
Modeling on Quicksand

Dealing with the Scarcity of Ground Truth in Interdomain Routing Data

Phillipa Gill
University of Toronto

Michael Schapira
Hebrew University of

Jerusalem and Google NYC

Sharon Goldberg
Boston University

Abstract
Researchers studying the interdomain routing system, its
properties and new protocols, face many challenges in per-
forming realistic evaluations and simulations. Modeling de-
cisions with respect to AS-level topology, routing policies
and traffic matrices are complicated by a scarcity of ground
truth for each of these components. Moreover, scalability is-
sues arise when attempting to simulate over large (although
still incomplete) empirically-derived AS-level topologies. In
this paper, we discuss our approach for analyzing the robust-
ness of our results to incomplete empirical data. We do this
by (1) developing fast simulation algorithms that enable us
to (2) running multiple simulations with varied parameters
that test the sensitivity of our research results.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms: Algorithms, Experimentation.

1. INTRODUCTION
In measurement-based networking research, we often find

that “what we can measure in an Internet-like environment
is typically not the same as what we really want to mea-
sure” [30]. This is especially true in the context of interdo-
main routing. Indeed, many papers have exposed the myriad
issues at play when studying the interdomain routing sys-
tem e.g., [18, 28]; while these works provide an important
critique of existing data sets and techniques, they tend to
highlight limitations rather than offer solutions. Here we
take a more constructive approach; we use our work on the
deployment dynamics of secure interdomain routing proto-
cols (S*BGP protocols) [10] as a case study, and show how
we demonstrated the robustness of the results we obtained
via modeling and simulation over imperfect empirical data.

Data imperfections mean our approach is useful for iden-
tifying trends, rather than providing accurate predictions.
Thus, demonstrating robustness meant showing that the
trends we identified were insensitive to changes in parame-
ters that are known to be incompletely captured by the data.
Thus, this paper makes two contributions; first, we present
our approach for performing robustness analysis, and sec-
ond, we present the fast simulation algorithms that enabled
the multiple simulations we needed for robustness analysis.

1.1 Simulation approaches.
A number of studies have relied on modeling and simula-

tion of the interdomain routing system, ranging from work
on network reliability [15, 32], to BGP convergence [26], to

geopolitical control of network traffic [17], to secure rout-
ing [2,3, 10]. Researchers commonly model the interdomain
routing system as a graph G = (V,E) where the vertices
are autonomous systems (ASes), and edges indicate phys-
ical connections between ASes [13]. Simulations are used
to determine how ASes select routes for traffic using BGP
(the Border Gateway Protocol, the de facto routing proto-
col in the global Internet). Because the AS graph is quite
large (currently, it is thought to contain 36K vertices, and
130K edges [5,6]), algorithms that run over the full AS graph
quickly become computationally intensive. Thus, in design-
ing simulations, researchers must contend with (a) the fact
the interdomain routing system does not use shortest-path
routing, and (b) scalability issues. Below we discuss a few
approaches for overcoming these challenges.

Custom BGP simulators. Because ASes are controlled
by autonomous, economically-motivated entities, their rout-
ing decisions often incorporate considerations (e.g., economics,
geography) beyond path length. Thus, standard shortest-
path graph algorithms do not work ‘out of the box’; instead,
researchers have developed custom simulators that compute
paths based on routing policy decisions of individual ASes.

Some BGP simulators are designed to allow network op-
erators to answer “what-if” questions about routing con-
figurations within a single AS [8, 27], or simulate BGP at
the packet level [7, 26]. The faithful modeling provided by
these simulators comes at a high computational cost, mak-
ing them ill-suited to simulations over a large number of
ASes. In contrast, BSIM [16] and BGPSIM [31] abstract
away intradomain and packet-level considerations in favor of
modeling BGP on an AS graph. While considerably more
scalable than previous work, the computational overhead
of these simulators remains high because they use discrete
event simulation. As such, BGPSIM [31] must be run on
a supercomputer, while BSIM [16] can only run a limited
number of simulations over the entire AS graph.

Scaling down the AS-level topology. Alternatively,
scalability issues may be mitigated by scaling down the AS
graph itself. For example, one can use AS-graph generation
tools like GT-ITM [34], BRITE [22], or Inet [14] to create
a smaller synthetic AS graph, or use the techniques in [19]
to scale down an empirically-derived AS graph (e.g., as pro-
vided by CAIDA [6] or UCLA [5]) to a smaller set of ASes.

.
However, these approaches come with the risk that scal-

ing has modified or even destroyed important graph proper-
ties. The authors of [19] show that their scaling techniques
preserve several important graph-theoretic properties (e.g.,

degree distribution, spectral properties). However, the AS
graph contains structures which may not be captured by
matching standard graph-theoretic properties. For example,
in [10] our results relied heavily on the prevalence of a sub-
graph (the “Diamond” in Figure 5 of [10]) that is difficult
to describe using standard properties. Moreover, the risk
is compounded because a priori it not always clear which
graph properties will be important for a particular study;
this often becomes clear only after the study is complete.

Our simulator. To avoid potential inaccuracies that
might result from scaling down the AS-level topology, we
advocate running simulations on full empirical AS graphs
(e.g., [5, 6]). To support running repeated simulations over
the full AS graph, we developed lightweight simulation al-
gorithms [10, 12] and parallelized them across a compute
cluster running DryadLINQ [33]. Our approach drastically
reduces computational overhead by algorithmically comput-
ing paths chosen by BGP. Moreover, to provide the speedup
required to run simulations over the entire AS graph, our
simulator (a) abstracts away intradomain details, (b) as-
sumes that all ASes use the routing policies proposed in [9].

1.2 Scarcity of ground truth.
Studies of interdomain routing require models of the AS-

level topology, routing policies, and sometimes also traf-
fic matrices. Unfortunately, ground-truth data is scarce.
Empirically-derived AS level topologies [5, 6] are known to
be incomplete [23]. Furthermore, inter-domain routing poli-
cies are often kept private and are known to differ across
ISPs. (However, models of these routing policies have been
developed [9] and are widely used by researchers). Finally,
data on inter-domain traffic flows [4] remains elusive (e.g.,
because traffic volumes differ between vantage points in the
network) and ever-changing (e.g., the emergence of “hyper
giant” ASes that source large volumes of traffic [20]).

While models and inferred AS level topologies serve as a
useful starting point for studying the inter-domain routing
system, they can only take us so far. In the remainder of
the paper, we discuss the robustness analysis we used in sup-
port of our results in [10]. We start with a model of BGP
(Section 2) and then discuss the scaling challenges faced in
our simulation studies (Section 3) and the algorithms and
techniques we use to overcome them (Sections 4 - 5). We
then discuss (Section 6) how these algorithms enabled us to
affirmatively answer the question: “Do the available mea-
surements and their analysis and modeling efforts support
the claims that are being made [in the paper at hand]” [18].

2. MODELING BGP
We now overview aspects of the models that we used

in [10, 12] (and that have appeared in many other papers,
see references in [12]). Full details are in the original papers.

2.1 AS graph and entities.
The AS graph. The AS-level topology of the Internet
is modeled as graph G = (V,E) where vertices represent
ASes and edges represent connections between them. Each
edge is annotated with the standard model for business re-
lationships in the Internet [9]: customer-provider, where the
customer pays the provider and peer-to-peer, where two ASes
agree to transit each other’s traffic at no cost. We distin-
guish three types of ASes:

Content providers (CPs) are ASes that generate revenue
by providing popular content to as many users as possible.

Stubs are ASes that have no customers of their own and
are not CPs.

ISPs. The remaining ASes in the graph (that are not
stubs or CPs) are ISPs. They earn revenue by transiting
Internet traffic.

2.2 Routing policies.
ASes design routing policies subject to their own individ-

ual cost and performance constraints. Since routing poli-
cies are considered sensitive information, we use a standard
model of routing policies based on [9,13], and used in [10,12]
and many other works.

We follow [13] by assuming that each AS a computes paths
to a given destination AS d based a ranking on outgoing
paths, and an export policy specifying the set of neighbors
to which a given path should be announced.

Rankings. AS a selects a path to d from the set of paths
it learns from its neighbors as follows:

LP Local Preference. Prefer outgoing paths where the
next hop is a customer over outgoing paths where the
next hop is a peer over paths where the next hop is a
provider.

SP Shortest Paths. Among paths with highest local
preference, prefer shortest paths (i.e., fewest AS hops).

TB Tie Break. If there are multiple such paths, node a
breaks ties: if b is the next hop on the path, choose
the path where hash, H(a, b) is the lowest.1

This standard model of local preference [9] captures the idea
that an AS has incentives to prefer routing through a cus-
tomer (that pays it) over a peer (no money is exchanged)
over a provider (that it must pay).

Export Policies. This standard model of export policies
captures the idea that an AS should only be willing to load
its network with transit traffic if its customer pays it to do
so [9]:

GR2 AS b announces a path via AS c to AS a iff at least
one of a and c are customers of b.

2.3 BGP, convergence, and routing trees.
In BGP, each AS uses its ranking function to select a sin-

gle path from the set of paths it learns from its neighbors,
and then announces this path to the set of neighbors dic-
tated by its export policy. Because each AS may only select
paths from the set of paths learned from neighbors, the set
of selected routes induces a tree rooted at the destination
d, which we refer to as the routing tree to destination AS
d, i.e., T (d), and Tn(d) as the subtree of this routing tree
rooted at node n. Moreover, we do not focus on BGP con-
vergence dynamics (as in e.g., [13]); instead we consider only
the routing trees created when each AS no longer wants to
change its route. Indeed, in [11] we prove that BGP will
converge to a single stable routing tree if every AS uses the
routing policies in Section 2.2; moreover, the proof holds
even if the AS graph has cycles of customer-provider edges.
1In practice, this is done using the distance between routers
and router IDs. Since we do not incorporate this information
in our model we use a randomized tie break which prevents
certain ASes from “always winning”.

3. ALGORITHMIC CHALLENGES
To establish the robustness of our results, our approach [10,

12] involves running repeated simulations over the entire
36K-node empirical AS graph [5, 6]. Of course, running re-
peated simulations at this scale takes time. While it is quite
feasible to run simulation algorithms that take time O(|V |2)
(e.g., (36K)2 operations that take 1µs each runs in ∼ 20
minutes), once we start getting into the realm of O(|V |3),
simulation very quickly approaches the border of infeasibil-
ity (e.g., (36K)3 1µs-operations takes ∼ 17 months!). Thus,
when working with O(|V |3) simulations, optimizing the con-
stants in the O-notation becomes crucial; a 1000x speedup
can be the difference between reporting on the results of a
single simulation with a fixed set of parameters, and estab-
lishing the robustness of these results by performing 1000
different simulations with varied parameters.

In the following two sections, we discuss the algorithms
that formed the basis of our simulations in [10,12], and show
how we used amortization and parallelization to obtain a sig-
nificant constant speedup that made our simulations feasible
even when they crossed the O(|V |3) barrier.

4. ROUTING TREE ALGORITHM
At the core of our simulation methodology is a routing tree

algorithm that computes the best available paths for each
source AS to a given destination AS d, i.e., T (d) (once BGP
has converged so that no AS wishes to change its route).
The algorithm assumes that ASes use the routing policies
of Section 2.2, and takes time O(|V |2) to compute paths
between all source-destination pairs, which is significantly
faster than the O(|V |3) algorithm proposed in [32].

The algorithm is a specialized three-stage breadth-first
search (BFS) on the AS graph; each stage of the BFS com-
putes shortest paths of a particular type (i.e., customer /
peer/provider). We explain the algorithm using Figure 1:

1st stage: Customer paths. We construct a partial routing
tree by performing a BFS ‘upwards’ from the ‘root’ node d,
using only customer-to-provider edges. (In Figure 1, we add
edges (d, 1), (d, 2), (d, 5), (2, 6), and (5, 6)).

2nd stage: Peer paths. Next, we use only single peer-to-
peer edges to connect new ASes to the ASes already added
to the partial routing tree in the 1st stage of the algorithm.
(In Figure 1, this amounts to adding edges (1, 4) and (1, 3)
but not (1, 2) or (4, 9)).

3rd stage: Provider paths and Tiebreak. Next, we traverse
the existing partial routing tree with a BFS, and add new
ASes to the tree using provider-to-customer edges. (In Fig-
ure 1, this amounts to adding edges (1, 9), (4, 8) and finally
(3, 8)). Each source AS that is traversed now has a set of
equally-good paths (in terms of LP and SP) to the desti-
nation. Thus, for each source AS, we sort its set of paths
according to TB and determine its chosen path to d.

Running time. Consider a AS graph G(V,E) where
Ecp ⊆ E is the subset of customer-provider edges. The 1st

and 3rd stages visit customer-provider edges only (giving a
worst-case running time of |V | + |Ecp| each), while the 2nd

stage visits peer-peer edges only (|V |+ |E\Ecp|). Thus, the
full algorithm has worst-case running time of 3|V |+ 2|E| to
compute paths to a single destination. Since the AS graph
is sparse, with |E| ≈ 4|V |, we can compute paths for all
source-destination pairs paths in time 11|V |2.

1
d

2

3

4

5 6

8

9

1
st Stage

3
 rd

Stage

2
 nd

Stage

Figure 1: Routing tree algorithm.

5. ALGORITHMS: S*BGP DEPLOYMENT
In [12], we repeatedly computed paths from all sources

to a single destination d, keeping us firmly in the realm
of O(|V |2). However, in our study of S*BGP deployment
dynamics [10], we hit the O(|V |3) barrier. We now show
how amortization and parallelization made our study [10]
feasible, by affording us a ∼ 1000x constant speedup.

5.1 The setting.
In [10], we assumed each AS could be ‘secure’ (i.e., deploy

S*BGP) or ‘insecure’, where the state S is the set of secure
ASes in the AS graph. Our goal was to study the evolu-
tion of S over time. We assumed that (a) an ISP n will
become secure if doing so allows n to attract more traffic
(i.e., increase the size of Tn(d)) and (b) secure ASes prefer
to send their traffic via secure routes. As such, we modified
the routing policies of Section 2.2 with the following step,
that occurs between the SP and TB steps:

SecP Secure Paths. If there are multiple such paths,
and node a is secure, then prefer secure paths (i.e.,
paths on which every node is secure).

Our simulation was initialized with a state So, which models
a set of early adopter ASes that are the first to become se-
cure. In each iteration with state S, (a) stubs deploy S*BGP
iff one of their providers deploys S*BGP, and (b) each ISP
n decides to deploy S*BGP iff n has ‘utility’, i.e.,∑

d

|Tn(d)|

(Tn(d) defined in Section 2.3) that is higher, by a constant
factor θ, in state (¬Sn, S−n) (the state S with ISP n reverses
its deployment decision) relative to the original state S.

5.2 Overview of our algorithmic approach.
Scaling challenges. In [10], the combination of the dy-
namic state S with the addition of SecP to the routing pol-
icy means that paths can change in each iteration, and more-
over we need to compute paths in state (¬Sn, S−n) for each
ISP in each iteration. Since there are 15%·|V | ISPs in the AS
graph, the bottom line is that in each iteration we need com-
pute all-pairs paths 15%|V | times. While the routing tree
algorithm can be used for the all-pairs path computation,
this gives a running time of ∼ 0.15|V | · 11|V |2 = 1.65|V |3,
which quickly becomes intractable; if the routing tree al-
gorithm for a single destination takes 10 ms, running it
15%|V |2 = 194M times takes 22 days for a single iteration!

Thus, we now show how we achieved the 1000x constant
speedup that made our simulations feasible:

Amortization. Instead of repeating the routing tree algo-
rithm 15%|V |2 in each iteration, our approach was to run the

(relatively-slow) routing tree algorithm once, and save the
intermediate results; we then use these intermediate results
as input to a faster algorithm that we run repeatedly in each
iteration, thus amortizing our computation. In Section 5.3
we show how our faster algorithm exploits the sparsity of
the AS graph to run in average time 1.18|V | (cf., the rout-
ing tree algorithm’s 11|V | worst-case running time). More
concretely, our C# routing tree algorithm implementation
ran in ≈ 10ms, while our faster algorithm ran in ≈ 2ms.

Parallelization. Even with the amortized algorithm, we
still needed parallelization to run our simulations in a rea-
sonable amount of time; notice that with a 2 ms amortized
algorithm, a single iteration would take 0.15|V |2 · 2ms =
4 days! Instead, we leverage the fact that all our algo-
rithms are independent across destinations, making them
particularly amenable to Map-Reduce style parallelization.
Thus, we parallelized (i.e., mapped) our computation of the
subtrees T (d, S) for each state (¬Sn, S−n) across destina-
tions d. We then aggregated (i.e., reduced) them across
the states (¬Sn, S−n) to obtain utility, i.e.,

∑
d Tn(d) in

state (¬Sn, S−n). We ran our code on a shared cluster of
about 200 machines running DryadLINQ [33]; by paralleliz-
ing across destinations, each machine was roughly assigned
computation for about |V |/200 = 150 destinations (but
see [33] for details on how to implement this in DryadLINQ).

Total running time. The combination of the 5x speedup
from amortization and the ∼ 200x speedup from paralleliza-
tion gives running time of about 0.15 · 1.18/200 · |V |3 =

1
1100
|V |3, giving us a ∼ 1000x constant speedup. Indeed,

after a few more optimizations (discussed in our report [11])
a single iteration could run in 10-20 minutes.

5.3 Speedups via amortization.
The following observation allowed us to use amortization:

Observation 5.1. If ASes use the routing policies of Sec-
tion 2.2, the length and type (i.e., customer, peer, provider)
of any node i’s path to a destination d is independent of the
state S of the AS graph.

(Details in our report [11].) For each destination AS d, we do
the following. First, we run the full routing tree algorithm
only once to precompute the set of equally-good (in terms of
type and length) paths from each source AS n to destination
AS d. Then, for each of the 15%|V | states (¬Sn, S−n) in each
iteration, we repeat the following: given the tiebreak sets,
we compute n’s chosen path to d according the state, SecP,
and TB (Section 2.2, 5.1).

The following values are precomputed from the routing
tree algorithm for each destination d:

BucketTable: Table 1 is a buckettable for the AS graph
in Figure 1 with d as the destination. For each AS n, a buck-
ettable stores the (1) the path type, i.e., the relationship
between n and the next hop on n’s best path to d, (i.e., the
decision in the LP step) (2) the length of n’s best path to d
(i.e., the decision in the SP step). Each AS n is placed in
a cell of the buckettable according to its best path length
(row) and best path type (column), e.g., AS 8 with a three
hop path to d through a provider is in cell (3, provider).

TieBreakSet: We have a tiebreakset for each source
AS n that stores the set of neighbors that offer n equally
good paths to d according to LP and SP. The ASes in
tiebreakset are sorted by their ranking according to TB.

Table 1: BucketTable for routing tree in Figure 1.
Row Cust. Peer Prov.

0 d - -
1 1, 2, 5 - -
2 6 3, 4 9
3 - - 8

For example, tiebreakset(6, d) = {2, 5} because according
to LP and SP, both AS 2 and AS 5 offer AS 6 equally good
paths to d (both are 2-hop paths where the next hop is a
customer); AS 2 is stored first because it wins the TB step.

Amortized routing tree algorithm. This algo-
rithm computes the routing tree for a given destination
d and state S using the precomputed buckettable and
tiebreaksets associated with d. Observe that every node
in AS n’s tiebreak set must have a path to d that is exactly
one-hop shorter than the path that AS n has to d. Thus,
we process each node n’s routing decision in ascending or-
der of path length, starting with the destination d. To do
this, we start at the 0th row of the buckettable (which
can contain only the destination d) and walk down the rows
buckettable, processing each node n in the row as follows:

• If n is secure in state S and there are nodes in i’s
tiebreak set with a secure path to d, then n chooses a
path through through first node in the tiebreakset
that offers n a secure path. AS n is marked as using a
secure path to d.

• Otherwise, n chooses a path through the first node
in its the tiebreakset and n is marked as using an
insecure path to d.

The average running time of the amortized routing tree algo-
rithm is t|V | for a single destination, where t is the average
size of the tiebreakset in the AS graph. Because the AS
graph is quite sparse, it turns out that t = 1.18, which gives
us up to a 6x speedup over the 11|V | routing tree algorithm.

6. ROBUSTNESS: S*BGP DEPLOYMENT
Our fast simulation algorithms allowed us to analyze the

robustness and sensitivity of our results in [10], by perform-
ing repeated simulations with varied parameters. Guided by
works like [18, 28], we had a good sense for where the gaps
in our empirical data lie. Thus, we parameterized the gaps
in our data, and then ran multiple simulations with varied
parameters to ensure that our results hold within a “certain
radius” of the ground truth.

We studied sensitivity to incompleteness in (1) empiri-
cal AS graphs [1, 5], and (2) interdomain traffic volumes.
We also contended with (3) scarcity of information about
our model-specific parameter, the deployment threshold θ
(see Section 5.1). Finally, while our algorithms are “hard-
coded” with the choice of routing policies (Section 2.2), we
were able to reason about robustness to choice of routing
policy without running additional simulations; see [11] for
discussion.

6.1 AS graph.
We ran our simulations over the UCLA AS graph from

Dec. 9, 2010 with additional IXP peering edges from [1], as
summarized as the UCLA+IXP graph in Table 2.

Incompleteness of AS-level topologies. A ground
truth for AS-level connectivity remains elusive [24], and is

especially problematic for large content providers that peer
with a large number of ISPs at lower levels of the topol-
ogy [1,24,28]. In [10], we singled out five of the largest CPs
according to recent research [21, 29]: Google (AS 15169),
Microsoft (AS 8075), Facebook (AS 32934), Akamai (AS
20940) and Limelight (AS 22822). Indeed, we observed that
average path lengths for these CPs in the UCLA+IXP graph
(according to the routing policies of Section 2.2) were around
2.7-3.5 hops, whereas the popular Knodes index [25] reports
them to be much lower, around 2.2-2.4 hops.

Creating the augmented graph. We developed an
augmented topology that focused on more accurate connec-
tivity for the five CPs. We leveraged recent research on
IXPs that indicates that many CPs are joining IXPs and
peering with a large fraction of the IXP members [1]. Start-
ing with the UCLA+IXP graph, we randomly connected the
five CPs to ASes for which they are colocated at IXPs (us-
ing [1]’s data on ASes’ presence at Internet Exchange Points
(IXPs)), until their average path length decreased to 2.1-
2.2 hops. Table 2 summarizes the resulting topology.

6.2 Traffic volumes.
Empirical data about Internet traffic volumes remains no-

toriously elusive. In our model, the utility of an ISP n is a
function of traffic it attracts (see Section 5.1), so ideally we
would weigh the contribution of an AS p that routes through
ISP n by the volume of traffic that it sends to each destina-
tion d reached through ISP n. However, while some models
of traffic volume exist (e.g., the gravity model [4], which
requires empirical data about every AS in the AS graph
(which is known for some ASes, but not all)), modeling the
interdomain traffic matrix is still a challenging problem. We
separate the problem into two parts:

1. Where traffic originates. It is well known that a
disproportionately large volume of Internet traffic originates
at a few CPs. As such, we singled out the same five large
CPs as before and assigned to each a wCP , so that the five
CPs originate an x fraction of Internet traffic (equally split
between them), with the remaining 1− x split between the
remaining ASes. Since we didn’t know x, we swept through
different values x = {10%, 20%, 33%, 50%} for the fraction
of traffic originated by the five CPs; recent work suggests a
reasonable range is x =10-20% [20,21].

2. Where traffic is sent. We use two different models
here. Our first model assumed that an AS spreads traf-
fic evenly across all possible destination ASes. Our second
model experiments with the idea of traffic locality, i.e., that
ASes are more likely to send more traffic to ASes closer to
them. To model this, each ASes sends traffic proportional
to 1/k to destination that are k hops away.

6.3 The deployment threshold.
Generally, we try to make our models as simple as possi-

ble, and avoid the introduction of multiple parameters that
are difficult to quantify using empirical data. In [10], we
needed to introduce a “deployment threshold” parameter θ
(Section 5.1), which captures the cost of upgrading a net-
work to S*BGP, relative the profits obtained from increases
in utility. Because data on θ remains elusive, we assumed
that each ISP uses the same threshold θ and swept through
different values of θ, to get a sense of how deployment will
progress with different deployment costs.

Table 2: Summary of AS graphs
Graph ASes peering customer-provider

UCLA+IXP [1,5] 36,964 58,829 72,848
Augmented graph 36,966 77,380 72,848

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

fr
ac

tio
n

of
 A

S
es

 th
at

 d
ep

lo
y

S
*B

G
P

● 5 CP 50%
5 CP 33%
5 CP 20%
5 CP 10%

top 5 50%
top 5 33%
top 5 20%
top 5 10%

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

fr
ac

tio
n

of
 A

S
es

 th
at

 d
ep

lo
y

S
*B

G
P

● 5 CP 50%
5 CP 33%
5 CP 20%
5 CP 10%

top 5 50%
top 5 33%
top 5 20%
top 5 10%

Figure 2: Results of having the 5 CPs and top 5 Tier
1s as early adopters for varying traffic volume and
deployment threshold θ in the UCLA+IXP (top)
and augmented (bottom) AS graphs.

6.4 Results.
We show a sample of how we determined which sets of

early adopter ASes (i.e., different initial states), maximize
the number of secure ASes.

Figure 2: We compare two early adopter sets: the five
CPs vs. top five ASes in terms of degree (i.e., the Tier
1s). We do this across all parameters discussed above: (a)
in the original UCLA+IXP graph vs. the augmented AS
graph (top figure vs. bottom), (b) different traffic volumes
(different curves), and (c) by sweeping through values of θ
(the x-axis). The y-axis shows the number of secure ASes
when the simulation terminates (higher values are better).

Impact of the deployment threshold. Unsurprisingly,
we find that our results are highly sensitive to the deploy-
ment threshold θ; the more expensive it is to deploy a secure
routing protocol, the fewer ASes are likely to deploy it.

Results are generally robust. Fixing a particular de-
ployment threshold, our results were virtually unaffected by

the spread of traffic across destinations (Figure 13 in [11]).
Moreover, our results suggest that the Tier 1s perform best
as early adopters for all parameters we considered, except for
in one particular case: simulations on the augmented graph
when the five content providers collectively source more than
20% of Internet traffic.

The scarcity of ground truth prevents us from concluding
that the Tier 1s are better as early adopters than the CPs;
instead, [10] suggests having an early adopter set consisting
of both the five CPs and the five Tier 1s.

7. CONCLUSIONS
Studying interdomain properties of the Internet requires

simulations where ground truth data is scarce. Understand-
ing the impact of imperfect data and modeling assumptions
on simulation results requires running large numbers of sim-
ulations. We make two contributions, presenting (1) scalable
algorithms for simulating BGP routing on full-scale empiri-
cal AS graphs, and (2) techniques for assessing the robust-
ness of results to gaps in empirical data, by running mul-
tiple simulations with different parameters. Our approach
provides a significant speedup by hard-coding our simulator
with the standard set of routing policies used in many BGP
studies [9]; future work involves developing algorithms that
support a wider range of routing policies.

Acknowledgments
We are extremely grateful to Mihai Budiu, Frank McSherry
and the rest of the group at Microsoft Research SVC for
helping us get our code running on DryadLINQ. We also
thank the Microsoft Research New England lab for support-
ing us on this project. This project was supported by NSF
Grant S-1017907 and a gift from Cisco.

8. REFERENCES
[1] B. Augustin, B. Krishnamurthy, and W. Willinger. IXPs:

Mapped? In IMC, 2009.

[2] I. Avramopoulos, M. Suchara, and J. Rexford. How small
groups can secure interdomain routing. Technical report,
Princeton University Comp. Sci., 2007.

[3] H. Chang, D. Dash, A. Perrig, and H. Zhang. Modeling
adoptability of secure BGP protocol. In Sigcomm, 2006.

[4] H. Chang, S. Jamin, Z. Mao, and W. Willinger. An
empirical approach to modeling inter-AS traffic matrices. In
IMC, 2005.

[5] Y.-J. Chi, R. Oliveira, and L. Zhang. Cyclops: The Internet
AS-level observatory. ACM SIGCOMM CCR, 2008.

[6] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker,
Y. Hyun, and kc claffy. AS relationships: Inference and
validation. ACM SIGCOMM Computer Communication
Review, JAN 2007.

[7] X. Dimitropoulos and G. Riley. Efficient large-scale BGP
simulations. Elsevier Computer Networks, Special Issue on
Network Modeling and Simulation, 50(12), 2006.

[8] N. Feamster, J. Winick, and J. Rexford. A model of BGP
routing for network engineering. In SIGMETRICS, 2004.

[9] L. Gao and J. Rexford. Stable Internet routing without
global coordination. Trans. on Networking, 2001.

[10] P. Gill, M. Schapira, and S. Goldberg. Let the market drive
deployment: A strategy for transitioning to BGP security.
In SIGCOMM, 2011.

[11] P. Gill, M. Schapira, and S. Goldberg. Let the market drive
deployment: A strategy for transitioning to BGP security.
Full version. Technical report, 2011.

[12] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford.
How secure are secure interdomain routing protocols. In
Sigcomm, 2010.

[13] T. Griffin, F. B. Shepherd, and G. Wilfong. The stable
paths problem and interdomain routing. Trans. on
Networking, 2002.

[14] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology
generator. Technical report, UM, 2000.

[15] J. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson,
and A. Venkataramani. Consensus routing: The Internet as
a distributed system. In NSDI, 2008.

[16] J. Karlin, S. Forrest, and J. Rexford. Autonomous security
for autonomous systems. Computer Networks, oct 2008.

[17] J. Karlin, S. Forrest, and J. Rexford. Nation-state routing:
Censorship, wiretapping, and BGP. CoRR, abs/0903.3218,
2009.

[18] B. Krishnamurthy, W. Willinger, P. Gill, and M. Arlitt. A
socratic method for validation of measurement-based
networking research. Computer Communications, 2011.

[19] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J.-H.
Cui, and A. G. Percus. Sampling large Internet topologies
for simulation purposes. Computer Networks (Elsevier),
51(15):4284–4302, 2007.

[20] C. Labovitz. Arbor blog: Battle of the hyper giants.
http://asert.arbornetworks.com/2010/04/
the-battle-of-the-hyper-giants-part-i-2/.

[21] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide,
and F. Jahanian. Internet inter-domain traffic. In Sigcomm,
2010.

[22] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: an
approach to universal topology generation. In MASCOTS,
2001.

[23] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang.
In search of the elusive ground truth: The Internet’s
AS-level connectivity structure. In SIGMETRICS, 2008.

[24] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang.
Quantifying the completeness of the observed Internet
AS-level structure. UCLA Computer Science Department -
Techical Report TR-080026-2008, Sept 2008.

[25] F. Orbit. http://www.fixedorbit.com/metrics.htm.

[26] B. J. Premore. An analysis of convergence properties of the
border gateway protocol usingdiscrete event simulation.
PhD thesis, Dartmouth College, 2003.

[27] B. Quoitin and S. Uhlig. Modeling the routing of an
autonomous system with CBGP. IEEE Network Magazine,
2005.

[28] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and
R. Bush. 10 lessons from 10 years of measuring and
modeling the Internet’s autonomous systems. Journal on
Select Areas in Communications, 2011.

[29] Sandvine. Fall 2010 global Internet phenomena, 2010.
[30] W. Willinger, D. Alderson, and J. Doyle. Mathematics and

the Internet: A source of enourmous confusion and great
potential. Notices of the American Mathematical Society,
2009.

[31] M. Wojciechowski. Border gateway protocol modeling and
simulation. Master’s thesis, University of Warsaw, 2008.

[32] J. Wu, Y. Zhang, Z. M. Mao, and K. Shin. Internet routing
resilience to failures: Analysis and implications. In
CoNEXT, 2007.

[33] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: a system for
general-purpose distributed data-parallel computing using a
high-level language. In Usenix OSDI, 2008.

[34] E. Zegura, K. Calvert, and S. Bhattarcharjee. How to
model an internetwork. In Infocom, 1996.

