neural language models

CS 685, Spring 2024

Advanced Natural Language Processing http://people.cs.umass.edu/~miyyer/cs685/

Mohit lyyer

College of Information and Computer Sciences University of Massachusetts Amherst

Deadlines

- **2/16**: HW 0 due
- 2/16: Final project group assignments due
 - Google Form for project teams on Piazza
- 3/8: Project proposals due
- 5/17: Final project reports due
- 5/17: Last day to submit extra credit

Extra credit talks!

- 2/14 at 11:30AM: Jack Morris (Cornell) on inverting large language model inputs from their embeddings
- Overleaf template for project proposal, extra credit, and final project report available on website!

language model review

 Goal: compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

- Related task: probability of an upcoming word: $P(w_5|w_1,w_2,w_3,w_4)$
- A model that computes either of these:

P(W) or $P(w_n|w_1,w_2...w_{n-1})$ is called a language model or LM

n-gram models

$$p(w_j | \text{students opened their}) = \frac{\text{count(students opened their } w_j)}{\text{count(students opened their)}}$$

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if "students opened their w_j " never occurred in data? Then w_j has probability 0!

$$p(w_j | \text{students opened their}) = \frac{\text{count(students opened their } w_j)}{\text{count(students opened their)}}$$

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if "students opened their w_j " never occurred in data? Then w_j has probability 0!

(Partial) Solution: Add small δ to count for every $w_j \in V$. This is called *smoothing*.

 $p(w_j | \text{students opened their}) = \frac{\text{count(students opened their } w_j)}{\text{count(students opened their)}}$

Problems with n-gram Language Models

Storage: Need to store count for all possible n-grams. So model size is $O(\exp(n))$. $P(\boldsymbol{w}_j | \text{students opened their}) = \frac{\text{count}(\text{students opened their } \boldsymbol{w}_j)}{\text{count}(\text{students opened their})}$

Increasing *n* makes model size huge!

another issue:

 We treat all words / prefixes independently of each other!

students opened their ____ pupils opened their ____ scholars opened their __ undergraduates opened their ____ students turned the pages of their ____ students attentively perused their ____

Shouldn't we share information across these semantically-similar prefixes?

one-hot vectors

- n-gram models rely on the "bag-of-words" assumption
- represent each word/n-gram as a vector of zeros with a single 1 identifying its index in the vocabulary

movie =
$$<0, 0, 0, 0, 1, 0>$$

film = $<0, 0, 0, 0, 0, 1>$

what are the issues of representing a word this way?

all words are equally (dis)similar!

```
movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>
dot product is zero!
these vectors are orthogonal
```

What we want is a representation space in which words, phrases, sentences etc. that are semantically similar also have similar representations!

Enter neural networks!

Students opened their

Enter neural networks!

Students opened their

This lecture: the forward pass, or how we compute a prediction of the next word given an existing neural language model

Enter neural networks!

Students opened their

This lecture: the forward pass, or how we compute a prediction of the next word given an existing neural language model

Next lecture: the backward pass, or how we train a neural language model on a training dataset using the backpropagation algorithm

words as basic building blocks

 represent words with low-dimensional vectors called embeddings (Mikolov et al., NIPS 2013)

Male-Female

Verb tense

Country-Capital

model['nuclear']

```
array([ 0.58108 ,  0.66825 ,  1.0771 ,  0.34879 , -0.34613 ,  0.20463 ,  0.78436 ,  0.11287 ,  0.77594 ,  0.43579 ,  0.18566 , -0.20375 ,  -0.53369 ,  0.55578 , -0.099609,  1.1739 ,  0.83277 ,  1.2848 ,  -0.19772 ,  0.41573 ,  1.1255 , -0.31634 ,  0.22493 , -1.0348 ,  0.28462 , -2.7709 ,  0.80654 ,  0.24704 ,  0.64272 ,  0.41439 ,  2.4058 , -1.1552 , -1.3758 , -0.90799 ,  0.20109 , -0.29947 ,  0.10769 ,  0.29975 , -0.94256 ,  0.26281 , -0.17048 , -1.1831 ,  0.99454 , -0.50074 ,  1.0424 ,  0.8123 , -0.20606 ,  1.9433 , -1.2817 , -0.49774 ])
```

composing embeddings

 neural networks compose word embeddings into vectors for phrases, sentences, and documents

Predict the next word from composed prefix representation

How does this happen? Let's work our way backwards, starting with the prediction of the next word

How does this happen? Let's work our way backwards, starting with the prediction of the next word

Softmax layer:

convert a vector representation into a probability distribution over the entire vocabulary

Probability distribution over the entire vocabulary

Low-dimensional representation of
$$\hat{y} = \operatorname{softm}_{\hat{z}}$$

$$\boldsymbol{h} = f(\boldsymbol{W}\boldsymbol{e} + \boldsymbol{b}_1)$$

$P(w_i | \text{vector for "students opened their"})$

Let's say our output vocabulary consists of just four words: "books", "houses", "lamps", and "stamps".

Low-dimensional representation of "students opened their"

Let's say our output vocabulary consists of just four words: "books", "houses", "lamps", and "stamps".

books houses lamps tamps <0.6, 0.2, 0.1, 0.1>

We want to get a probability distribution over these four words

Low-dimensional representation of "students opened their"

Here's an example 3-d prefix vector

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

W is a weight matrix. It contains parameters that we can update to control the final probability distribution of the next word

Here's an example 3-d prefix vector

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, \; -0.3, \; 0.9 \\ 0.2, \; 0.4, \; -2.2 \\ 8.9, \; -1.9, \; 6.5 \\ 4.5, \; 2.2, \; -0.1 \end{array} \right\} \text{ first, we'll project our } \\ \text{3-d prefix representation to 4-d with a matrix-vector} \\ \text{with a matrix-vector} \\ \text{The product of the prod$$

W is a weight matrix. It contains parameters that we can update to control the final probability distribution of the next word

product

Here's an example 3-d prefix vector

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

intuition: each row of **W** contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

intuition: each row of **W** contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\} \begin{array}{l} books \\ houses \\ houses \\ lamps \\ stamps \\ stamps \end{array}$$

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

intuition: each row of **W** contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\} \begin{array}{l} \text{pooks} \\ \text{houses} \\ \text{tamps} \\ \text{stamps} \\ \text{stamps} \end{array}$$

CAUTION: we can't easily interpret these features! For example, the second dimension of **x** likely does not correspond to any linguistic property

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

How did we compute this? It's just the dot product of each row of **W** with **x**!

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

$$\mathbf{W}\mathbf{x} = \langle 1.8, -11.9, 12.9, -8.9 \rangle$$

How did we compute this? It's just the dot product of each row of **W** with **x**!

$$\mathbf{W} = \begin{cases} 1.2, & -0.3, & 0.9 \\ 0.2, & 0.4, & -2.2 \\ 8.9, & -1.9, & 6.5 \end{cases}$$

$$4.5, & 2.2, & -0.1 \end{cases}$$

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

How did we compute this? Just the dot product of each row of **W** with **x**!

$$\mathbf{W} = \begin{cases} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{cases}$$

Okay, so how do we go from this 4-d vector to a probability distribution?

W*x* = <1.8, -11.9, 12.9, -8.9>

We'll use the softmax function!

$$softmax(x) = \frac{e^x}{\sum_{j} e^{x_j}}$$

- x is a vector
- x_j is dimension j of x
- each dimension j of the softmaxed output represents the probability of class j

$$\mathbf{W}\mathbf{x} = \langle 1.8, -1.9, 2.9, -0.9 \rangle$$

 $\mathbf{softmax}(\mathbf{W}\mathbf{x}) = \langle 0.24, 0.006, 0.73, 0.02 \rangle$

We'll use the softmax function!

$$softmax(x) = \frac{e^x}{\sum_{j} e^{x_j}}$$

- x is a vector
- x_j is dimension j of x
- each dimension j of the softmaxed output represents the probability of class j

$$Wx = <1.8, -1.9, 2.9, -0.9>$$
softmax(Wx) = <0.24, 0.006, 0.73, 0.02>
$$000 \times 600 \times 600$$

We'll use the softmax function!

$$softmax(x) = \frac{e^x}{\sum_{j} e^{x_j}}$$

- x is a vector
- x_j is dimension j of x
- each dimension j of the softmaxed output represents the probability of class j

$$\mathbf{W}\mathbf{x} = \langle 1.8, -1.9, 2.9, -0.9 \rangle$$

 $\mathbf{softmax}(\mathbf{W}\mathbf{x}) = \langle 0.24, 0.006, 0.73, 0.02 \rangle$

We'll see the softmax function over and over again this semester, so be sure to understand it!

so to sum up...

- Given a d-dimensional vector representation x of a prefix, we do the following to predict the next word:
 - 1. Project it to a *V*-dimensional vector using a matrix-vector product (a.k.a. a "linear layer", or a "feedforward layer"), where *V* is the size of the vocabulary
 - 2. Apply the softmax function to transform the resulting vector into a probability distribution

Now that we know how to predict "books", let's focus on how to compute the prefix representation \boldsymbol{x} in the first place!

Composition functions

input: sequence of word embeddings corresponding to the tokens of a given prefix

output: single vector

- Element-wise functions
 - e.g., just sum up all of the word embeddings!
- Concatenation
- Feed-forward neural networks
- Convolutional neural networks
- Recurrent neural networks
- Transformers (our focus this semester)

Let's look first at *concatenation*, an easy to understand but limited composition function

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

words / one-hot vectors c_1, c_2, c_3, c_4

hidden layer

$$h = f(W_1 x)$$

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

words / one-hot vectors c_1, c_2, c_3, c_4

f is a nonlinearity, or an element-wise nonlinear function. The most commonly-used choice today is the rectified linear unit (ReLu), which is just ReLu(x) = max(0, x). Other choices include tanh and sigmoid.

output distribution

$$\hat{y} = \text{softmax}(W_2h)$$

hidden layer

$$h = f(W_1 x)$$

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

words / one-hot vectors c_1, c_2, c_3, c_4

how does this compare to a normal n-gram model?

Improvements over *n*-gram LM:

- No sparsity problem
- Model size is O(n) not O(exp(n))

Remaining problems:

- Fixed window is too small
- Enlarging window enlarges W
- Window can never be large enough!
- Each c_i uses different rows of W. We don't share weights across the window.

$$(\mathbf{x}^{(1)},\ldots,(\mathbf{x}^{(2)},\mathbf{x}^{(3)},\mathbf{x}^{(4)},\mathbf{x}^{(4)},\mathbf{x}^{(4)})$$

Recurrent Neural Networks!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

word embeddings

$$c_1, c_2, c_3, c_4$$

th $oldsymbol{c}$ c_1 c_2 c_3 c_4 $oldsymbol{x}^{(1)}, \ldots, (oldsymbol{x}^{(2)}, oldsymbol{x}^{(3)}, \dots)$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

 $h^{(0)}$

output distribution

$$\hat{y} = \text{softmax}(W_2 h^{(t)})$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

word embeddings

$$c_1, c_2, c_3, c_4$$

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

$\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

why is this good?

RNN Advantages:

- Can process any length input
- Model size doesn't increase for longer input
- Computation for step t can (in theory) use information from many steps back
- Weights are shared across timesteps > representations are shared

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from

ZOO $\boldsymbol{h}^{(1)}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(1)}, \boldsymbol{h}^{(2)}, \boldsymbol{h}^{(3)}, \boldsymbol{h}^{(4)}$ $\boldsymbol{W}_h \in \mathbb{R}^{D_l} \boldsymbol{W}_h \in \mathbb{R}^{D_l} \boldsymbol{W}_h \in \mathbb{R}^{D_l} \boldsymbol{W}_h \in \mathbb{R}^{D_l} \boldsymbol{W}_h \in \mathbb{R}^{D_l}$ $oldsymbol{W}_e \in \mathbb{R}^{D_h} oldsymbol{W}_e \in \mathbb{R}^{D_h} oldsymbol{W}_e \in \mathbb{R}^{D_h imes d}$ $e^{(1)}, \dots, e^{(t)} \in \mathbb{R}^{d} : e^{(1)}, e^{(2)}, e^{(3)}, e^{(4)}$ $oldsymbol{E} \in \mathbb{R}^{d imes |V|} oldsymbol{E} \in \mathbb{R}^{d imes |V|} oldsymbol{z} \in \mathbb{R}^{d imes |V|} oldsymbol{z} \in \mathbb{R}^{d imes |V|} oldsymbol{z}^{d imes |V|}$ $m{x}^{(1)}, \dots, m{\hat{x}}^{(2)}, m{x}^{(3)}, m{x}^{(4)}, m{x}^{(4)}, m{x}^{(4)}$

__many steps back

Be on the lookout for...

- Next lecture on backpropagation, which allows us to actually train these networks to make reasonable predictions
- After that, we'll focus on attention
 mechanisms and build our way to the
 Transformer architecture, which is the most
 popular composition function used today