Probing pretrained models

CS 685, Fall 2020

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs685/

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

most slides from Tu Vu

Logistics stuff

Final project reports due Dec 4 on Gradescope!

Dec 4 is also the deadline for pass/fail requests

Next Wednesday: PhD student Xiang Li will be talking about commonsense reasoning.

BERTology

BERTology

studying the inner working of large-scale Transformer language models like BERT

 what are captured in different model components, e.g., attention / hidden states?

tools & examples

BERTology - HuggingFace's Transformers https://huggingface.co/transformers/bertology.html

- accessing all the hidden-states of BERT
- accessing all the attention weights for each head of BERT
- retrieving heads output values and gradients

BERTology tools & examples (cont.)

Are Sixteen Heads Really Better than One? Michel et al., NeurIPS 2019

large percentage of attention heads can be removed at test time without significantly impacting performance

What Does BERT Look At? An Analysis of BERT's Attention, Clark el al., BlackBoxNLP 2019

substantial syntactic information is captured in BERT's attention

BERTology

tools & examples

AllenNLP Interpret https://allennlp.org/interpret

Allen Institute for Al

AllenNLP

Simple Gradients Visualization	Mask 1 Predictions: 47.1% nurse
See saliency map interpretations generated by visualizing the gradient.	16.4% woman
Saliency Map:	10.0% doctor
	3.4% mother
[CLS] The [MASK] rushed to the <mark>emergency</mark> room to see <mark>her</mark> patient . [SEP]	3.0% girl

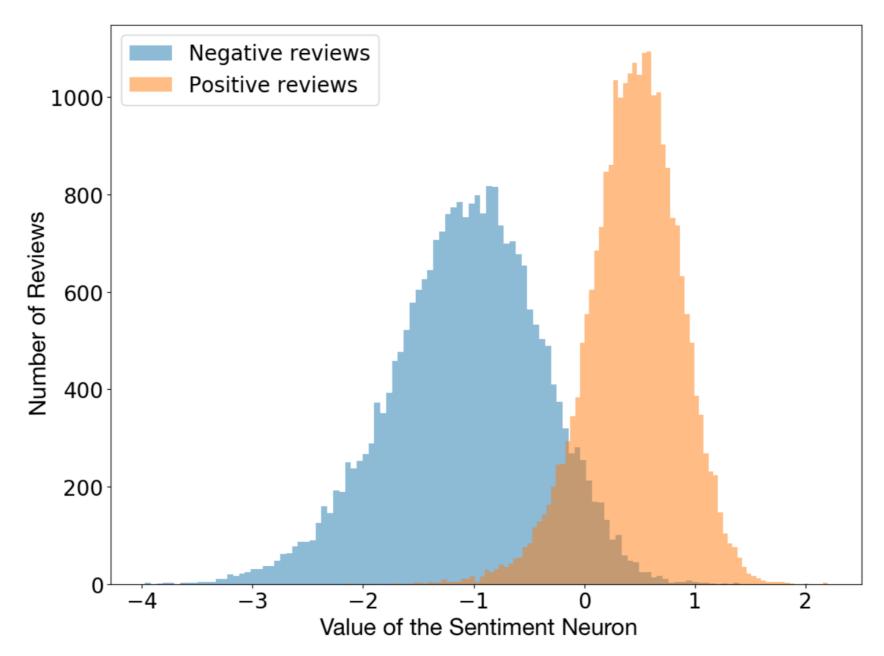
understanding contextualized representations

two most prominent methods

- visualization
- linguistic probe tasks

Sentiment neuron

While training the linear model with L1 regularization, we noticed it used surprisingly few of the learned units. Digging in, we realized there actually existed a single "sentiment neuron" that's highly predictive of the sentiment value.

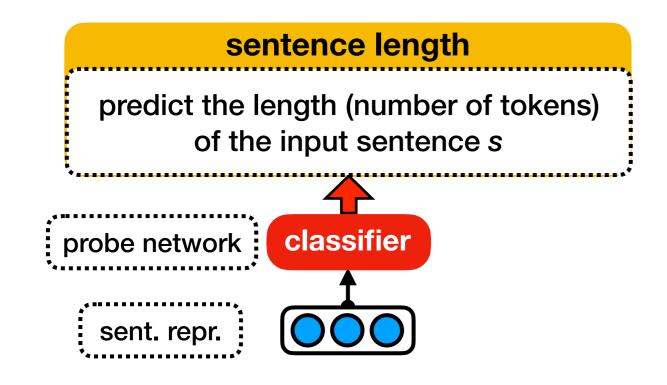


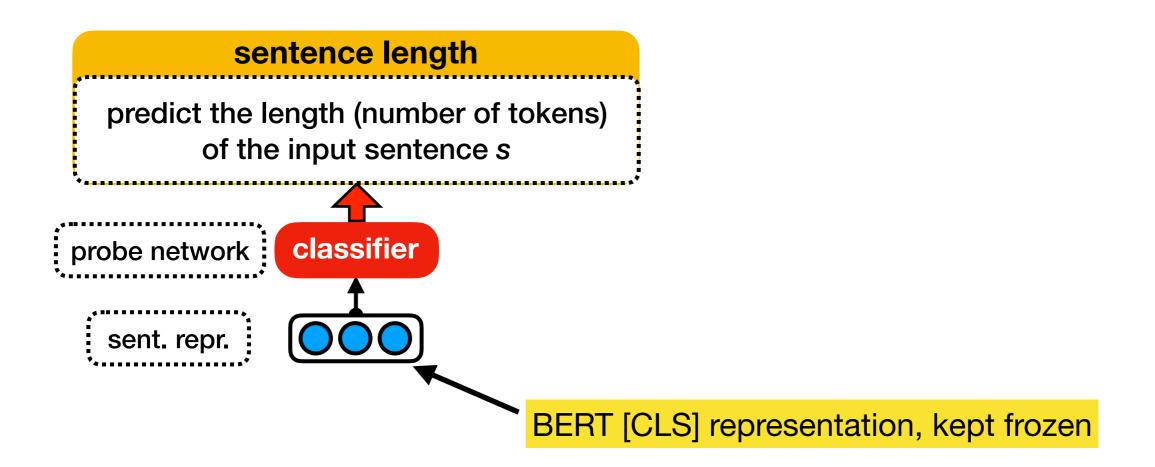
The sentiment neuron within our model can classify reviews as negative or positive, even though the model is trained only to predict the next character in the text.

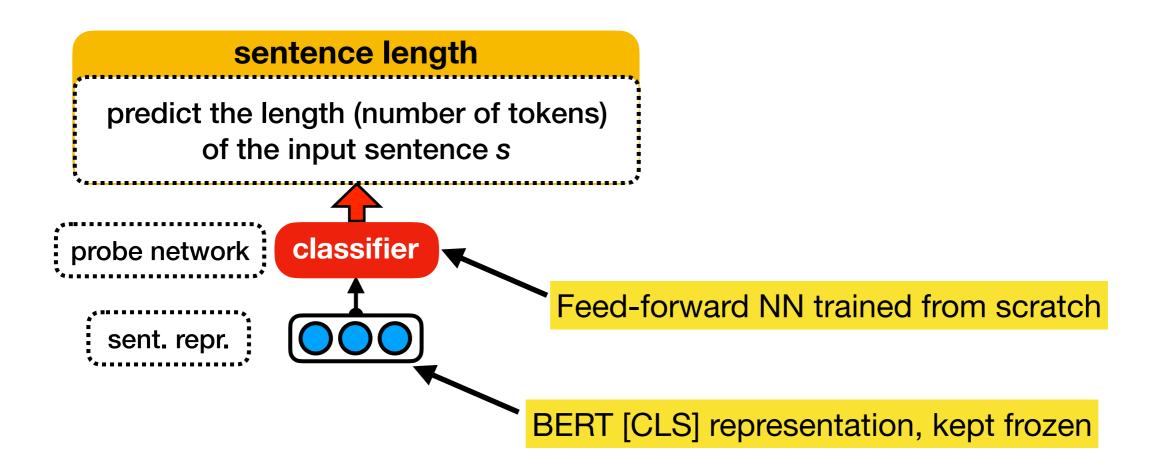
https://openai.com/blog/unsupervised-sentiment-neuron/

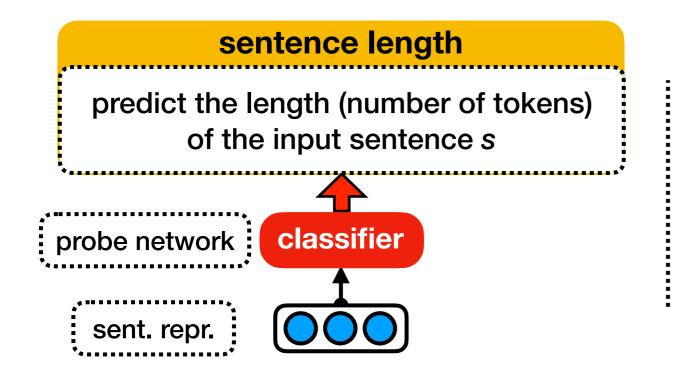
what is a linguistic probe task?

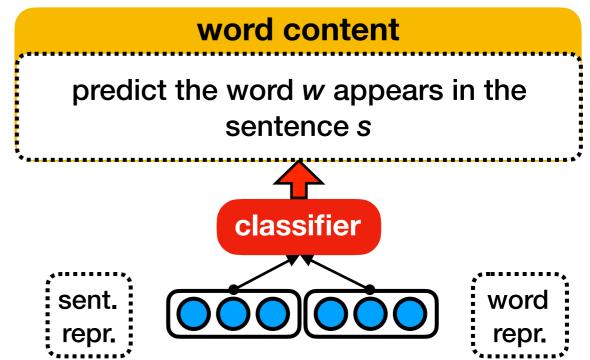
given an encoder model (e.g., BERT) pretrained on a certain task, we use the representations it produces to train a classifier (without further fine-tuning the model) to predict a linguistic property of the input text

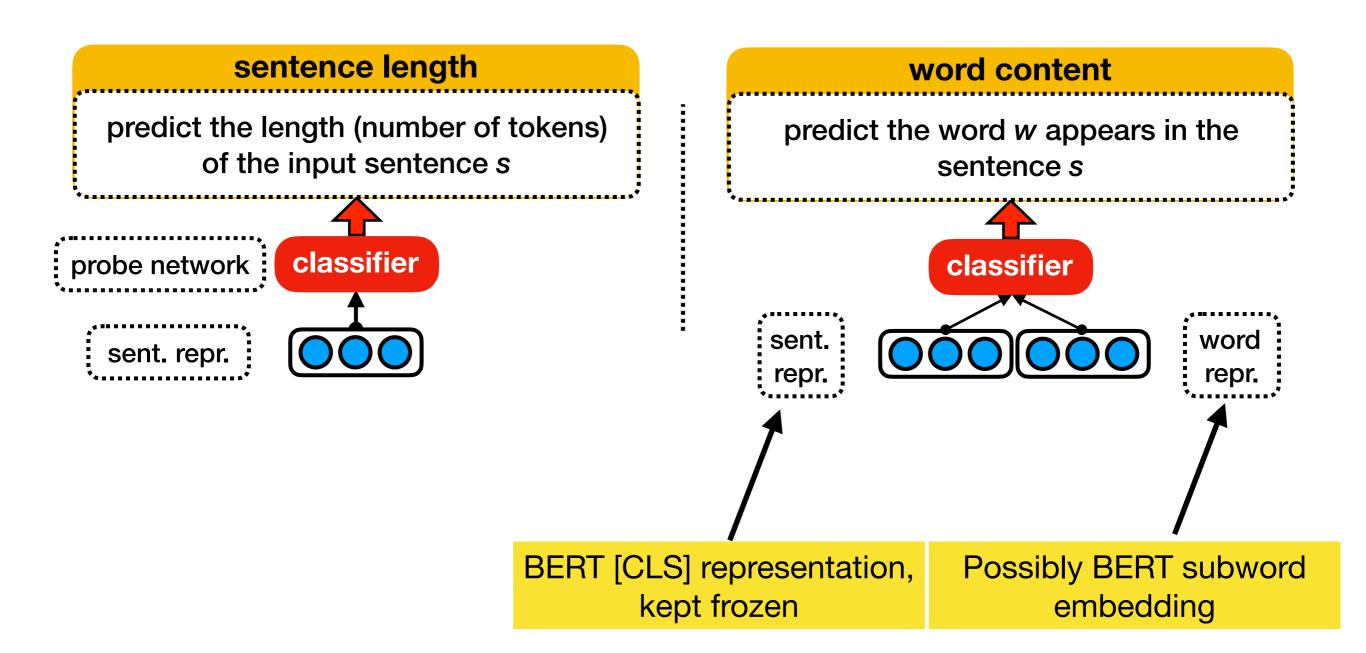


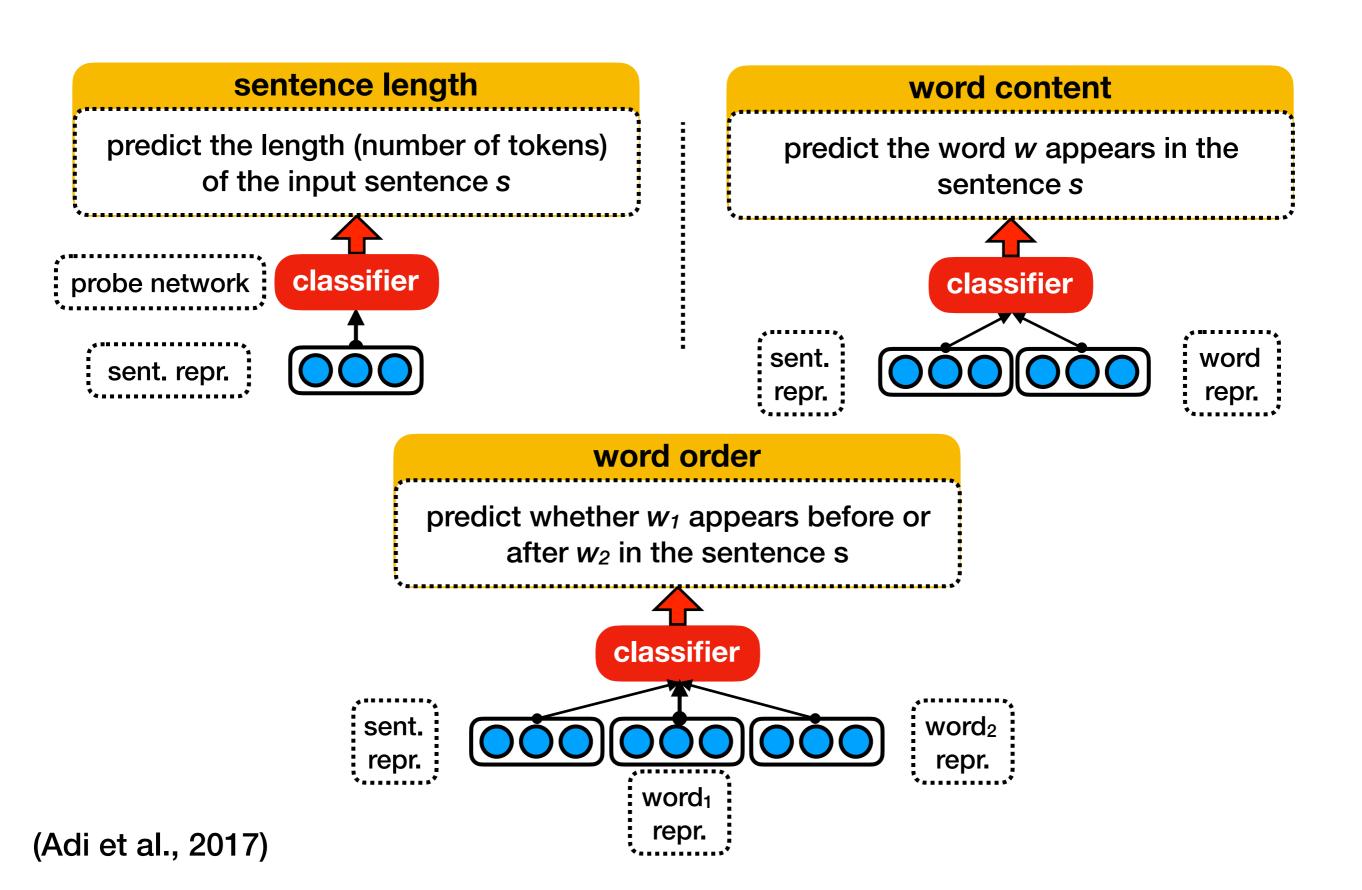


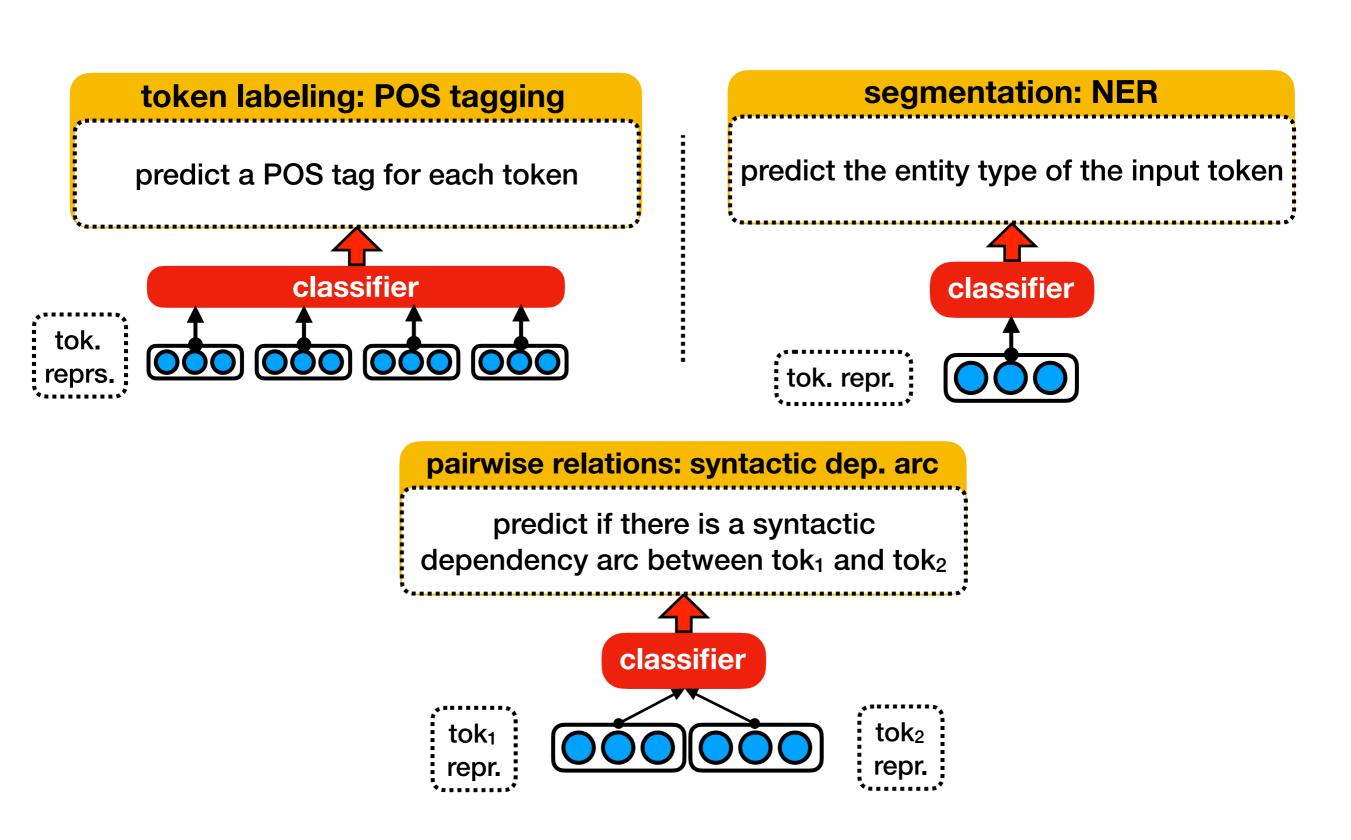




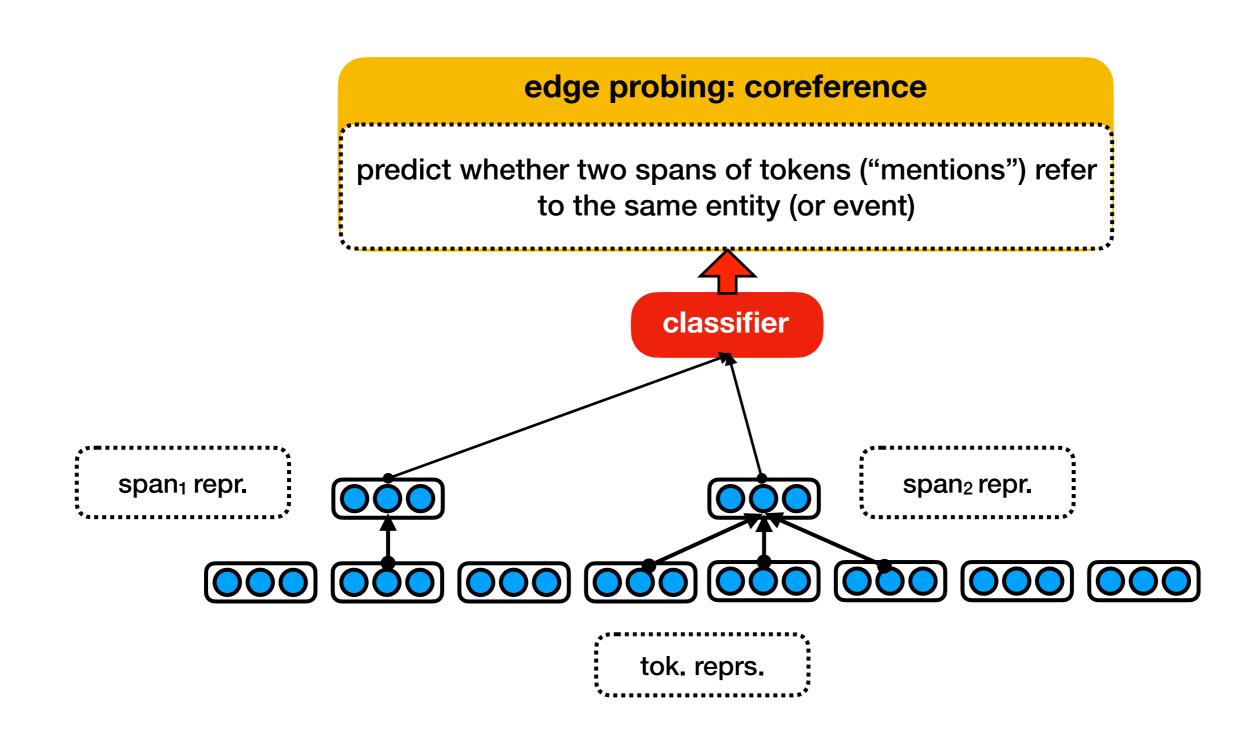








(Liu et al., 2019)



(Tenney et al., 2019)

motivation of probe tasks

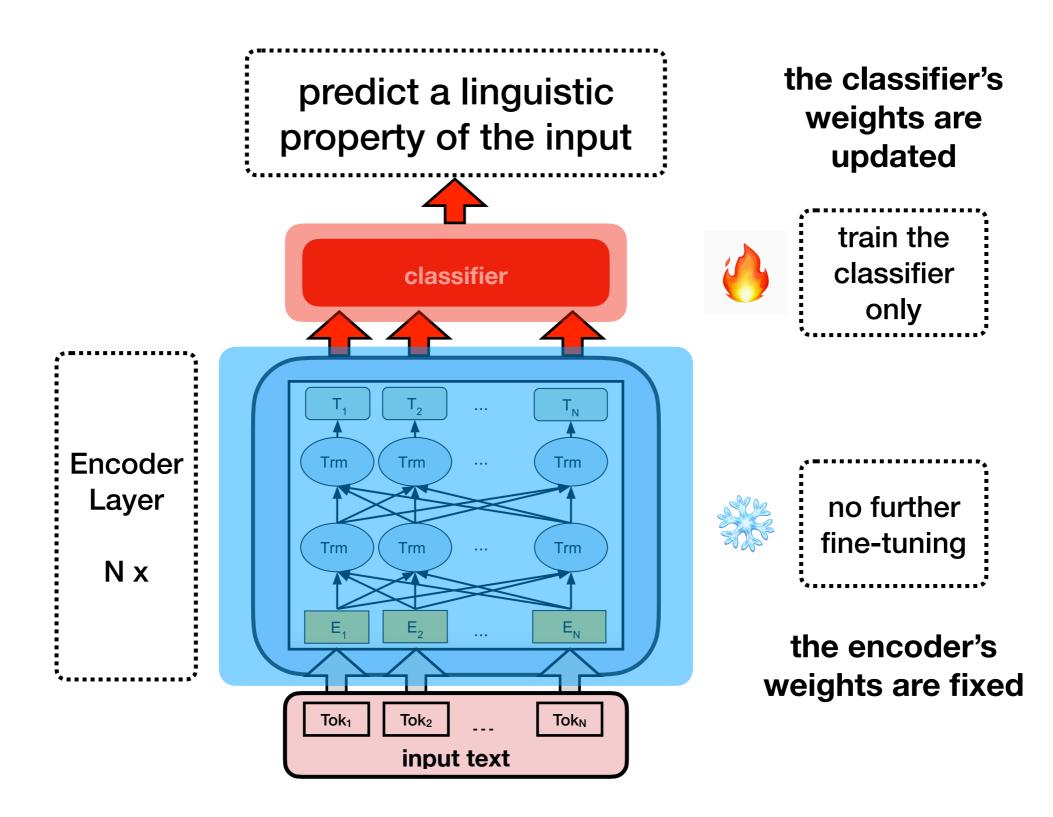
- if we can train a classifier to predict a property of the input text based on its representation, it means the property is encoded somewhere in the representation
- if we cannot train a classifier to predict a property of the input text based on its representation, it means the property is not encoded in the representation or not encoded in a useful way, considering how the representation is likely to be used

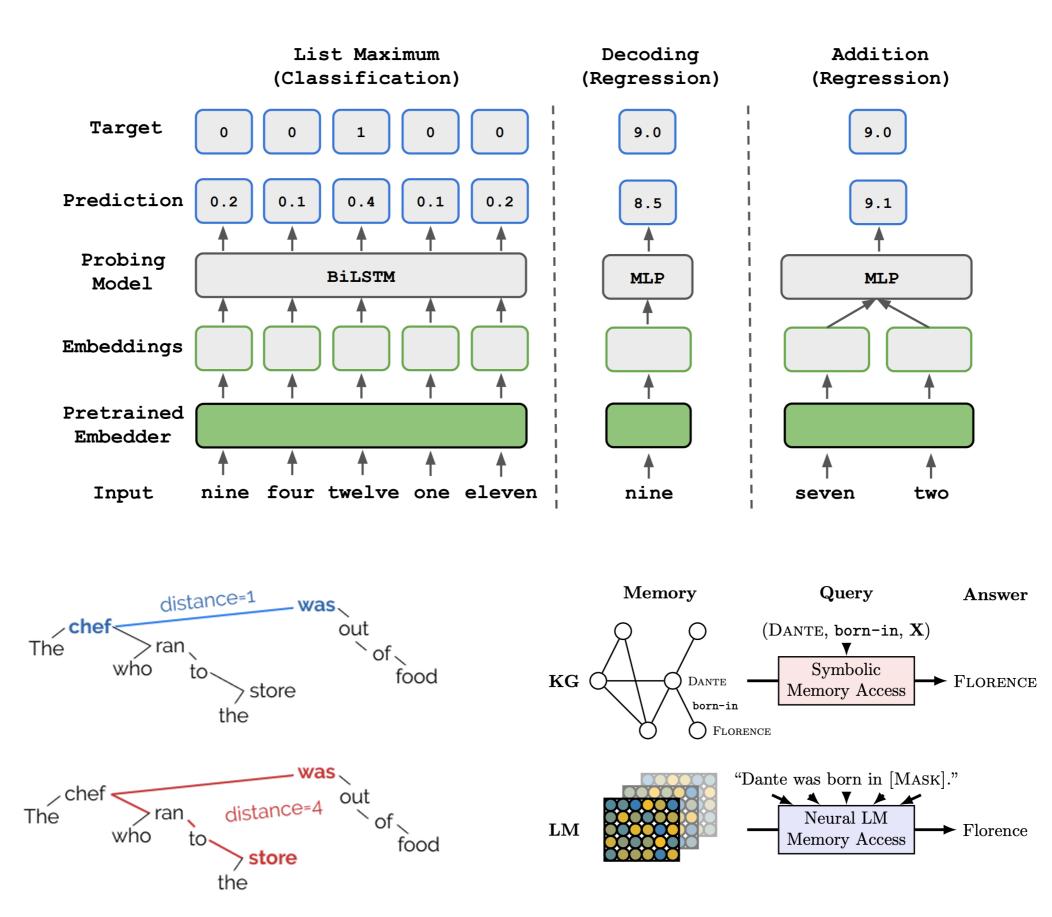
characteristics of probe tasks

- usually classification problems that focus on simple linguistic properties
- ask simple questions, minimizing interpretability problems
- because of their simplicity, it is easier to control for biases in probing tasks than in downstream tasks
- the probing task methodology is agnostic with respect to the encoder architecture, as long as it produces a vector representation of input text
- does not necessarily correlate with downstream performance

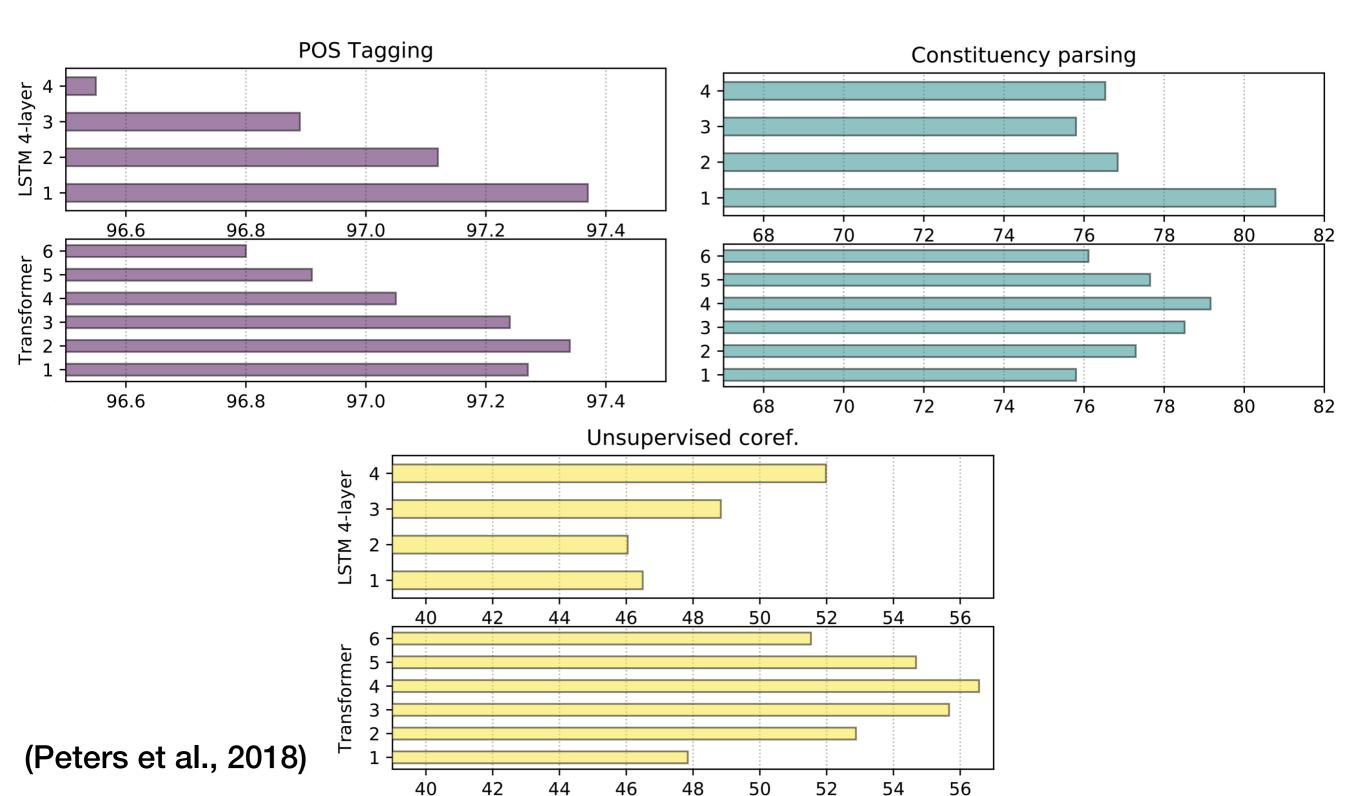
(Conneau et al., 2018)

probe approach





lowest layers focus on local syntax, while upper layers focus more semantic content

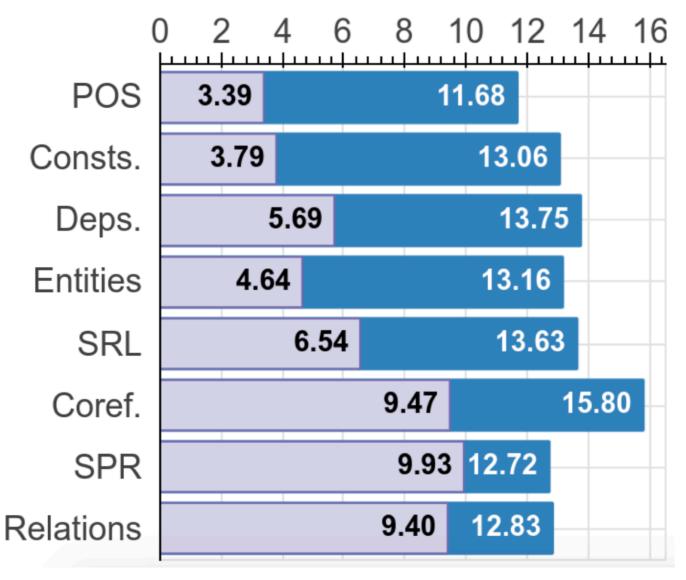


BERT represents the steps of the traditional NLP pipeline: POS tagging \rightarrow parsing \rightarrow NER \rightarrow semantic roles \rightarrow coreference

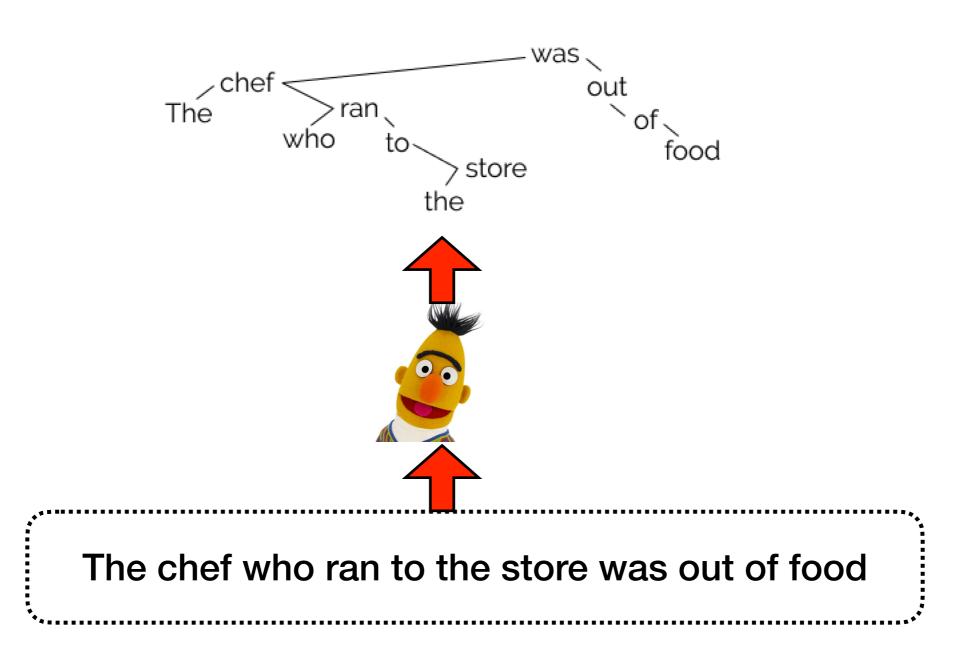
the expected layer at which the probing model correctly labels an example

a higher center-of-gravity means that the information needed for that task is captured by higher layers

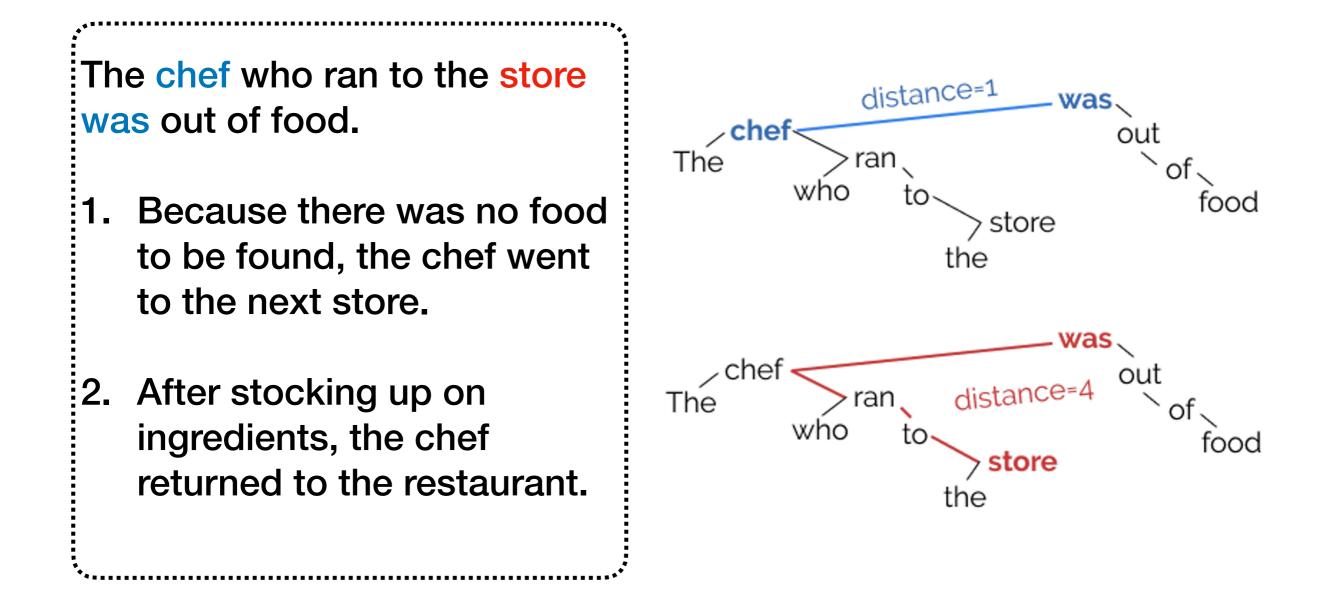
Expected layer & center-of-gravity



does BERT encode syntactic structure?



understanding the syntax of the language may be useful in language modeling



how to probe for trees?

trees as distances and norms

the distance metric—the path length between each pair of words—recovers the tree *T* simply by identifying that nodes *u*, *v* with distance $d_{T(u, v)} = 1$ are neighbors

the node with greater norm—depth in the tree—is the child

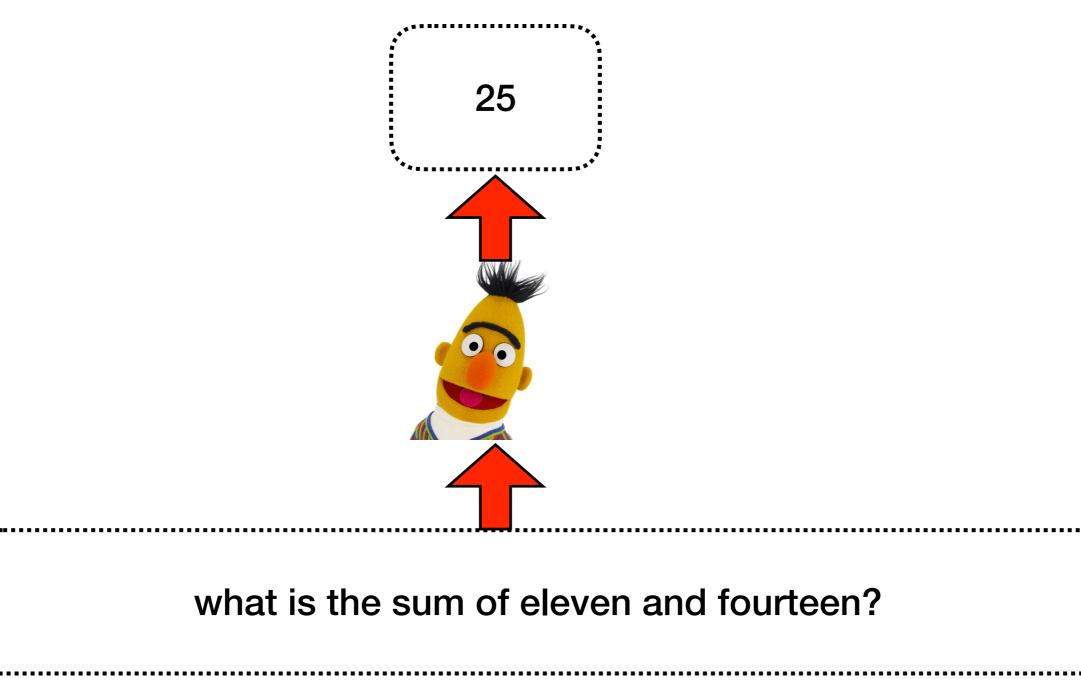
a structural probe

- probe task 1 distance: predict the path length between each given pair of words
- probe task 2 depth/norm: predict the depth of a given word in the parse tree

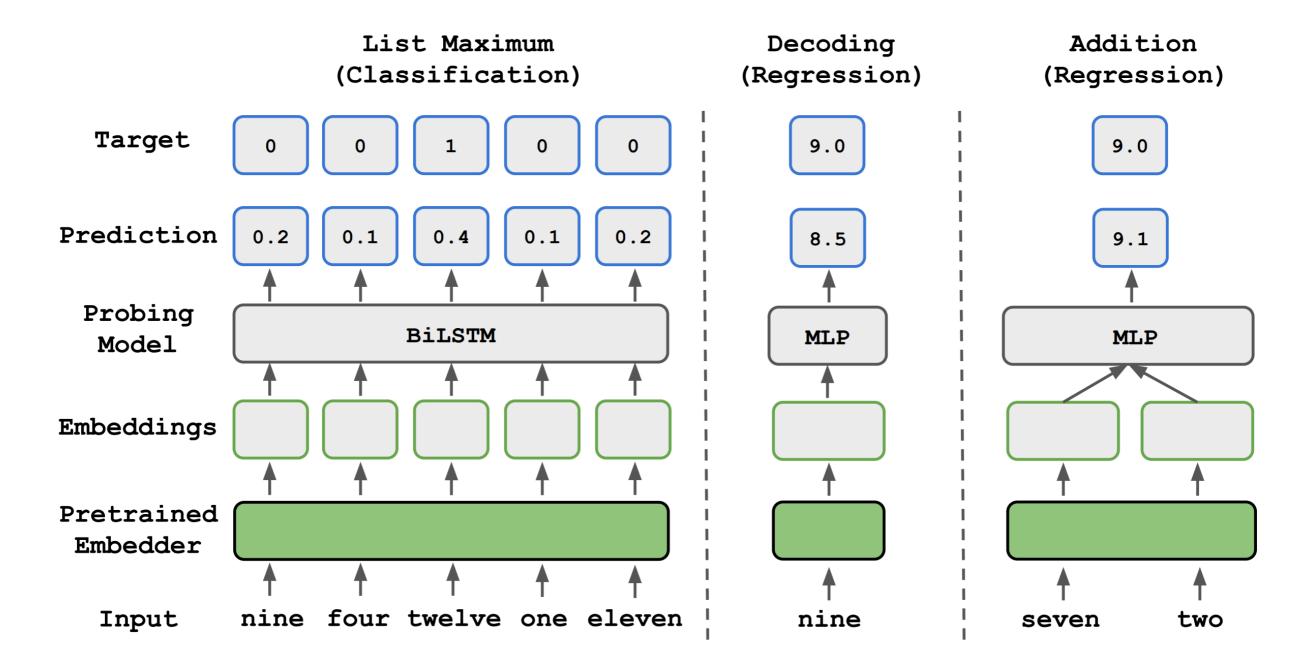
Yes, BERT knows the structure of syntax trees

	Dista	ance	Dep	oth
Method	UUAS	DSpr.	Root%	NSpr.
ELM01	77.0	0.83	86.5	0.87
BERTBASE7	79.8	0.85	88.0	0.87
BERTLARGE15	82.5	0.86	89.4	0.88
BERTLARGE16	81.7	0.87	90.1	0.89

does BERT know numbers?



probing for numeracy



(Wallace et al., 2019)

ELMo is actually better than BERT at this!

Interpolation	List Maximum (5-classes)			De	Decoding (RMSE)			Addition (RMSE)		
Integer Range	[0,99]	[0,999]	[0,9999]	[0,99]	[0,999]	[0,9999]	[0,99]	[0,999]	[0,9999]	
Random Vectors	0.16	0.23	0.21	29.86	292.88	2882.62	42.03	410.33	4389.39	
Untrained CNN	0.97	0.87	0.84	2.64	9.67	44.40	1.41	14.43	69.14	
Untrained LSTM	0.70	0.66	0.55	7.61	46.5	210.34	5.11	45.69	510.19	
Pre-trained										
Word2Vec	0.90	0.78	0.71	2.34	18.77	333.47	0.75	21.23	210.07	
GloVe	0.90	0.78	0.72	2.23	13.77	174.21	0.80	16.51	180.31	
ELMo	0.98	0.88	0.76	2.35	13.48	62.20	0.94	15.50	45.71	
BERT	0.95	0.62	0.52	3.21	29.00	431.78	4.56	67.81	454.78	

Interpolation	List Maximum (5-classes)					
Float Range	[0.0,99.9]	[0.0,999.9]				
Rand. Vectors	$\overline{0.18\pm0.03}$	0.21 ± 0.04				
ELMo	0.91 ± 0.03	0.59 ± 0.01				
BERT	0.82 ± 0.05	0.51 ± 0.04				
Char-CNN	0.87 ± 0.04	0.75 ± 0.03				
Char-LSTM	0.81 ± 0.05	0.69 ± 0.02				

(Wallace et al., 2019)

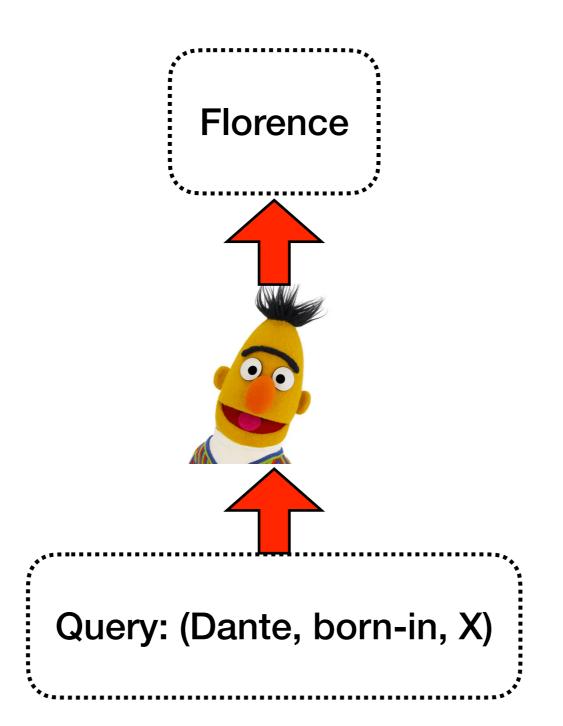
Interpolation Integer Range	List Maximum (5-classes) [-50,50]
Rand. Vectors	0.23 ± 0.12
Word2Vec	0.89 ± 0.02
GloVe	0.89 ± 0.03
ELMo	0.96 ± 0.01
BERT	0.94 ± 0.02
Char-CNN	0.95 ± 0.07
Char-LSTM	0.97 ± 0.02

Why?

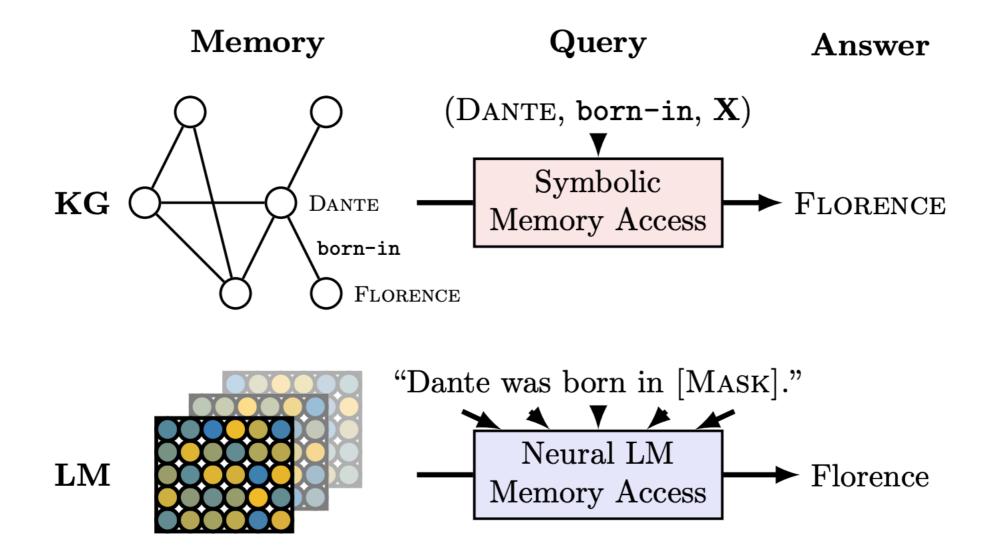
character-level CNNs are the best architecture for capturing numeracy

subword pieces is a poor method to encode digits, e.g., two numbers which are similar in value can have very different sub-word divisions

Can BERT serve as a structured knowledge base?



LAMA (LAnguage Model Analysis) probe



(Petroni et al., 2019)

LAMA (LAnguage Model Analysis) probe (cont.)

- manually define templates for considered relations, e.g., "[S] was born in [O]" for "place of birth"
- find sentences that contain both the subject and the object, then mask the object within the sentences and use them as templates for querying
- create cloze-style questions, e.g., rewriting "Who developed the theory of relativity?" as "The theory of relativity was developed by [MASK]"

(Petroni et al., 2019)

examples

	Relation	Query	Answer	Generation
T-Rex	P54	Dani Alves plays with	Barcelona	Santos [-2.4], Porto [-2.5], Sporting [-3.1], Brazil [-3.3], Portugal [-3.7]
	P106	Paul Toungui is a by profession .	politician	lawyer [-1.1], journalist [-2.4], teacher [-2.7], doctor [-3.0], physician [-3.7]
	P527	Sodium sulfide consists of	sodium	water [-1.2], sulfur [-1.7], sodium [-2.5], zinc [-2.8], salt [-2.9]
	P102	Gordon Scholes is a member of the political party.	Labor	Labour [-1.3], Conservative [-1.6], Green [-2.4], Liberal [-2.9], Labor [-2.9]
	P530	Kenya maintains diplomatic relations with	Uganda	India [-3.0], Uganda [-3.2], Tanzania [-3.5], China [-3.6], Pakistan [-3.6]
	P176	iPod Touch is produced by	Apple	Apple [-1.6], Nokia [-1.7], Sony [-2.0], Samsung [-2.6], Intel [-3.1]
	P30	Bailey Peninsula is located in	Antarctica	Antarctica [-1.4], Bermuda [-2.2], Newfoundland [-2.5], Alaska [-2.7], Canada [-3.1]
	P178	JDK is developed by	Oracle	IBM [-2.0], Intel [-2.3], Microsoft [-2.5], HP [-3.4], Nokia [-3.5]
	P1412	Carl III used to communicate in	Swedish	German [-1.6], Latin [-1.9], French [-2.4], English [-3.0], Spanish [-3.0]
	P17	Sunshine Coast, British Columbia is located in	Canada	Canada [-1.2], Alberta [-2.8], Yukon [-2.9], Labrador [-3.4], Victoria [-3.4]
ConceptNet	AtLocation	You are likely to find a overflow in a	drain	sewer [-3.1], canal [-3.2], toilet [-3.3], stream [-3.6], drain [-3.6]
	CapableOf	Ravens can	fly	fly [-1.5], fight [-1.8], kill [-2.2], die [-3.2], hunt [-3.4]
	CausesDesire	Joke would make you want to	laugh	cry [-1.7], die [-1.7], laugh [-2.0], vomit [-2.6], scream [-2.6]
	Causes	Sometimes virus causes	infection	disease [-1.2], cancer [-2.0], infection [-2.6], plague [-3.3], fever [-3.4]
	HasA	Birds have	feathers	wings [-1.8], nests [-3.1], feathers [-3.2], died [-3.7], eggs [-3.9]
	HasPrerequisite	Typing requires	speed	patience [-3.5], precision [-3.6], registration [-3.8], accuracy [-4.0], speed [-4.1]
	HasProperty	Typing requires	finite	short [-1.7], passing [-1.8], precious [-2.9], irrelevant [-3.2], gone [-4.0]
	MotivatedByGoal	You would celebrate because you are	alive	happy [-2.4], human [-3.3], alive [-3.3], young [-3.6], free [-3.9]
	ReceivesAction	Skills can be	taught	acquired [-2.5], useful [-2.5], learned [-2.8], combined [-3.9], varied [-3.9]
	UsedFor	A pond is for	fish	swimming [-1.3], fishing [-1.4], bathing [-2.0], fish [-2.8], recreation [-3.1]

(Petroni et al., 2019)

BERT contains relational knowledge competitive with symbolic knowledge bases and excels on open-domain QA

Compute	Delation	Statis	stics	Base	elines	K	B			L	М		
Corpus	Relation	#Facts	#Rel	Freq	DrQA	RE_n	REo	Fs	Txl	Eb	E5B	Bb	B 1
	birth-place	2937	1	4.6	-	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1
Coordo DE	birth-date	1825	1	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4
Google-RE	death-place	765	1	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0
	Total	5527	3	4.4	-	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5
	1-1	937	2	1.78	-	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5
TDE	<i>N</i> -1	20006	23	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2
T-REx	N-M	13096	16	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3
	Total	34039	41	22.03	-	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3
ConceptNet	Total	11458	16	4.8	-	-	-	3.6	5.7	6.1	6.2	15.6	19.2
SQuAD	Total	305	-	-	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4

probe complexity

arguments for "simple" probes

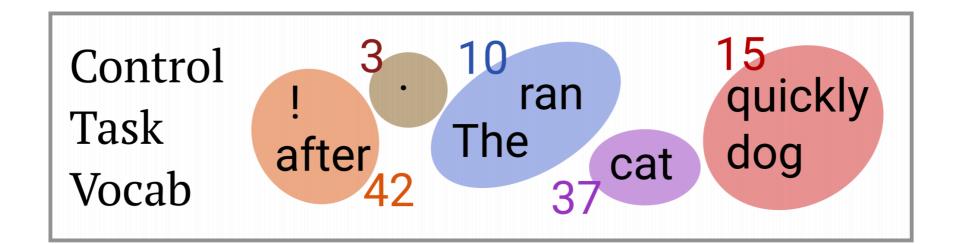
we want to find easily accessible information in a representation

arguments for "complex" probes

useful properties might be encoded nonlinearly

(Hewitt et al., 2019)

control tasks



Sentence 1	The	cat	ran	quickly	•
Part-of-speech	DT	NN	VBD	RB	•
Control task	10	37	10	15	3
Sentence 2	The	dog	ran	after	!
Sentence 2 Part-of-speech		\mathbf{C}		after IN	!

(Hewitt et al., 2019)

designing control tasks

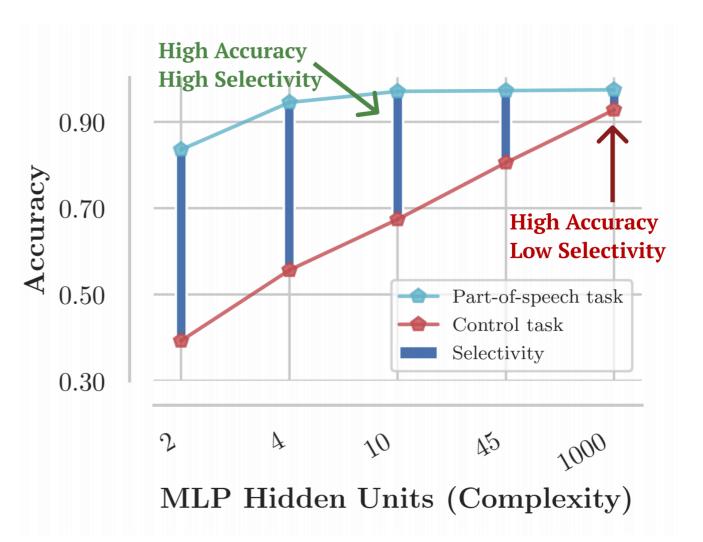
- independently sample a control behavior C(v) for each word type v in the vocabulary
- specifies how to define $y_i \in Y$ for a word token x_i with word type v
- control task is a function that maps each token x_i to the label specified by the behavior C(x_i)

 $f_{\text{control}}(\mathbf{x}_{1:T}) = f(C(x_1), C(x_2), \dots C(x_T))$

(Hewitt et al., 2019)

selectivity: high linguistic task accuracy + low control task accuracy

measures the probe model's ability to make output decisions independently of linguistic properties of the representation



be careful about probe accuracies

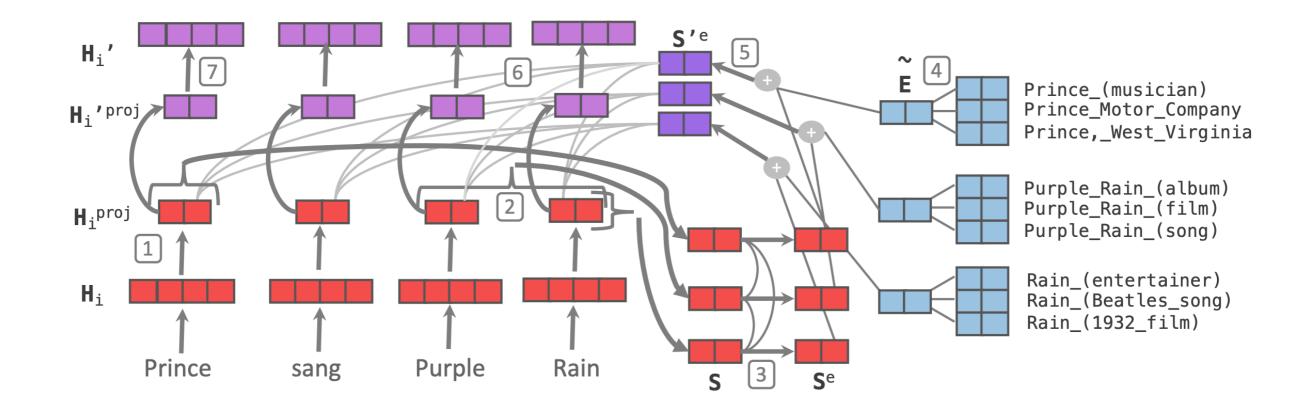
Part-of-speech Tagging									
	Linear MLP-1								
Model	Accuracy	Selectivity	Accuracy	Selectivity					
Proj0	96.3	20.6	97.1	1.6					
ELMo1	97.2	26.0	97.3	4.5					
ELMo2	96.6	31.4	97.0	8.8					

how to use probe tasks to improve downstream task performance?

- what kinds of linguistic knowledge are important for your task?
- probe BERT for them
- if BERT struggles then fine-tune it with additional probe objectives

$$\mathcal{L}_{new} = \mathcal{L}_{BERT} + \alpha \mathcal{L}_{probe}$$

example: KnowBERT



(Peters et al., 2019)