility of every such i and j will increase by
at least m− ε if they turn OFF.

K.7 The TRANSITION Gadget.
Our next building block is the k-Transition Gadget ,

shown in Figure 24. Intuitively, Transition Gadget resets
an k-Selector Gadget from the stable state i (all nodes in
{1, . . . , k} are OFF except node i) to the stable state j. We
do not use the Transition Gadget directly in our reduc-
tion, but a modified version of this gadget, called a Triple
Transition Gadget . For expository purposes, we start
with a detailed explanation of the Transition Gadget .

customer-provider loops (thus does not violate the Gao-
Rexford conditions [14]). Since the Chicken Gadget is
inherently asymmetrical, we need to show that the connect-
ing Chicken Gadget between every pair nodes (i, j) does
not create customer provider loops that violate GR1. First,
each individual Chicken Gadget has no customer-provider
loops. Thus, it remains to consider only customer-provider
loops involving interconnections between nodes i, j, pij in
different chicken gadgets. Since each pij only has two edges,
one of which is a peer-peer edge, it cannot be involved in
any customer-provider loops. This, we need only concern
ourselves with the customer-provider edges between i and j.
However, observe that for every two nodes i < j that appear
in a Chicken Gadget , node i is always a customer of node
j. Thus, the existence of a customer-provider loop implies
that there must be some nodes i 6= j such that both i > j
and i < j (—a contradiction!).
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Figure 24: States of the Transition Gadget .

The Transition Gadget shown in in Figure 24 has three
non-fixed nodes: the two selector nodes i, j, that are at-
tached to an k-Selector Gadget , and a selector-transition
node tij . In addition, k-Selector Gadget includes the the
new fixed nodes aij , bij , cij , eij , such that tij has lower AS
number than eij , and aij has lower AS number than bij .
Finally, there are three new customer trees. Override(i,j),
and Hold(xi,j), each wanting to reach destination dj , and
And(i,j), that wants to reach destination di. All destina-
tions, customer trees, and other fixed nodes except aij are
ON; only the fixed node aij is OFF.

The Transition Gadget guarantees the following.

Lemma K.6. When the k-Transition Gadget is at sta-
ble state i, the network evolves to stable state j within a
constant number of time steps.

Proof. We start by discussing the routes available for
each relevant flow of traffic in the Transition Gadget :

• And Traffic. Traffic from And(i,j) to di has a se-
cure provider route (And(i,j) ,eij , cij , di ) and another
route (And(i,j) ,tij , i, di ). Since tij has lower AS num-
ber than eij , the latter route is chosen iff it is secure,
i.e., both tij and i are ON. When the former route is
used, neither the selector-transition node nor the se-
lector node obtain any utility (since they are not on
the route). When the latter route is used, the selector-
transition node tij obtains 30mk-units of utility (since
it receives And traffic along a provider edge), and the
selector node i obtains no utility (since it receives the
And traffic from a provider).

• Override Traffic. Traffic from Override(i,j) to dj has
provider route (Override(i,j), j, dj) and (Override(i,j), tij , dj).
Since j has lower AS number than tij , the latter route is
chosen by Override(i,j) iff selector-transition node tij is
ON and selector node j is OFF. When the former route
is used, selector node j obtains 10mk units of utility;
note that this is approximately an order of magnitude
more utility than j can ever hope to obtain from the
Selector Gadget (losing this utility will cause j to
override the Selector Gadget ). Similarly, tij re-
ceives utility 10mk when the latter route is chosen.

• Hold Traffic. Traffic from Hold(i,j) to tij has provider
route (Hold(i,j), aij , tij , dj) and (Hold(i,j), bij , tij , dj).
Since aij has lower AS number than bij , the latter route
is chosen by Hold(i,j) iff it is secure, i.e., the selector-
transition node tij is ON. When the former route is
used, selector-transition node tij obtains 20mk units of
utility, since it receives Hold traffic from its customer.
When the latter route is used, tij receives this traffic
from its peer, and thus obtains no utility.

Notice also that the utility of selector node i is not affected
by any of the customer tress in the Transition Gadget
, so that its behavior will be completely dominated by the
Selector Gadget . Meanwhile, selector node j is only
affected by the Transition Gadget when j loses Override
traffic (when j is OFF and tij is ON). Since the utility ob-
tained from Override traffic dominates the utility obtained
from the Selector Gadget , j has an incentive to turn ON
regardless of the state of the Selector Gadget . Finally,
tij ’s behavior is completely determined by the state of the
Transition Gadget .



The idea of the Transition Gadget , is that if the Se-
lector Gadget is set to a particular state (i.e., state i),
the selector-transition node turns ON, and causes a reset
of the Selector Gadget . We start with the following
proposition, that argues that the Transition Gadget will
not turn on “by mistake”.

Proposition K.7. Node tij turns ON iff node i is ON.

Proof. This follows straight-forwardly from our discus-
sion of routes and utilities above. If node i is ON, tij
turns ON to attract the And traffic for 30mk-units of utility,
which exceed the utility tij could obtain by remaining OFF
(namely, 20mk-units of utility from the Hold traffic). For
the other direction, suppose node i is OFF, and so tij can-
not attract the And traffic. Then, if tij is OFF, it obtains
20mk-units of utility from the Hold traffic, which exceeds
the maximum utility tij can obtain by turning ON (namely,
10mk of utility from the Override traffic).

Next, we show how the Transition Gadget progresses
from a state where only i is ON, to a state where only j is
ON. To do this, we present Figure 24, which depicts each of
the five phases of the Transition Gadget , and Table 6
presents the utility of each non-fixed node in each phase of
the Transition Gadget . Figure 24 and Table 6 follow
from the discussion of routes and utility above, so we omit a
detailed arguments of their correctness. Note that the node
that wishes to change its action in each stage is shown in
bold in Table 6.

Transition Gadget is a three-(non-fixed)-node gadget,
and so the proof follows by from arguing the node that moves
after each phase has an incentive to change its action, and
turn ON or OFF, while the node that does not move has no
such incentive. (Note that the former holds also by inspec-
tion of Table 6). We do this now:

24(a) Initial (ON,OFF,OFF) stage. Here tij wishes to change
its action; by turning ON, it can attract both the And
and the Override traffic, which is of higher utility than
the Hold traffic it attracts by staying OFF. Also, j is
does not wish to change its action; this follows from
the fact that j attracts Override traffic regardless of its
state; thus, the properties of the Selector Gadget
maintain j in the OFF state.x

24(b) (ON,OFF,ON) stage. Here j is wishes to change its
action; in this state it has lost the Override traffic; thus
j wants to turn ON to get it back (even though doing
this will take the Selector Gadget out of a selector
stable state). Also, i does not wish to change its action;
since i’s utility is not affected by the trafxfic flows in the
Transition Gadget , the properties of the Selector
Gadget maintain i in the ON state.

24(c) (ON,ON,ON) stage. Here i wishes to change its ac-
tion; i’s behavior is completely determined by the Se-
lector Gadget , which is currently not in a stable
state. From the properties of the Selector Gadget ,
i has an incentive to turn OFF. Also, tij does not wish
to change its action; even though tij is only attracting
And traffic (thus obtaining 30mk-units of utility), this
is still more than the utility it would obtain by turning
OFF and attracting only Hold traffic (for 20mk-units
of utility).
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Figure 25: Transition Gadget between nodes i, j of
Selector Gadget

24(c) (OFF,ON,ON) stage. Here tij wishes to change its
action; tij no longer attracts the And traffic (since i is
off) and it is losing the Hold traffic as well (because tij
is ON). Thus, tij has an incentive to turn OFF in order
to attract the Hold traffic. Also, j is does not wis to
change its action; it is in a selector stable state and is
attracting Override traffic as well.

24(e) (OFF,ON,ON) stage. We have finally arrived at a
stable state; the Selector Gadget is in the selector
stable state j, so i is does not wish to change its ac-
tion. Furthermore, j is attracting its Override traffic,
so j is does not wish to change its action as well. Fi-
nally, tij does not wish to change its action; by staying
OFF, tij can attract only Hold traffic (thus obtaining
20mk-units of utility), but this is still more than the
utility it would obtain by turning ON and attracting
only Override traffic (for only 10mk-units of utility).

We can now derive the following proposition from the dis-
cussion above.

Proposition K.8. If selector-transition node tij turns ON,
then the r-selector is set to state j.

Combining Propositions K.7-K.8, it is clear that if i 6= j,
the i→ æ r-Transition Gadget can reset the r-Selector
Gadget from state i to state j.

K.8 Combining Multiple TRANSITION Gad-
gets for a Given SELECTOR.

Thus far, we have argued only about a single i→ j Tran-
sition Gadget (for given i, j); we now consider arbitrarily
resetting the Selector Gadget from any state to any other
state. We present the following proposition.

Proposition K.9. If we attach a single k-Transition
Gadget from each node i ∈ {1, . . . , k} to each other node
j 6= i in an k-Selector Gadget , then each i→ j Tran-
sition Gadget can move the Selector Gadget from se-
lector stable state i to the selector stable state j.

Proof. Figure 25 shows how the Transition Gadget
is attached to arbitrary nodes i and j of the Selector Gad-
get . It is easy to see that adding Transition Gadget to
the Selector Gadget does not introduce any customer-
provider loops; individual Transition Gadget have no



Figure state utility of i utility of j utility of tij
i j tij Selector Selector Transition Transition

Fig. 24(a) ON OFF OFF m(k + i− 2) + ε m(k + j − 2) +10mk 20mk
Fig. 24(b) ON OFF ON m(k + i− 2) + ε m(k + j − 2) +0 40mk
Fig. 24(c) ON ON ON m(k + i− 3) + ε m(k + j − 3) + ε +10mk 30mk
Fig. 24(d) OFF ON ON m(k + i− 2) m(k + j − 2) + ε +10mk 0
Fig. 24(e) OFF ON OFF m(k + i− 2) m(k + j − 2) + ε +10mk 20mk

Table 6: States of the Transition Gadget .
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k-Transition Gadget

customer-provider loops, and since each Transition Gad-
get has its own independent selector-transition node, that
may only be directly connected a single selector node (i.e.,
node i in Figure 25), adding multiple Transition Gad-
get to a Selector Gadget cannot introduce customer-
provider loops. Suppose the selector is set to state i. Each
selector node is attached to its own, independent selector-
transition node, and thus by Proposition K.7, only the selector-
transition node attached to node i will turn ON. Finally, by
Proposition K.8, we have that the Selector Gadget will
be reset to state ji.

K.9 Triple Transition Gadget .
The final element of our reduction requires us to be able

to simulatively reset three independent Selector Gadget
from state 〈i1, i2, i3〉 to states 〈j1, j2, j3〉.

The Triple Transition Gadget ‘AND’s together three
Transition Gadget , using a similar trick to that used in
the And Gadget . The idea is to connect three Selector
Gadget to a single selector-transition node, and to ensure
that the selector-transition node turns ON (i.e., moves from
the first phase of the Transition Gadget ,(ON,OFF,OFF)
in Figure 24(a)), to the second stage ((ON,OFF,ON) in Fig-
ure 24(c))) iff all three of the Selector Gadget are set to
the correct states 〈i1, i2, i3〉.

K.9.1 Constructing the Triple Transition Gadget .
Figure 27 presents an overview of the Triple Transition

Gadget . We have three independent Selector Gad-
get that are not considered part of the Triple Transi-
tion Gadget ; a k1-Selector Gadget , a k2-Selector
Gadget , and a k3-Selector Gadget . Each Selector
Gadget has its respective selector nodes, i1, j1, i2, j2, i3, j3.
The selector nodes associated with each Selector Gad-
get are connected to the single selector-transition node, tp
via a modified Transition Gadget , which we call a 1

3
k-

Transition Gadget and depict in Figure 26. As shown
in Figure 26, the 1

3
k-Transition Gadget is identical to

Transition Gadget Schematic
– 1/3 transition gadget has AND converted to 140k ε k=max(k1,k2,k3)
TOTAL HOLD-BIG = –300kε (traffic tp gets by turning on alone, without i1,i2,i3)TOTAL HOLD BIG  300kε (traffic tp gets by turning on alone, without i1,i2,i3)
Only 1 on:  tp gets (140-300)k ε;  2 guys on: tp gets (280-300)kε; 4 guys on: tp gets(420-300)kε; 
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Figure 27: Schematic of Triple Transition Gadget

the Transition Gadget , with the modification that the
And traffic from a single 1

3
k-Transition Gadget is not

sufficient to turn ON the selector-transition node tp.
As usual, we use standard tricks to ensure that intercon-

necting the gadgets this way does not introduce new traffic
flows through the gadgets that affect nodes’ actions. Notice
also that interconnecting the gadgets this way cannot intro-
duce any new customer-provider loops; this follows from the
fact that the individual gadgets have no customer provider
loops, and are interconnected solely through the selector-
transition node tp (see Figure 27), and the selector-transition
node is always a provider or a peer of every node in the gad-
get (see Figure 26).

K.9.2 Why it works.
The key to why the gadget works lies in the fact that the

And traffic from each 1
3
k-Transition Gadget now pro-

vides only 12mk-units of utility, so that all three selector
nodes i1, i2, i3 must be ON before the selector-transition
node t(i1, i2, i3) turns ON:

Lemma K.10. Node t(i1, i2, i3) turns ON iff nodes i1, i2, i3
are all ON.

Proof. Recall that traffic And(i1, j1)provides utility to
the transition node t(i1, i2, i3) iff both i1 and t(i1, i2, i3) are
on. We start with the reverse direction. If only two of selec-
tor nodes (i1, i2, i3) are ON, the selector-transition node can
receive at most (12mk+ 10mk) + (12mk+ 10mk) + 10mk =
54mk-units of utility by turning ON (attracting And traf-
fic from two 1

3
k-Transition Gadget , and Override traffic

from each of the three 1
3
k-Transition Gadget ). Mean-

while, if the tp is OFF, it obtains least 20mk ∗ 3 = 60mk-
units of utility be attracting Hold traffic from each of the 1

3
k-

Transition Gadget , so in this case the selector-transition
node has an incentive to remain OFF. For the forward di-
rection, if all three selector nodes (i1, i2, i3) are ON, the
selector-transition node earns utility (12mk + 10mk) ∗ 3 =



66mk by turning ON, which exceeds the 60mk-units of util-
ity the selector-transition node could obtain by remaining
OFF.

An argument similar to that of Proposition K.8 gives us:

Lemma K.11. If i1 6= j1, i2 6= j2, i3 6= j3, then if t(i1, i2, i3)
turns ON, then nodes j1, j2, j3 all turn ON.

K.9.3 What happens if i` = j`?
Our reduction may also require that we reset the three Se-

lector Gadget from states 〈i1, i2, i3〉 to state 〈j1, j2, j3〉,
where some i` = j`. Modifying the Triple Transition
Gadget to do this is simple; we need only remove the Over-
ride traffic from the appropriate 1

3
k-Transition Gadget ,

and reduce the Hold traffic to 10mk (see Figure 26).It is not
hard to see that this will ensure that the selector-transition
node turns ON iff the three Selector Gadget are set to
〈i1, i2, i3〉 (i.e., analogous to Lemma K.10), without requir-
ing a reset of the `th Selector Gadget gadget. Thus, by
applying this modification to the Triple Transition Gad-
get whenever some i` = j`, we have the following, stronger
version of Lemma K.11:

Lemma K.12. If t(i1, i2, i3) turns ON, then nodes j1, j2, j3
all turn ON.

K.9.4 Multiple Triple Transition Gadget .
Finally, we argue that we can have multiple Triple Tran-

sition Gadget that can simultaneously reset three selectors
from any state to any other state.

Lemma K.13. Suppose we have at least three Selector
Gadget , and consider triplets of selector nodes (i1, i2, i3),
where each selector node belongs to a different k`-Selector
Gadget , and k` ≤ k. Then, for every such triplet of selec-
tor node (i1, i2, i3), we can attach a single k-Triple Tran-
sition Gadget that moves each of the three k`-Selector
Gadget from state i` to state j`.

Proof. Each triplet of selector nodes is attached to a
unique selector-transition node t(i1, i2, i3), and we use stan-
dard tricks to ensure that non-designated does not flow into
the gadgets and affect nodes’ decisions. Thus, we can apply
Lemma K.10 and Lemma K.12 in argument that is analo-
gous to the one used to prove Proposition K.9.

K.10 Concluding the proof.
We are now ready to present our reduction. Given an in-

put to STATIC-MODE, we construct a network in S*BGP
ADOPTION. Recall that the set of nodes in S*BGP ADOP-
TION contains of r head nodes, q machine-state nodes, and
k cell clusters, each containing γ symbol nodes. We con-
struct a k-Selector Gadget for the head nodes, a q-Selector
Gadget for the machine-nodes, a γ-Selector Gadget for
the symbol nodes in each of the cell clusters. Intuitively, this
guarantees that, throughout the evolution of the network, in
each of these subsets of nodes, only a single node is ON.

We construct, for every cell cluster Ci, a Triple Tran-
sition Gadget that connects the Selector Gadget for
the head nodes, the Selector Gadget for the machine-
state nodes and the selector for the specific cell cluster Ci.
The Triple Transition Gadget guarantees the transition
between triplets of stable states for the selectors as follows.

When the head node hi (that is, the head node that corre-
sponds to the cell cluster Ci) is ON, a machine-state node
sβ is ON, and a symbol node (in Ci) gß,σ is ON, the Triple
Transition Gadget makes the three Selector Gadget
transition to a state where the head node ON, the machine-
state node ON, and the symbol node in Ci ON are the nodes
corresponding to the outcome of δ(i, β, σ) in the Turing ma-
chine M . Thus, the different Triple Transition Gadget
capture the transitions prescribed by the Turing machine’s
transition function.

Recall that a state of the network in S*BGP ADOPTION
is“clean”if only a single head node h is using S-BGP (is ON),
only a single machine-state node s is ON, and only a single
node gi in every cell-cluster Ci is ON. Observe that every
clean state in S*BGP ADOPTION captures a configuration
of the Turing machine M is STATIC-MODE (in which the
index of the single head node using S-BGP is the location of
M ’s head, and so on). We make the following observation
that immediately follows from our construction:

Observation K.14. A configuration c in STATIC-MODE
is static iff the clean state of the network in S*BGP ADOPT
that corresponds to c is stable.

We set the initial state of the network in S*BGP ADOP-
TION to be the clean state in which the single head node ON
is h1; the single state node ON is the node that represents
q0; and in each cell cluster Ci, the single symbol node ON is
gi,xi . Observe that this clean state in S*BGP ADOPTION
captures the initial configuration of M (the head is pointing
to the first cell, that contains x1, and the machine-state is
the initial machine-state q0).

The correctness of the reduction follows from the following
observation about our construction.

Observation K.15. From every clean state α in S*BGP
ADOPTION that represents a configuration c = (h, s, g)
in STATIC-MODE, the network evolves (within a constant
number of time steps) to another clean state that represents
the configuration that immediately follows c in STATIC-
MODE (after applying δ).

Thus, we show that when starting at an initial state of
the network as described above, the network evolution es-
sentially mimics the execution of M for the input string x.
Theorem K.1 follows.


