neural language models

CS 685, Spring 2024

Advanced Natural Language Processing http://people.cs.umass.edu/~miyyer/cs685/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

Deadlines

- 2/16: HW 0 due
- 2/16: Final project group assignments due
- Google Form for project teams on Piazza
- 3/8: Project proposals due
- 5/17: Final project reports due
- 5/17: Last day to submit extra credit

Extra credit talks!

- 2/14 at 11:30AM: Jack Morris (Cornell) on inverting large language model inputs from their embeddings
- Overleaf template for project proposal, extra credit, and final project report available on website!

language model review

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

- Related task: probability of an upcoming word:

$$
P\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right)
$$

- A model that computes either of these:
$P(W)$ or $P\left(w_{n} \mid w_{1}, w_{2} \ldots w_{n-1}\right)$ is called a language model or LM

n-gram models

$p\left(w_{j} \mid\right.$ students opened their $)=\frac{\left.\text { count(students opened their } w_{j}\right)}{\operatorname{count}(\text { students opened their })}$

Problems with n-gram Language Models

Sparsity Problem 1

```
Problem: What if "students
opened their w}\mp@subsup{\boldsymbol{w}}{j}{\prime\prime}\mathrm{ never
occurred in data? Then }\mp@subsup{\boldsymbol{w}}{j}{
has probability 0!
```

$p\left(w_{j} \mid\right.$ students opened their $)=\frac{\operatorname{count}\left(\text { students opened their } w_{j}\right)}{\operatorname{count}(\text { students opened their) }}$

Problems with n-gram Language Models

Sparsity Problem 1

```
Problem: What if "students
opened their w}\mp@subsup{\boldsymbol{w}}{j}{\prime\prime}\mathrm{ never
occurred in data? Then }\mp@subsup{\boldsymbol{w}}{j}{
has probability 0!
```

(Partial) Solution: Add small δ to count for every $\boldsymbol{w}_{j} \in V$. This is called smoothing.
$p\left(w_{j} \mid\right.$ students opened their $)=\frac{\operatorname{count}\left(\text { students opened their } w_{j}\right)}{\operatorname{count}(\text { students opened their) }}$

Problems with n-gram Language Models

Increasing n makes model size huge!

another issue:

- We treat all words / prefixes independently of each other!
students opened their
pupils opened their \qquad scholars opened their undergraduates opened their \qquad
students turned the pages of their \qquad
students attentively perused their \qquad

one-hot vectors

- n-gram models rely on the "bag-of-words" assumption
- represent each word/n-gram as a vector of zeros with a single 1 identifying its index in the vocabulary

vocabulary
i
hate
love
the
movie
film

movie $=<0,0,0,0,1,0>$
film $=<0,0,0,0,0,1>$
what are the issues of representing a word this way?

all words are equally (dis)similar!

$$
\begin{aligned}
& \text { movie }=<0,0,0,0,1,0\rangle \\
& \text { film } \quad=<0,0,0,0,0,1> \\
& \text { dot product is zero! } \\
& \text { these vectors are orthogonal }
\end{aligned}
$$

What we want is a representation space in which words, phrases, sentences etc. that are semantically similar also have similar representations!

Enter neural networks!

Students opened their

Enter neural networks!

Students opened their

Enter neural networks!

Students opened their

Next lecture: the backward pass, or how we train a neural language model on a training dataset using the backpropagation algorithm

words as basic building blocks

- represent words with low-dimensional vectors called embeddings (Mikolove etal., NPS 2013)

model ['nuclear']

```
array([ 0.58108, 0.66825, 1.0771 , 0.34879, -0.34613, 0.20463,
    0.78436,0.11287,0.77594,0.43579,0.18566 , -0.20375 ,
    -0.53369 , 0.55578 , -0.099609, 1.1739 , 0.83277 , 1.2848 ,
    -0.19772 , 0.41573 , 1.1255 , -0.31634, 0.22493 , -1.0348,
    0.28462 , -2.7709 , 0.80654, 0.24704, 0.64272,0.41439,
    2.4058 , -1.1552 , -1.3758 , -0.90799 , 0.20109 , -0.29947,
    0.10769 , 0.29975 , -0.94256 , 0.26281 , -0.17048, -1.1831
    0.99454 , -0.50074, 1.0424 , 0.8123 , -0.20606, 1.9433,
    -1.2817 , -0.49774 ])
```


composing embeddings

- neural networks compose word embeddings into vectors for phrases, sentences, and documents
neural students opened their
network ($\square \square \square$

Predict the next word from composed prefix representation

predict "books"
neural students opened their
network ($\square \square \square$

How does this happen? Let's work our way backwards, starting with the prediction of the next word

predict "books"
neural students opened their !

How does this happen? Let's work our way backwards, starting with the prediction of the next word

neural

students opened
network (\square

Softmax layer:
convert a vector representation into a probability distribution
over the entire vocabulary

$P\left(w_{i} \mid\right.$ vector for "students opened their")

Let's say our output vocabulary consists of just four words: "books",
 "houses", "lamps", and "stamps".

Low-dimensional representation of
"students opened their"

Let's say our output vocabulary consists of just four words: "books",
"houses", "lamps", and "stamps".

We want to get a probability
 distribution over these four words

Low-dimensional
representation of
"students opened their"
$\boldsymbol{x}=<-2.3,0.9,5.4>$
Here's an example 3-d prefix vector
\mathbf{W} is a weight matrix. It contains parameters that we can update to control the final probability distribution of the next word

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$\boldsymbol{x}=<-2.3,0.9,5.4>$
Here's an example 3-d prefix vector
\mathbf{W} is a weight matrix. It contains parameters that we can update to control the final probability distribution of the next word

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

first, we'll project our 3-d prefix
 representation to 4-d with a matrix-vector product

Here's an example 3-d prefix vector

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$$
x=<-2.3,0.9,5.4>
$$

intuition: each dimension of \boldsymbol{x} corresponds to a feature of the prefix
intuition: each row of \mathbf{W} contains
feature weights for a corresponding word in the vocabulary

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$$
x=<-2.3,0.9,5.4>
$$

intuition: each dimension of \boldsymbol{x} corresponds to a feature of the prefix
intuition: each row of \mathbf{W} contains
feature weights for a corresponding word in the vocabulary

intuition: each dimension of \boldsymbol{x}

$$
x=<-2.3,0.9,5.4>
$$ feature of the prefix

intuition: each row of \mathbf{W} contains
feature weights for a corresponding word in the vocabulary

$$
\boldsymbol{x}=<-2.3,0.9,5.4>
$$

CAUTION: we can't easily interpret these features! For example, the second dimension of \boldsymbol{x} likely does not correspond to any linguistic property
intuition: each dimension of \boldsymbol{x} corresponds to a feature of the prefix

$\mathbf{W} \boldsymbol{x}=<1.8,-11.9,12.9,-8.9>$

How did we compute this? It's just the dot product of each row of \mathbf{W} with \boldsymbol{x} !

$$
\mathbf{W}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1.9, & 6.5 \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$$
x=<-2.3,0.9,5.4>
$$

$\mathbf{W} \boldsymbol{x}=<1.8,-11.9,12.9,-8.9>$

How did we compute this? It's just the dot product of each row of \mathbf{W} with \boldsymbol{x} !

$$
\mathbf{w}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1 & 9, \\
4.5, & 2.2, & -0.1
\end{array}\right\}
$$

$\mathbf{W} \boldsymbol{x}=<1.8,-11.9,12.9,-8.9\rangle$

$$
\mathbf{w}=\left\{\begin{array}{lll}
1.2, & -0.3, & 0.9 \\
0.2, & 0.4, & -2.2 \\
8.9, & -1 & 9, \\
4.5,5 \\
4.2, & -0.1
\end{array}\right\} \begin{aligned}
& 1.2^{*}-2.3 \\
& +-0.3^{*} 0.9 \\
& +0.9^{*} 5.4
\end{aligned}
$$

Okay, so how do we go from this 4-d vector to a probability distribution?

$\mathbf{W} \boldsymbol{x}=<1.8,-11.9,12.9,-8.9>$

We'll use the softmax function!

$$
\operatorname{softmax}(x)=\frac{e^{x}}{\sum_{j} e^{x_{j}}}
$$

- x is a vector
- x_{j} is dimension j of x
- each dimension j of the softmaxed output represents the probability of class j
$\mathbf{W} \boldsymbol{x}=<1.8,-1.9,2.9,-0.9>$
softmax $(\mathbf{W x})=<0.24,0.006,0.73,0.02>$

We'll use the softmax function!

$$
\operatorname{softmax}(x)=\frac{e^{x}}{\sum_{j} e^{x_{j}}}
$$

- x is a vector
- x_{j} is dimension j of x
- each dimension j of the softmaxed output represents the probability of class j
$\mathbf{W} \boldsymbol{x}=<1.8,-1.9,2.9,-0.9>$
softmax $(\mathbf{W x})=<0.24,0.006,0.73,0.02>$

We'll use the softmax function!

$$
\operatorname{softmax}(x)=\frac{e^{x}}{\sum_{j} e^{x_{j}}}
$$

- x is a vector
- x_{j} is dimension j of x
- each dimension j of the softmaxed output represents the probability of class j
$\mathbf{W} \boldsymbol{x}=<1.8,-1.9,2.9,-0.9>$
softmax $(\mathbf{W} \boldsymbol{x})=<0.24,0.006,0.73,0.02>$
We'll see the softmax function over and over again this semester, so be sure to understand it!

so to sum up...

- Given a d-dimensional vector representation \boldsymbol{x} of a prefix, we do the following to predict the next word:

1. Project it to a V-dimensional vector using a matrix-vector product (a.k.a. a "linear layer", or a "feedforward layer"), where V is the size of the vocabulary
2. Apply the softmax function to transform the resulting vector into a probability distribution

Now that we know how to predict "books", let's focus on how to compute the prefix representation \boldsymbol{x} in the first place!

predict "books"

neural students opened their
network ($\square \square \square$

Composition functions

input: sequence of word embeddings corresponding to the tokens of a given prefix
output: single vector

- Element-wise functions
- e.g., just sum up all of the word embeddings!
- Concatenation
- Feed-forward neural networks
- Convolutional neural networks
- Recurrent neural networks
- Transformers (our focus this semester)

Let's look first at concatenation, an easy to understand but limited composition function

A fixed-window neural Language Model

A fixed-window neural Language Model

concatenated word embeddings

$$
x=\left[c_{1} ; c_{2} ; c_{3} ; c_{4}\right]
$$

words / one-hot vectors

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

A fixed-window neural Language Model

hidden layer
$h=f\left(W_{1} x\right)$
concatenated word embeddings

$$
x=\left[c_{1} ; c_{2} ; c_{3} ; c_{4}\right]
$$

words / one-hot vectors

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

A fixed-window neural Language Model

f is a nonlinearity, or an element-wise nonlinear function. The most commonly-used choice today is the rectified linear unit (ReLu), which is just $\operatorname{ReLu}(x)=\max (0, x)$. Other choices include tanh and sigmoid.

A fixed-window neural Language Model

output distribution
$\hat{y}=\operatorname{softmax}\left(W_{2} h\right)$
hidden layer
$h=f\left(W_{1} x\right)$
concatenated word embeddings

$$
x=\left[c_{1} ; c_{2} ; c_{3} ; c_{4}\right]
$$

words / one-hot vectors

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

how does this compare to a normal n-gram model?

Improvements over n-gram LM:

- No sparsity problem
- Model size is $\mathrm{O}(n)$ not $\mathrm{O}(\exp (n))$

Remaining problems:

- Fixed window is too small
- Enlarging window enlarges \boldsymbol{W}
- Window can never be large enough!
- Each c_{i} uses different rows of \boldsymbol{W}. We don't share weights across the window.

Recurrent Neural Networks!

A RNN Language Model

word embeddings

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 0 \end{array}$	[10	[[0
the	students	opened	their
c_{1}	c_{2}	c_{3}	c_{4}

A RNN Language Model

word embeddings

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

A RNN Language Model

A RNN Language Model

output distribution
$\hat{y}=\operatorname{softmax}\left(W_{2} h^{(t)}\right)$

$h^{(t)}=f\left(W_{h} h^{(t-1)}+W_{e} c_{t}\right)$
$h^{(0)}$ is initial hidden state!
word embeddings

$$
c_{1}, c_{2}, c_{3}, c_{4}
$$

$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

why is this good?

RNN Advantages:

- Can process any length input
- Model size doesn't increase for longer input
- Computation for step t can (in theory) use information from many steps back
- Weights are shared across timesteps \rightarrow representations are shared

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from __many steps back
$\hat{\boldsymbol{y}}^{(4)}=P\left(\boldsymbol{x}^{(5)} \mid\right.$ the students opened their $)$

Be on the lookout for...

- Next lecture on backpropagation, which allows us to actually train these networks to make reasonable predictions
- After that, we'll focus on attention mechanisms and build our way to the Transformer architecture, which is the most popular composition function used today

