language modeling

CS 685, Fall 2020

Introduction to Natural Language Processing http://people.cs.umass.edu/~miyyer/cs685/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

questions from last time...

- Cheating concerns on exam?
- we're still thinking about ways to mitigate this
- Final project group size?
- Will be 4 with few exceptions
- Please use Piazza to form teams by 9/4 (otherwise we will randomly assign you)
- HWO?
- Out today, due 9/4. Start early especially if you have a limited coding / math background!

Let's say I want to train a model for sentiment analysis

Let's say I want to train a model for sentiment analysis

In the past, I would simply train a supervised model on labeled sentiment examples (i.e., review text / score pairs from IMDB)

Let's say I want to train a model for sentiment analysis

Nowadays, however, we use transfer learning:

```
A huge self-
    supervised
    model
                step 1:
                unsupervised
                pretraining
    ton of
unlabeled text
```


Let's say I want to train a model for sentiment analysis

Nowadays, however, we use transfer learning:

This lecture: language modeling, which forms the core of most self-supervised NLP approaches

Language models assign a probability to a piece of text

- why would we ever want to do this?
- translation:
- P (i flew to the movies) $\lll \lll$ (i went to the movies)
- speech recognition:
- P(i saw a van) >>>>> P(eyes awe of an)

You use Language Models every day!

You use Language Models every day!

Google

```
what is the |
what is the weather
what is the meaning of life
what is the dark web
what is the xfl
what is the doomsday clock
what is the weather today
what is the keto diet
what is the american dream
what is the speed of light
what is the bill of rights
Google Search I'm Feeling Lucky
```


Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

-Related task: probability of an upcoming word: $P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)$

- A model that computes either of these: $\mathrm{P}(\mathrm{W})$ or $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{1}, \mathrm{w}_{2} \ldots \mathrm{~W}_{\mathrm{n}-1}\right)$ is called a language model or LM

How to compute P(W)

- How to compute this joint probability:
- P (its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

Reminder: The Chain Rule

- Recall the definition of conditional probabilities

$$
P(B \mid A)=P(A, B) / P(A) \quad \text { Rewriting: } P(A, B)=P(A) P(B \mid A)
$$

- More variables:

$$
P(A, B, C, D)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C)
$$

-The Chain Rule in General
$P\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)$

The Chain Rule applied to compute joint probability of words in sentence

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

$P($ "its water is so transparent") $=$
$P($ its $) \times P($ water \mid its $) \times P($ is \mid its water $)$
$\times P($ solits water is) $\times P$ (transparent \mid its water is so)

The Chain Rule applied to combute ioint probability of words in sent In HWO, we refer to this as a "prefix"

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

P ("its water is so transparent") $=$
$P($ its $) \times P($ water \mid its $) \times P($ is \mid its water $)$
$\times P($ solits water is) $\times P$ (transparent \mid its water is so)

How to estimate these probabilities

- Could we just count and divide?
$P($ the \mid its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)

How to estimate these probabilities

- Could we just count and divide?
$P($ the \mid its water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
- No! Too many possible sentences!
-We'll never see enough data for estimating these

Markov Assumption

- Simplifying assumption:
$P($ the \mid its water is so transparent that $) \approx P($ the \mid that $)$
- Or maybe
$P($ the \mid its water is so transparent that $) \approx P($ the \mid transparent that $)$

Markov Assumption

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

- In other words, we approximate each component in the product
$P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)$

Simplest case: Unigram model

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i}\right)
$$

Some automatically generated sentences from a unigram model:
fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass thrift, did, eighty, said, hard, 'm, july, bullish
that, or, limited, the
How can we generate text from a language model?

Approximating Shakespeare

-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have

-This shall forbid it should be branded, if renown made it empty.
-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
-It cannot be but so.

N-gram models

- We can extend to trigrams, 4 -grams, 5 -grams
- In general this is an insufficient model of language
- because language has long-distance dependencies:
"The computer which I had just put into the machine room on the fifth floor crashed."
-But we can often get away with N -gram models

In the next video, we will look at some models that can theoretically handle some of these longer-term dependencies

Estimating bigram probabilities

- The Maximum Likelihood Estimate (MLE)
- relative frequency based on the empirical counts on a training set

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

An example

$$
\begin{array}{ll}
P(\mathrm{I} \mid\langle\mathrm{s}\rangle)=\frac{2}{3}=.67 & \\
P(\mathrm{Sam} \mid\langle\mathrm{s}\rangle)=? ? ?
\end{array}
$$

An example

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(\langle/ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

An example

Important terminology: a word type is a unique word in our vocabulary, while a token is an occurrence of a word type in a dataset.

$$
\begin{array}{lll}
P(I|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\text { Sam }|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\text { am } \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(</ \mathrm{s}\rangle \mid \text { Sam })=\frac{1}{2}=0.5 & P(\text { Sam } \mid \text { am })=\frac{1}{2}=.5 & P(\text { do } \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

A bigger example: Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

note: this is only a subset of the (much bigger) bigram count table

- Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities $\left.P\left(w_{i} \mid w_{i-1}\right)=\frac{\text { met }}{=} \frac{C}{w_{i-1}}, w_{i}\right)$ $c\left(w_{i-1}\right)$

- Normalize by unigrams:
- Result:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities
$\mathrm{P}(<\mathrm{s}>\mid$ want english food </s>) $=$
$\mathrm{P}(|\mid<s>)$
$\times \mathrm{P}$ (want|I)
$\times \mathrm{P}($ english|want)
$\times \mathrm{P}$ (food \mid english)
$\times \mathrm{P}(</ \mathrm{s}>\mid$ food $)$
= . 000031
these probabilities get super tiny when we have longer inputs w/ more infrequent words... how can we get around this?

logs to avoid underflow

$$
\log \prod p\left(w_{i} \mid w_{i-1}\right)=\sum \log p\left(w_{i} \mid w_{i-1}\right)
$$

Example with unigram model on a sentiment dataset:

logs to avoid underflow

$$
\log \prod p\left(w_{i} \mid w_{i-1}\right)=\sum \log p\left(w_{i} \mid w_{i-1}\right)
$$

Example with unigram model on a sentiment dataset:
$p\left(\right.$ () $\cdot p(\text { love })^{5} \cdot p$ (the) $\cdot p$ (movie) $=5.95374181 \mathrm{e}-7$ $\log p$ (i) $+5 \log p$ (love) $+\log p$ (the) $+\log p$ (movie)

$$
=-14.3340757538
$$

What kinds of knowledge?

- $P($ english|want $)=.0011$
- $P($ chinese \mid want $)=.0065$
- $P($ to \mid want $)=.66 ~ g r a m m a r-$ infinitive verb
$\cdot P($ eat | to $)=.28$
- $P($ food | to $)=0$
???
- $P($ want \mid spend $)=0 \quad$ grammar
- $P(i \mid<s>)=.25$

Language Modeling Toolkits

-SRILM
-http://www.speech.sri.com/projects/ srilm/
-KenLM
-https://kheafield.com/code/kenlm/

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
- Assign higher probability to "real" or "frequently observed" sentences
- Than "ungrammatical" or "rarely observed" sentences?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen.
- A test set is an unseen dataset that is different from our training set, totally unused.
- An evaluation metric tells us how well our model does on the test set.

Evaluation: How good is our model?

- The goal isn't to pound out fake sentences!
- Obviously, generated sentences get "better" as we increase the model order
- More precisely: using maximum likelihood estimators, higher order is always better likelihood on training set, but not test set

Training on the test set

- We can't allow test sentences into the training set
- We will assign it an artificially high probability when we set it in the test set
- "Training on the test set"
- Bad science!

> This advice is generally applicable to any downstream task! Do NOT do this in your final projects unless you want to lose a lot of points :)

Intuition of Perplexity

- The Shannon Game:
- How well can we predict the next word?

I always order pizza with cheese and \qquad
The $33^{\text {rd }}$ President of the US was \qquad
I saw a \qquad

- Unigrams are terrible at this game. (Why?)
- A better model of a text
mushrooms 0.1
pepperoni 0.1 anchovies 0.01

```
and 1e-100
```

- is one which assigns a higher probability to the word that actually occurs
- compute per word log likelihood (M words, m test sentence s_{i})

$$
l=\frac{1}{M} \sum_{i=1}^{m} \log p\left(s_{i}\right)
$$

Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest P(sentence)

Perplexity is the inverse probability of

$$
P P(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}
$$ the test set, normalized by the number of words:

Chain rule:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}
$$

For bigrams:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}
$$

Minimizing perplexity is the same as maximizing probability

Perplexity as branching factor

Let's suppose a sentence consisting of random digits
What is the perplexity of this sentence according to a model that assign $P=1 / 10$ to each digit?

$$
\begin{aligned}
\operatorname{PP}(W) & =P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}} \\
& =\left(\frac{1}{10}^{N}\right)^{-\frac{1}{N}} \\
& =\frac{1}{10}^{-1} \\
& =10
\end{aligned}
$$

Lower perplexity = better model

- Training 38 million words, test 1.5 million words, Wall Street Journal

N-gram Order	Unigram	Bigram	Trigram
Perplexity 962	170	109	

Zero probability bigrams

- Bigrams with zero probability
- mean that we will assign 0 probability to the test set!
- And hence we cannot compute perplexity (can't divide by 0)!

$$
\begin{aligned}
P P(W) & =P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}} \\
& =\sqrt[N]{\frac{1}{P\left(w_{1} w_{2} \ldots w_{N}\right)}}
\end{aligned}
$$

Q: How do we deal with ngrams of zero probabilities?

Shakespeare as corpus

- $\mathrm{N}=884,647$ tokens, $\mathrm{V}=29,066$
- Shakespeare produced 300,000 bigram types out of $\mathrm{V}^{2}=844$ million possible bigrams.
- So 99.96% of the possible bigrams were never seen (have zero entries in the table)

Zeros

Training set:

- Test set
... denied the allegations ... denied the offer ... denied the reports
... denied the claims
... denied the request
$P($ "offer" | denied the) $=0$

The intuition of smoothing (from Dan Klein)

- When we have sparse statistics:
$P(w \mid$ denied the $)$
3 allegations
2 reports
1 claims
1 request
7 total

- Steal probability mass to generalize better
$P(w \mid$ denied the $)$
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Be on the look out for...

- HWO, out today and due 9/4 on Gradescope!
- Lectures on neural language modeling and backpropagation, coming next Monday / Wednesday!
- Please use Piazza to form final project teams!

