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ABSTRACT
Today’s one-pass analytics applications tend to be data-intensive in
nature and require the ability to process high volumes of data effi-
ciently. MapReduce is a popular programming model for processing
large datasets using a cluster of machines. However, the traditional
MapReduce model is not well-suited for one-pass analytics, since
it is geared towards batch processing and requires the data set to
be fully loaded into the cluster before running analytical queries.
This paper examines, from a systems standpoint, what architectural
design changes are necessary to bring the benefits of the MapRe-
duce model to incremental one-pass analytics. Our empirical and
theoretical analyses of Hadoop-based MapReduce systems show
that the widely-used sort-merge implementation for partitioning
and parallel processing poses a fundamental barrier to incremental
one-pass analytics, despite various optimizations. To address these
limitations, we propose a new data analysis platform that employs
hash techniques to enable fast in-memory processing, and a new fre-
quent key based technique to extend such processing to workloads
that require a large key-state space. Evaluation of our Hadoop-based
prototype using real-world workloads shows that our new platform
significantly improves the progress of map tasks, allows the reduce
progress to keep up with the map progress, with up to 3 orders of
magnitude reduction of internal data spills, and enables results to be
returned continuously during the job.

1. INTRODUCTION
Today, real-time analytics on large, continuously-updated datasets

has become essential to meet many enterprise business needs. Like
traditional warehouse applications, real-time analytics using incre-
mental one-pass processing tends to be data-intensive in nature and
requires the ability to collect and analyze enormous datasets effi-
ciently. At the same time, MapReduce has emerged as a popular
model for parallel processing of large datasets using a commodity
cluster of machines. The key benefits of this model are that it har-
nesses compute and I/O parallelism on commodity hardware and can
easily scale as the datasets grow in size. However, the MapReduce
model is not well-suited for incremental one-pass analytics since it is
primarily designed for batch processing of queries on large datasets.
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Furthermore, MapReduce implementations require the entire data
set to be loaded into the cluster before running analytical queries,
thereby incurring long latencies and making them unsuitable for
producing incremental results.

In this paper, we take a step towards bringing the many benefits of
the MapReduce model to incremental one-pass analytics. In the new
model, the MapReduce system reads input data only once, performs
incremental processing as more data is read, and utilizes system
resources efficiently to achieve high performance and scalability.
Our goal is to design a platform to support such scalable, incremental
one-pass analytics. This platform can be used to support interactive
data analysis, which may involve online aggregation with early
approximate answers, and, in the future, stream query processing,
which provides near real-time insights as new data arrives.

We argue that, in order to support incremental one-pass analytics,
a MapReduce system should avoid any blocking operations and also
computational and I/O bottlenecks that prevent data from “smoothly”
flowing through map and reduce phases on the processing pipeline.
We further argue that, from a performance standpoint, the system
needs to perform fast in-memory processing of a MapReduce query
program for all, or most, of the data. In the event that some subset
of data has to be staged to disks, the I/O cost of such disk operations
must be minimized.

Our recent benchmarking study evaluated existing MapReduce
platforms including Hadoop and MapReduce Online (which per-
forms pipelining of intermediate data [6]). Our results revealed that
the main mechanism for parallel processing used in these systems,
based on a sort-merge technique, is subject to significant CPU and
I/O bottlenecks as well as blocking: In particular, we found that the
sort step is CPU-intensive, whereas the merge step is potentially
blocking and can incur significant I/O costs due to intermediate
data. Furthermore, MapReduce Online’s pipelining functionality
only redistributes workloads between the map and reduce tasks, and
is not effective for reducing blocking or I/O overhead.

Building on these benchmarking results, in this paper we perform
an in-depth analysis of Hadoop, using a theoretically sound analyt-
ical model to explain the empirical results. Given the complexity
of the Hadoop software and its myriad of configuration parameters,
we seek to understand whether the above performance limitations
are inherent to Hadoop or whether tuning of key system parameters
can overcome these drawbacks, from the standpoint of incremental
one-pass analytics. Our key results are two-fold: We show that our
analytical model can be used to choose appropriate values of Hadoop
parameters, thereby reducing I/O and startup costs. However, both
theoretical and empirical analyses show that the sort-merge im-
plementation, used to support partitioning and parallel processing,
poses a fundamental barrier to incremental one-pass analytics. De-
spite a range of optimizations, I/O and CPU bottlenecks as well as



blocking persist, and the reduce progress falls significantly behind
the map progress.

We next propose a new data analysis platform, based on MapRe-
duce, that is geared for incremental one-pass analytics. Based on the
insights from our experimental and analytical evaluation of current
platforms, we design two key mechanisms into MapReduce:

Our first mechanism replaces the sort-merge implementation in
MapReduce with a purely hash-based framework, which is designed
to address the computational and I/O bottlenecks as well as the
blocking behavior of sort-merge. We devise two hash techniques to
suit different user reduce functions, depending on whether the reduce
function permits incremental processing. Besides eliminating the
sorting cost from the map tasks, these hash techniques enable fast in-
memory processing of the reduce function when the memory reaches
a sufficient size as determined by the workload and algorithm.

Our second mechanism further brings the benefits of fast in-
memory processing to workloads that require a large key-state space
that far exceeds available memory. We propose an efficient tech-
nique to identify frequent keys and then update their states using a
full in-memory processing path, both saving I/Os and enabling early
answers for these keys. Less frequent keys trigger I/Os to stage data
to disk but have limited impact on the overall efficiency.

We have built a prototype of our incremental one-pass analyt-
ics platform on Hadoop 0.20.1. Using a range of workloads in
click stream analysis and web document analysis, our results show
that our hash techniques significantly improve the progress of the
map tasks, due to the elimination of sorting, and given sufficient
memory, enable fast in-memory processing of the reduce function.
For challenging workloads that require a large key-state space, our
frequent-key mechanism significantly reduces I/Os and enables the
reduce progress to keep up with the map progress, thereby realizing
incremental processing. For instance, for sessionization over a click
stream, the reducers output user sessions as data is read and finish
as soon as all mappers finish reading the data in 34.5 minutes, trig-
gering only 0.1GB internal data spill to disk in the job. In contrast,
the original Hadoop system returns all the results towards the end of
the 81 minute job, writing 370GB internal data spill to disk.

2. BACKGROUND
To provide a technical context for the discussion in this paper, we

begin with background on MapReduce systems, and summarize the
key results of our recent benchmarking study.1

2.1 The MapReduce Model
At the API level, the MapReduce programming model simply

includes two functions: The map function transforms input data
into 〈key, value〉 pairs, and the reduce function is applied to each
list of values that correspond to the same key. This programming
model abstracts away complex distributed systems issues, thereby
providing users with rapid utilization of computing resources.

To achieve parallelism, the MapReduce system essentially imple-
ments “group data by key, then apply the reduce function to each
group". This computation model, referred to as MapReduce group-
by, permits parallelism because both the extraction of 〈key, value〉
pairs and the application of the reduce function to each group can be
performed in parallel on many nodes. The system code of MapRe-
duce implements this computation model (and other functionality
such as scheduling, load balancing, and fault tolerance).

The MapReduce program of an analytical query includes both
the map and reduce functions compiled from the query (e.g., us-

1Details of our benchmarking study can be found in our technical report [4].
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Figure 1: Architecture of the Hadoop implementation of MapReduce.

ing a MapReduce-based query compiler [16]) and the MapReduce
system’s code for parallelism.

2.2 Common MapReduce Implementations
Hadoop. We first consider Hadoop, the most popular open-source

implementation of MapReduce. Hadoop uses block-level schedul-
ing and a sort-merge technique [21] to implement the group-by
functionality for parallel processing (Google’s MapReduce system
is reported to use a similar implementation [7], but further details
are lacking due to the use of proprietary code).

The Hadoop Distributed File System (HDFS) handles the reading
of job input data and writing of job output data. The unit of data
storage in HDFS is a 64MB block by default and can be set to
other values during configuration. These blocks serve as the task
granularity for MapReduce jobs.

Given a query job, several map tasks (mappers) and reduce tasks
(reducers) are started to run concurrently on each node. As Fig. 1
shows, each mapper reads a chunk of input data, applies the map
function to extract 〈key, value〉 pairs, then assigns these data items to
partitions that correspond to different reducers, and finally sorts the
data items in each partition by the key. Hadoop currently performs
a sort on the compound 〈partition, key〉 to achieve both partitioning
and sorting in each partition. Given the relatively small block size, a
properly-tuned buffer will allow such sorting to complete in memory.
Then the sorted map output is written to disk for fault tolerance. A
mapper completes after the write finishes.

Map output is then shuffled to the reducers. To do so, reducers pe-
riodically poll a centralized service asking about completed mappers
and once notified, request data directly from the completed map-
pers. In most cases, this data transfer happens soon after a mapper
completes and so this data is available in the mapper’s memory.

Over time, a reducer collects pieces of sorted output from many
completed mappers. Unlike before, this data cannot be assumed
to fit in memory for large workloads. As the reducer’s buffer fills
up, these sorted pieces of data are merged and written to a file on
disk. A background thread merges these on-disk files progressively
whenever the number of such files exceeds a threshold (in a so-called
multi-pass merge phase). When a reducer has collected all of the
map output, it will proceed to complete the multi-pass merge so that
the number of on-disk files becomes less than the threshold. Then it
will perform a final merge to produce all 〈key, value〉 pairs in sorted
order of the key. As the final merge proceeds, the reducer applies
the reduce function to each group of values that share the same key,
and writes the reduce output back to HDFS.

Additionally, if the reduce function is commutative and asso-
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Figure 2: Experimental results using the sessionization workload.

ciative, as shown in Fig. 1, a combine function is applied after
the map function to perform partial aggregation. It can be further
applied in each reducer when its input data buffer fills up.

MapReduce Online. We next consider an advanced system,
MapReduce Online, that implements a Hadoop Online Prototype
(HOP) with pipelining of data [6]. This prototype has two unique
features: First, as each mapper produces output, it can push data ea-
gerly to the reducers, with the granularity of transmission controlled
by a parameter. Second, an adaptive mechanism is used to balance
the work between the mappers and reducers. A potential benefit
of HOP is that with pipelining, reducers receive map output earlier
and can begin multi-pass merge earlier, thereby reducing the time
required for the multi-pass merge after all mappers finish.

2.3 Summary of Benchmarking Results
The requirements for scalable streaming analytics—incremental

processing and fast in-memory processing whenever possible—require
the MapReduce program of a query to be non-blocking and have
low CPU and I/O overheads. In our recent benchmarking study, we
examined whether current MapReduce systems meet these require-
ments. We considered applications such as click stream analysis and
web document analysis in our benchmark. Due to space constraints,
we mainly report results on click stream analysis in this section.

Given a click stream, an important task is sessionization that
reorders page clicks into individual user sessions. In its MapReduce
program, the map function extracts the user id from each click and
groups the clicks by user id. The reduce function arranges the clicks
of each user by timestamp, streams out the clicks of the current
session, and closes the session if the user has had no activity in the
past 5 minutes. A large amount of intermediate data occurs in this
task due to the reorganization of all the clicks by user id. Other
click analysis tasks include counting the number of visits to each
url and counting the number of clicks that each user has made. For
these problems, using a combine function can significantly reduce
intermediate data sizes. Our study used the click log from the World
Cup 1998 website 2 and replicated it to larger sizes as needed.
2http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Table 1: Workloads in click analysis and Hadoop running time.
Metric Sessionization Page frequency Clicks per user
Input 256GB 508GB 256GB
Map output 269GB 1.8GB 2.6 GB
Reduce spill 370GB 0.2GB 1.4 GB
Reduce output 256GB 0.02GB 0.6GB
Running time 4860 sec 2400 sec 1440 sec

Our test cluster contains ten compute nodes and one head node.
It runs CentOS 5.4, Sun Java 1.6u16, and Hadoop 0.20.1. Each
compute node has 4 2.83GHz Intel Xeon cores, 8GB RAM, a 250GB
Western Digital RE3 HDD, and a 64GB Intel X25-E SSD. The
Hadoop configuration used the default settings and 4 reducers per
node unless stated otherwise. The JVM heap size was 1GB, and map
and reduce buffers were about 140MB and 500MB, respectively.
All I/O operations used the disk as the default storage device.

Table 1 shows the running time of the workloads as well as the
sizes of input, output, and intermediate data in click stream analysis.
Fig. 2(a) shows the task timeline for the sessionization workload, i.e.,
the number of tasks for the four main operations: map (including
sorting), shuffle, merge (the multi-pass part), and reduce (including
the final merge to produce a single sorted run). In this task, time
is roughly evenly split between the map and reduce phases. A key
observation is that the CPU utilization, as shown in Fig. 2(b), is low
in an extended period (from time 1,800 to 2,400) after all mappers
have finished. The CPU iowait in Fig. 2(c) shows that this is largely
due to disk I/O requests in multi-pass merge, as further verified by
the number of bytes read from disk in that period. Multi-pass merge
is not only I/O intensive but also blocking—the reduce function
cannot be applied until all the data has been merged into a sorted
run. To reduce disk contention, we used additional hardware so
that the disk handled only the input and output with HDFS, and all
the intermediate data was passed to a fast SSD. As Fig. 2(d) shows,
such change can reduce overall running time but does not eliminate
the I/O bottleneck or blocking incurred in the multi-pass merge.

Another main observation regards the CPU cost. We observe
from Fig. 2(b) that CPUs are busy in the map phase. However, the
map function in the sessionization workload is CPU light: it simply



extracts the user id from each click record and emits a key-value pair
where the value contains the rest of the record. The rest of the cost
in the map phase is attributed to sorting of the map output buffer.

In simpler workloads, such as counting the number of clicks per
user, there is an effective combine function to reduce the size of
intermediate data. As intermediate data is reduced, the merge phase
shrinks as there is less data to merge, and then the reduce phase also
shrinks as most data is processed in memory only. However, the
overhead of sorting becomes more dominant in the overall cost.

We finally considered MapReduce Online. Fig. 2(e) shows that
CPU utilization still has low values in the middle of the job. While
CPU can be idle due to I/O wait or network wait (given the different
communication model used here), the CPU iowait in Fig. 2(f) again
shows a spike in the middle of the job. Hence, the problems of
blocking and I/O activity due to multi-pass merge persist. A final
note is that pipelining does not reduce the total sort-merge cost but
only rebalances the work between the mappers and reducers.

In summary, our benchmarking study made several key observa-
tions of the sort-merge implementation of MapReduce group-by:

I The sorting step of sort-merge incurs high CPU cost, hence
not suitable for fast in-memory processing.

I Multi-pass merge in sort-merge is blocking and can incur high
I/O cost given substantial intermediate data, hence a poor fit
for incremental processing or fast in-memory processing.

I Using extra storage devices and alternative storage architec-
tures does not eliminate blocking or the I/O bottleneck.

I The Hadoop Online Prototype with pipelining does not elimi-
nate blocking, the I/O bottleneck, or the CPU bottleneck.

3. OPTIMIZING HADOOP
Building on our previous benchmarking results, we perform an in-

depth analysis of Hadoop in this section. Our goal is to understand
whether the performance issues identified by our benchmarking
study are inherent to Hadoop or whether they can be overcome by
appropriate tuning of key system parameters.

3.1 An Analytical Model for Hadoop
The Hadoop system has a large number of parameters. While our

previous experiments used the default settings, we examine these
parameters more carefully in this study. After a nearly year-long
effort to experiment with Hadoop, we identified several parameters
that impact performance from the standpoint of incremental one-
pass analytics, which are listed in Part (1) of Table 2. Our analysis
below focuses on the effects of these parameters on I/O and startup
costs. We do not aim to model the actual running time because it
depends on numerous factors such as the actual server configuration,
how map and reduces tasks are interleaved, how CPU and I/O
operations are interleaved, and even how simultaneous I/O requests
are served. Once we optimize these parameters based on our model,
we will evaluate performance empirically using the actual running
time and the progress with respect to incremental processing.

Our analysis makes several assumptions for simplicity: The
MapReduce job under consideration does not use a combine func-
tion. Each reducer processes an equal number of 〈key, value〉 pairs.
Finally, when a reducer pulls a mapper for data, the mapper has just
finished so its output can be read directly from its local memory.
The last assumption frees us from the onerous task of modeling the
caching behavior at each node in a highly complex system.

1. Modeling I/O Cost in Bytes. We first analyze the I/O cost of the
existing sort-merge implementation of Hadoop. We summarize our
main result in the following proposition.

Table 2: Symbols used in Hadoop analysis.
Symbol Description
(1) System Settings

R Number of reduce tasks per node
C Map input chunk size
F Merge factor that controls how often on-disk files are merged

(2) Workload Description
D Input data size

Km Ratio of output size to input size for the map function
Kr Ratio of output size to input size for the reduce function

(3) Hardware Resources
N Number of nodes in the cluster
Bm Output buffer size per map task
Br Shuffle buffer size per reduce task

(4) Symbols Used in the Analysis
U Bytes read and written per node, U = U1 + . . . + U5 where

Ui is the number of bytes of the following types
1: map input; 2: map internal spills; 3: map output;
4: reduce internal spills; 5: reduce output

S Number of sequential I/O requests per node
T Time measurement for startup and I/O cost
h Height of the tree structure for multi-pass merge

Proposition 3.1 Given the workload description (D, Km, Kr) and
the hardware description (N, Bm, Br), as defined in Table 2, the I/O
cost in terms of bytes read and written in a Hadoop job is:

U =
D
N
· (1 + Km + KmKr) +

2D
CN
· λF(

CKm

Bm
, Bm) · 1[C·Km>Bm ]

+ 2R · λF(
DKm

NRBr
, Br), (1)

where 1[·] is an indicator function, and λF(·) is defined to be:

λF(n, b) =
(

1
2F(F− 1)

n2 +
3
2

n− F2

2(F− 1)

)
· b. (2)

Analysis. Our analysis includes five I/O-types listed in Table 2.
Each map task reads a data chunk of size C as input, and writes
C · Km bytes as output. Given the workload D, we have D/C map
tasks in total and D/(C · N) map tasks per node. So, the input cost,
U1, and output cost, U3, of all map tasks on a node are:

U1 =
D
N

and U3 =
D · Km

N
.

The size of the reduce output on each node is U5 = D·Km ·Kr
N .

Map and reduce internal spills result from the multi-pass merge
operation, which can take place in a map task if the map output
exceeds the memory size and hence needs to use external sorting, or
in a reduce task if the reduce input data does not fit in memory.

We make a general analysis of multi-pass merge first. Suppose
that our task is to merge n sorted runs, each of size b. As these
initial sorted runs are generated, they are written to spill files on disk
as f1, f2, . . . Whenever the number of files on disk reaches 2F− 1,
a background thread merges the smallest F files into a new file on
disk. We label the new merged files as m1, m2, . . . Fig. 3 illustrates
this process, where an unshaded box denotes an initial spill file
and a shaded box denotes a merged file. For example, after the
first 2F− 1 initial runs generated, f1, . . . , fF are merged together
and the resulting files on disk are m1, fF+1, . . . , f2F−1 in order of
decreasing size. Similarly, after the first F2 + F− 1 initial runs are
generated, the files on disk are m1, . . . , mF, fF2+1, . . . , fF2+F−1.
Among them, m1, fF2+1, . . . , fF2+F−1 will be merged together and
the resulting files on disk will be mF+1, m2, . . . , mF in order of
decreasing size. After all initial runs are merged, a final merge
combines all the remaining files (there are at most 2F− 1 of them).
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Figure 3: Analysis of the tree of files created in multi-pass merge.

For the analysis, let αi denote the size of a merged file on level i
(2 ≤ i ≤ h) and let α1 = b. Then αi = αi−1 + (F− 1)b. Solving
this recursively gives αi = (i− 1)Fb− (i− 2)b. Hence, the total
size of all the files in the first h levels is:

F(αh +
h−1

∑
i=1

(αi +(F− 1)b)) = bF
(

hF +
(F− 1)(h− 2)(h + 1)

2

)
.

If we count all the spill files (unshaded boxes) in the tree, we have
n = (F + (F− 1)(h− 2))F. Then we substitute h with n and F
using the above formula and get

λF(n, b) =
(

1
2F(F− 1)

n2 +
3
2

n− F2

2(F− 1)

)
· b

Then, the total I/O cost is 2λF(n, b) as each file is written once and
read once. The remaining issue is to derive the exact numbers for n
and b in the multi-pass merge in a map or reduce task.

In a map task, if its output fits in the map buffer, then the merge
operation is not needed. Otherwise, we use the available memory
to produce sorted runs of size Bm each and later merge them back.
So, b = Bm and n = C·Km

Bm
. As each node handles D/(C · N) map

tasks, we have the I/O cost for map internal spills on this node as:

U2 =

{
2D

C·N · λF(
C·Km

Bm
, Bm) if C · Km > Bm;

0 otherwise.

In a reduce task, as we do not have a combine function, the input
for reduce usually cannot fit in memory. The size of input to each
reduce task is D·Km

N·R . So, b = Br and n = D·Km
N·R·Br

. As each node
handles R reduce tasks, we have the reduce internal spill cost:

U4 = 2R · λF(
D · Km

N · R · Br
, Br)

Summing up U1, . . . , U5, we then have Eq. 1 in the proposition.

2. Modeling the Number of I/O requests. The following proposi-
tion models the number of I/O requests in a Hadoop job.

Proposition 3.2 Given the workload description (D, Km, Kr) and
the hardware description (N, Bm, Br), as defined in Table 2, the
number of I/O requests in a Hadoop job is:

S =
D

CN

(
α + 1 + 1[CKm>Bm ] ·

(
λF(α, 1)(

√
F + 1)2 + α− 1

))
+ R

(
βKr(
√

F + 1)− β
√

F + λF(β, 1)(
√

F + 1)2
)

, (3)

where α = CKm
Bm

, β = DKm
NRBr

, λF(·) is defined in Eq. 2, and 1[·] is
an indicator function.

Our analysis again considers the five types of I/O in Table 2, but it
is more involved than the analysis above due to the need to consider
memory allocation. Details are left to [4] due to space constraints.
We note that for common workloads, the I/O cost is dominated by
the cost of reading and writing all the bytes, not the seek time.

3. Modeling the Startup Cost. Since the number of map tasks is
usually much larger than reduce tasks, we consider the startup cost
for map tasks. If cm is the cost in second of creating a map task, the
total map startup cost per node is cstart · D

CN .

4. Combining All in Time Measurement. Let U be the number
of bytes read and written in a Hadoop job and let S be the number
of I/O requests made. Let cbyte denote the sequential I/O time per
byte and cseek denote the disk seek time for each I/O request. We
define the time measurement T that combines the cost of reading
and writing all the bytes, the seek cost of all I/O requests, and the
map startup cost as follows:

T = cbyte ·U + cseek · S + cstart ·
D

CN
. (4)

The above formula is our complete analytical model that captures
the effects of the involved parameters.

3.2 Optimizing Hadoop based on the Model
Our analytical model enables us to predict system behaviors as

Hadoop parameters vary. Then, given a workload and system config-
uration, we can choose values of these parameters that minimize the
time cost in our model, thereby optimizing Hadoop performance.

Optimizations. To show the effectiveness of our model, we com-
pare the predicted system behavior based on our model and the
actual running time measured in our Hadoop cluster. We used the
sessionization task and configured the workload, our cluster, and
Hadoop as follows: (1) Workload: D=97GB, Km=Kr=1;3 (2) Hard-
ware: N=10, Bm=140MB, Br=260MB; (3) Hadoop: R=4 or 8, and
varied values of C and F. We also fed these parameter values to our
analytical model. In addition, we set the constants in our model by
assuming sequential disk access speed to be 80MB/s, disk seek time
to be 4 ms, and the map task startup cost to be 100 ms.

Our first goal is to validate our model. In our experiment, we var-
ied the map input chunk size, C, and the the merge factor, F. Under
100 different combinations of (C, F), we measured the running time
in a real Hadoop system, and calculated the time cost predicted by
our model. The result is shown as a 3-D plot in Fig. 4(a).4 Note
that our goal is not to compare the absolute values of these two
time measurements: In fact, they are not directly comparable, as the
former is simply a linear combination of the startup cost and I/O
costs based on our model, whereas the latter is the actual running
time affected by many system factors as stated above. Instead, we
expect our model to predict the changes of the time measurement
when parameters are tuned, so as to identify the optimal parameter
setting. Fig. 4(a) shows that indeed the performance predicted by
our model and the actual running time exhibit very similar trends as
the parameters C and F are varied.

Our next goal is to show how to optimize the parameters based
on our model. To reveal more details from the 3-D plot, we show
the results of a smaller range of (C, F) in Fig. 4(b), where the solid

3We used a smaller dataset in this set of experiments compared to the bench-
mark because changing Hadoop configurations often required reloading data
into HDFS, which was very time-consuming.
4For either real running time or modeled time cost, the 100 data points were
interpolated into a finer-grained mesh.
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Figure 4: Results of optimizing Hadoop parameters.

lines are for the actual running time and the dashed lines are for
predication using our model.

(1) Optimizing the Chunk Size. When the chunk size C is very
small, the MapReduce job uses many map tasks and the map startup
cost dominates. As C increases, the map startup cost reduces, but
once the map output exceeds its buffer size, multi-pass merge is
incurred with increased I/O cost. The time cost jumps up at this
point, and then remains nearly constant since the reduction of startup
cost is not significant. When C exceeds a large size (whose exact
value depends on the merge factor), the number of passes of on-disk
merge goes up, thus incurring more I/Os. Overall, good performance
is observed at the maximum value of C that allows the map output to
fit in the buffer. Given a particular workload, we can easily estimate
Km, the ratio of output size to input size, for the map function and
estimate the map output buffer size Bm to be about 2

3 of the total
map memory size (given the use of other metadata). Then we can
choose the maximum C such that C · Km ≤ Bm.

(2) Optimizing the Merge Factor. We then investigate the merge
factor, F, that controls how frequently on-disk files are merged in
the multi-pass merge phase. Fig. 4(b) shows three curves for three
F values. The time cost decreases with larger values of F (from 4 to
16), mainly due to fewer I/O bytes incurred in the multi-pass merge.
When F goes up to the number of initial sorted runs (around 16), the
time cost does not decrease further because all the runs are merged
in a single pass. For several other workloads tested, one-pass merge
was also observed to provide the best performance.

Our model can also reveal potential benefits of small F values.
When F is small, the number of files to merge in each step is small,
so the reads of the input files and the writes of the output file are
mostly sequential I/O. As such, a smaller F value incurs more I/O
bytes, but fewer disk seeks. According to our model, the benefits of
small F values can be shown only when the system is given limited
memory but a very large data set, e.g., several terabytes per node,
which is beyond the current storage capacity of our cluster.

(3) Effect of the Number of Reducers. The third relevant parameter
is the number of reducers per node, R. The original MapReduce
proposal [7] has recommended R to be the number of cores per node
times a small constant (e.g., 1 or 2). As this parameter does not
change the workload but only distributes it over a variable number
of reduce workers, our model shows little difference as R varies.
Empirically, we varied R from 4 to 8 (given 4 cores on each node)
while configuring C and F using the most appropriate values as
reported above. Interestingly, the run with R=4 took 4,187 seconds,
whereas the run with R=8 took 4,723 seconds. The reasons are two-
fold. First, by tuning the merge factor, F, we have minimized the
work in multi-pass merge. Second, given 4 cores on each node, we
have only 4 reduce task slots per node. Then for R=8, the reducers
are started in two waves. In the first wave, 4 reducers are started. As
some of these reducers finish, a reducer in the second wave can be
started. As a consequence, the reducers in the first wave can read
map output soon after their map tasks finish, hence directly from
the local memory. In contrast, the reducers in the second wave are
started long after the mappers have finished. So they have to fetch
map output from disks, hence incurring high I/O costs in shuffling.
Our conclusion is that optimizing the merge factor, F, can reduce the
actual I/O cost in multi-pass merge, and is a more effective method
than enlarging the number of reducers beyond the number of reduce
task slots available at each node.

We also compared the I/O costs predicated by our model and
those actually observed. Not only do we see matching trends, the
predicted numbers are also close to the actual numbers, with less
than 10% difference. (For details, see [4].) All of the above results
show that given a particular workload and hardware configuration,
one can run our model to find the optimal values of the chunk size
C and merge factor F, and choose an appropriate value of R based
on the recommendation above.

Analysis of Optimized Hadoop. We finally reran the 240GB ses-
sionization workload described in our benchmark (see §2). We



optimized Hadoop using 64MB data chunks, one-pass merge, and
4 reducers per node as suggested by the above results. The total
running time was reduced from 4,860 seconds to 4,187 seconds, a
14% reduction of the total running time.

Given our goal of one-pass analytics, a key requirement is to
perform incremental processing and deliver a query answer as soon
as all relevant data has arrived. In this regard, we propose metrics
for the map and reduce progress, as defined below.

Definition 1 (Incremental Map and Reduce Progress) The map
progress is defined to be the percentage of map tasks that have
completed. The reduce progress is defined to be: 1

3 · % of shuffle
tasks completed + 1

3 · % of combine function or reduce function
completed + 1

3 · % of reduce output produced.

Note that our definition differs from the default Hadoop progress
metric where the reduce progress includes the work on multi-pass
merge. In contrast, we discount multi-pass merge because it is
irrelevant to a user query, and emphasize the actual work on the
reduce function or combine function and the output of answers.

Fig. 4(c) shows the progress of optimized Hadoop in bold lines
(and the progress of stock Hadoop in thin lines as a reference). The
map progress increases steadily and reaches 100% around 2,000 sec-
onds. The reduce progress increases to 33% in these 2,000 seconds,
mainly because the shuffle progress could keep up with the map
progress. Then the reduce progress slows down, due to the overhead
of merging, and lags far behind the map progress. The optimal re-
duce progress, as marked by a dashed line in this plot, keeps up with
the map progress, thereby realizing fast incremental processing. As
can be seen, there is a big gap between the optimal reduce progress
and what the optimized Hadoop can currently achieve.

Fig. 4(d) and 4(e) further show the CPU utilization and CPU
iowait using optimized Hadoop. We make two main observations:
(1) The CPU utilization exhibits a smaller dip in the middle of a
job compared to stock Hadoop in Fig. 2(b). However, the CPU
cycles consumed by the mappers, shown as the area under the
curves before 2,000 seconds, are about the same as those using stock
Hadoop. Hence, the CPU overhead due to sorting, as mentioned in
our benchmark, still exists. (2) The CPU iowait plot still shows a
spike in the middle of job, due to the blocking of CPU by the I/O
operations in the remaining single-pass merge.

3.3 Pipelining in Hadoop
Another attempt to optimize Hadoop for one-pass analytics would

be to pipeline data from mappers to reducers so that reducers can
start the work earlier. This idea has been implemented in MapRe-
duce Online [6], as described in § 2.2. In our benchmark, we observe
that pipelining data from mappers to reducers can result in small
performance benefits. For instance, for sessionization, Fig. 4(f)
shows 5% improvement in total running time over the version of
stock Hadoop, 0.19.2, on which MapReduce Online’s code is based.
However, many concerns remain: (1) The overall performance gain
of MapReduce Online over Hadoop is small (e.g., 5%), less that the
gain of our model-based optimization (e.g., 14%). (2) The reduce
progress lags far behind the map progress, as shown in Fig. 4(f). (3)
The CPU utilization and iowait in MapReduce Online, shown in
Fig. 2(e) and 2(f), still show the blocking and high I/O overhead due
to multi-pass merge. (4) MapReduce Online has an extension to pe-
riodically output snapshots (e.g., when reducers have received 25%,
50%, 75%, ..., of the data). However, this is done by repeating the
merge operation for each snapshot, not by incremental processing.
It can incur high I/O overhead and significantly increased running
time. (The interested reader is referred to [4] for the details.)

We close the discussion in this section with the summary below:
I Our analytical model can be used to choose appropriate values

of Hadoop parameters, thereby improving performance.
I Optimized Hadoop, however, still has a significant barrier

to fast incremental processing: (1) The remaining one-pass
merge can still incur blocking and a substantial I/O cost. (2)
The reduce progress falls far behind the map progress. (3)
The map tasks still have the high CPU cost of sorting.

I Pipelining from mappers to reducers does not resolve the
blocking and I/O overhead in Hadoop, and achieves only a
small performance gain over stock Hadoop.

4. A NEW HASH-BASED PLATFORM
Based on the insights from our experimental and analytical evalu-

ation of current MapReduce systems, we next propose a new data
analysis platform that transforms MapReduce computation into in-
cremental one-pass processing. Our first mechanism replaces the
widely used sort-merge implementation for partitioning and par-
allel processing with a purely hash-based framework to minimize
computational and I/O bottlenecks as well as blocking. Two hash
techniques, designed for different types of reduce functions, are
described in §4.1 and §4.2, respectively. These techniques enable
fast in-memory processing when there is sufficient memory for the
current workload. Our second mechanism further brings the bene-
fits of fast in-memory processing to workloads that require a large
key-state space that far exceeds available memory. Our technique
efficiently identifies popular keys and updates their states using a
full in-memory processing path. This mechanism is detailed in §4.3.

4.1 A Basic Hash Technique (MR-hash)
Recall from Section 2 that to support parallel processing, the

MapReduce computation model essentially implements “group data
by key, then apply the reduce function to each group". The main idea
underlying our hash framework is to implement the MapReduce
group-by functionality using a series of independent hash functions
h1, h2, h3, . . ., across the mappers and reducers.

As depicted in Fig. 5(a), the hash function h1 partitions the map
output into subsets corresponding to the scheduled reducers. Hash
functions h2, h3, . . ., are used to implement (recursive) partitioning
at each reducer. More specifically, h2 partitions the input data to
a reducer to n buckets, where the first bucket, say, D1, is held
completely in memory and other buckets are streamed out to disks
as their write buffers fill up (which is similar to hybrid hash join
[18]). This way, we can perform group-by on D1 using the hash
function h3 and apply the reduce function to each group completely
in memory. Other buckets are processed subsequently, one at a time,
by reading the data from the disk. If a bucket Di fits in memory, we
use in-memory processing for the group-by and the reduce function;
otherwise, we further partition it using hash function h4, and so on.
In our implementation, we use standard universal hashing to endure
that the hash functions are independent of each other.

Following the analysis of the hybrid hash join [18], simple calcu-
lation shows that if h2 can evenly distribute the data into buckets,
recursive partitioning is not needed if the memory size is greater
than 2

√
|Dr|, where |Dr| is the size of the data sent to the reducer,

and the I/Os involve 2(|Dr| − |D1|) bytes read and written. The
number of buckets, h, can be derived from the standard analysis by
solving a quadratic equation.

The above technique, called MR-hash, exactly matches the cur-
rent MapReduce model that collects all the values of the same key
into a list and feeds the entire list to the reduce function. This base-
line technique in our work is similar to the hash technique used
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Figure 5: Hash techniques in our new data analysis platform.

in parallel databases [9], but implemented in the MapReduce con-
text. Compared to stock Hadoop, MR-hash offers several benefits:
First, on the mapper side, it avoids the CPU cost of sorting as in the
sort-merge implementation. Second, it allows early answers to be
returned for the buffered bucket, D1, as data comes to the reducer.
If the application specifies a range of keys to be more important than
others, we can design h2 so that D1 contains those important keys.

4.2 An Incremental Hash Technique (INC-hash)
Our second hash technique is designed for reduce functions that

permit incremental processing, including simple aggregates like
sum and count, and more complex problems that have been studied
in the area of sublinear-space stream algorithms [14]. In our work,
we define three functions to implement incremental processing: The
initialize function, init(), reduces a sequence of data items to a
state; The combine function, cb(), reduces a sequence of states to
a state; and the finalize function, f n(), produces a final answer
from a state. The initialize function is applied immediately when
the map function finishes processing. This changes the data in
subsequent processing from the original key-value pairs to key-state
pairs. The combine function can be applied to any intermediate step
that collects a set of states for the same key, e.g., in the write buffers
of a reducer that pack data to write to disks. Finally, the original
reduce function is implemented by cb() followed by f n().

Such incremental processing can offer several benefits: The ini-
tialize function reduces the amount of data output from the mappers.
In addition, existing data items can be collapsed to a compact state
so that the reducer no longer needs to hold all the data in memory.
Furthermore, as a result of incremental processing, query answers
can be derived as soon as the relevant data is available, e.g., when
the count in a group exceeds a query-specified threshold or when a
window closes in window-based stream processing.

To realize the above benefits, we propose an alternative incre-
mental hash implementation, called INC-hash. The algorithm is
illustrated in Fig. 5(b) (the reader can ignore the darkened boxes
for now, as they are used only in the third technique). As a re-
ducer receives map output, which includes key-state pairs created
by the initialize function, called tuples for simplicity, we build an
in-memory hashtable H (using hash function h2) that maps from a
key to the state of computation. When a new tuple arrives, if its key
already exists in H, we update the key’s state with the new tuple
using the combine function. If its key does not exist in H, we add a
new key-state pair to H if there is still memory. Otherwise, we hash
the tuple (using h3) to a bucket, place the tuple in the write buffer of
this bucket, and flush the write buffer when it becomes full. When
the reducer has seen all the tuples and output the results for all the

keys in H, it then reads disk-resident buckets back one at a time,
repeating the procedure above to process each bucket.

The analysis of INC-hash turns out to be similar to that in Hy-
brid Cache for handling expensive predicates [10]. We summarize
our main results below. The key improvement of INC-hash over
MR-hash is that for those keys in H, their tuples are continuously
collapsed into states in memory, avoiding I/Os for those tuples al-
together. I/Os will be completely eliminated in INC-hash if the
memory is large enough to hold all distinct key-state pairs, whose
size is denoted by ∆, in contrast to all the data items in MR-hash.
When memory size is less than ∆ but greater than

√
∆, we can show

that tuples that belong to H are simply collapsed into the states
in memory, and other tuples are written out and read back exactly
once—no recursive partitioning is needed in INC-hash. The number
of buckets, h, can be derived directly from this analysis.

4.3 A Dynamic Incremental Hash Technique
Our last technique is an extension of the incremental hash ap-

proach where we dynamically determine which keys should be
processed in memory and which keys will be written to disk for
subsequent processing. The basic idea behind the new technique
is to recognize hot keys that appear frequently in the data set and
hold their states in memory, hence providing incremental in-memory
processing for these keys. The benefits of doing so are two-fold.
First, prioritizing these keys leads to greater I/O efficiency since
in-memory processing of data items of hot keys can greatly decrease
the volume of data that needs to be first written to disks and then
read back to complete the processing. Second, it is often the case
that the answers for the hot keys are more important to the user than
the colder keys. Then this technique offers the user the ability to
terminate the processing before data is read back from disk if the
coverage of data is sufficiently large for those keys in memory.

Below we assume that we do not have enough memory to hold all
states of distinct keys. Our mechanism for recognizing and process-
ing hot keys builds upon ideas in an existing data stream algorithm
called the FREQUENT algorithm [12, 3] that can be used to estimate
the frequency of different values in a data stream. While we are not
interested in the frequencies of the keys per se, we will use estimates
of the frequency of each key to date to determine which keys should
be processed in memory. However, note that other “sketch-based"
algorithms for estimating frequencies will be unsuitable for our pur-
poses because they do not explicitly encode a set of hot keys. Rather,
additional processing is required to determine frequency estimates
and then use them to determine approximate hot keys, which is too
costly for us to consider.

Dynamic Incremental (DINC) Hash. We use the following nota-



tion in our discussion of the algorithm: Let K be the total number
of distinct keys. Let M be the total number of key-state pairs in
input, called tuples for simplicity. Suppose that the memory con-
tains B pages, and each page can hold np key-state pairs with their
associated auxiliary information. Let cb be a combine function that
combines a state u and a state v to make a new state cb(u, v).

While receiving tuples, each reducer divides the B pages in mem-
ory into two parts: h pages are used as write buffers, one for each of
h files that will reside on disk, and B− h pages for “hot" key-state
pairs. Hence, s = (B− h)np keys can be processed in-memory at
any given time.5 Fig. 5(b) illustrates our algorithm.

Our algorithm maintains s counters c[1], . . . , c[s] and s associated
keys k[1], . . . , k[s] referred to as “the keys currently being moni-
tored" together with the state s[i] of a partial computation for each
key k[i]. Initially c[i] = 0, k[i] = ⊥ for all i ∈ [s]. When a new
tuple (k, v) arrives, if this key is currently being monitored, c[i] is
incremented and s[i] is updated using the combine function. If k
is not being monitored and c[j] = 0 for some j, then the key-state
pair (k[j], s[j]) is evicted and (c[j], k[j], s[j]) ← (1, k, v). If k is
not monitored and all c > 0, then the tuple needs to be written to
disk and all c[i] are decremented by one. Whenever the algorithm
decides to evict a key-state pair in-memory or write out a tuple, it
always first assigns the item to a hash bucket and then writes it out
through the write buffer of the bucket, as in INC-hash.

Once the tuples have all arrived, most of the computation for the
hot keys may have already been performed. At this point we have
the option to terminate if the partial computation for hot keys is
“good enough" in a sense we will make explicit shortly. If not, we
proceed with performing all the remaining computation: we first
write out each key-state pair currently in memory to disk to the
appropriate bucket file. We then read each bucket file into memory
and complete the processing for each key in the bucket file.

I/O Analysis. Suppose there are fi tuples with key ki and note that
M = ∑i fi. Without loss of generality assume f1 ≥ f2 ≥ . . . ≥ fK .
Then the best we can hope for is performing ∑1≤i≤s fi steps of
in-memory computation as the tuples are being sent to the reducer.
This is achieved if we know the “hot" keys, i.e., the top-s, in advance.
Existing analysis for the FREQUENT algorithm can be applied to
our new setting to show that the above strategy guarantees that
M′ := ∑1≤i≤s max(0, fi − M

s+1 ) combine operations have been
performed. Since every tuple that is not combined with an existing
state in memory triggers a write-out, the number of tuples written
to disk is M−M′ + s where the additional s comes from the write
out of the hot key-state pairs in main memory. This result compares
favorably with the offline optimal if there are some very popular
keys, but does not give any guarantee if there are no keys whose
relative frequency is more than 1/(s + 1). If the data is skewed, the
theoretical analysis can be improved [3]. Note that for INC-hash
there is no guarantee on the steps of computation performed before
the hash files are read back from disk. This is because the keys
chosen for in-memory processing are just the first keys observed.

After the input is consumed, we write out all key-state pairs from
main memory to the appropriate bucket file. Then the number of
unique keys corresponding to each bucket file to be K/h. Conse-
quently, if K/h ≤ B · np, then the key-state pairs in each bucket can
be processed sequentially in memory. Setting h as small as possible
increases s and hence decreases M′. Hence we set h = Knp/B.

To compare the different hash techniques, first note that the im-
provement of INC-hash over MR-hash is only significant when K
is small. This is because the keys processed incrementally in main

5If we use p > 1 pages for each of the h write buffers (to reduce random-
writes), then s = np · (B− hp). We omit p below to simplify the discussion.

memory will only account for a small fraction of the tuples. DINC-
hash mitigates this in the case when, although K may be large, some
keys are considerably more frequent then other keys. By ensuring
that it is these keys that are usually monitored in memory, we ensure
that a large fraction of the tuples are processed before the remaining
data is read back from disk.

Approximate Answers and Coverage Estimation. One of the fea-
tures of DINC-hash is that a large fraction of the combine operations
for a very frequent key will already have been performed once all
the tuples have arrived. To estimate the number of combine opera-
tions performed for a given key we use the t values: these count the
number of key-state tuples that have been combined for key k since
most recent time k started being monitored. Define the coverage of
key ki to be

coverage(ki) =

{
t[j]/ fi if k[j] = ki for some j
0 otherwise

.

Hence, once the tuples have arrived, the state corresponding to
ki in main-memory represents the computation performed on a
coverage(ki) fraction of all the tuples with this key. Unfortunately
we do not know the coverage of a monitored key exactly, but it can
be shown that we have a reasonably accurate under-estimate:

γi := t[j]/(t[j] + M/(s + 1)) ≤ t[j]/ fi = coverage(ki) .

Hence, for a user-determined threshold φ, if γi ≥ φ we can opt to
return the state of the partial computation rather than to complete
the computation.

5. PROTOTYPE IMPLEMENTATION
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We have built a prototype of our incremental one-pass analytics
platform on Hadoop. Our prototype is based on Hadoop version
0.20.1 and modifies the internals of Hadoop by replacing key com-
ponents with our Hash-based and fast in-memory processing im-
plementations. Figure 6 depicts the architecture of our prototype;



the shaded components and the enlarged sub-components show the
various portions of Hadoop internals that we have built. Broadly
these modifications can be grouped into two main components.

Hash-based Map Output: Vanilla Hadoop consists of a Map
Output Buffer component that manages the map output buffer, col-
lects map output data, partitions the data for reducers, sorts the
data by partition id and key (external sort if the data exceeds mem-
ory), and feeds the sorted data to the combine function if there is
one or writes sorted runs to local disks otherwise. Since our de-
sign eliminates the sort phase, we replace this component with a
new Hash-based Map Output component. Whenever a combine
function is used, our Hash-based Map Output component builds an
in-memory hash table for key-value pairs output by hashing on the
corresponding keys. After the input has been processed, the values
of the same key are fed to the combine function, one key at a time.
In the scenario where no combine function is used, the map output
must be grouped by partition id and there is no need to group by
keys. In this case, our Hash-based Map Output component records
the number of key-value pairs for each partition while processing
the input data chunk, and moves records with the same key to a
particular segment in the buffer, while scanning the buffer once.

HashThread Component: Vanilla Hadoop comprises an In-
MemFSMerge thread that performs in-memory and on-disk merges
and writes data to disk whenever the shuffle buffer is full. Our pro-
totype replaces this component with a HashThread implementation,
and provides a user-configurable option to choose between MR-hash,
INC-hash, and DINC-hash implementations within HashThread.

In order to avoid the performance overhead of creating a large
number of Java objects, our prototype implements its own memory
management by placing key data structures into byte arrays. Our
current prototype includes several byte array-based memory man-
agers to provide core functionality such as hash table, key-value or
key-state buffer, bitmap, or counter-based activity indicator table,
etc., to support our three hash-based approaches.

We also implement a bucket file manager that is optimized for
hard disks and SSDs and provide a library of common combine
and reduce functions as a convenience to the programmer. Our
prototype also provides a set of independent hash functions, such as
in recursive hybrid hash, in case such multiple hash functions are
needed for analytics tasks. Also, if the frequency of hash keys is
available a priori, our prototype can customize the hash function to
balance the amount of data across buckets.

Finally, we implement several “utility” components such as a sys-
tem log manager, a progress reporter for incremental computation,
and CPU and I/O profilers to monitor system status.

6. PERFORMANCE EVALUATION
We present an experimental evaluation of our analytics platform

and compare it to optimized Hadoop (1-pass SM) version 0.20.1.
We evaluate all three hash techniques (MR-hash, INC-hash and
DINC-hash) in terms of running time, the size of reduce spill data,
and the progress made in map and reduce (by Definition 2).

In our evaluation, we use two real-world datasets: 236GB of the
WorldCup click stream, and 156GB of the GOV2 dataset6. We use
workloads over the WorldCup dataset: (1) sessionization where
we split the click stream of each user into sessions; (2) user click
counting, where we count the number of clicks made by each user;
(3) frequent user identification, where we find users who click at
least 50 times. We also use a fourth workload over the GOV2 dataset,
trigram counting, where we report word trigrams that appear more
than 1000 times. Our evaluation environment is a 10-node cluster as

6http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

described in §2.3. Each compute node is set to hold a task tracker, a
data node, four map slots, and four reduce slots. In each experiment,
4 reduce tasks run on each compute node.

6.1 Small Key-state Space
We first evaluate MR-hash and INC-hash under the workloads

with small key-state space, where the distinct key-state pairs fit in
memory or slightly exceed the memory size. We consider session-
ization, user click counting, and frequent user identification.

Sessionization. To support incremental computation of session-
ization in reduce, we configure INC-hash to use a fixed-size buffer
that holds a user’s clicks. A fixed size buffer is used since the order
of the map output collected by a reducer is not guaranteed, and yet
online sessionization relies on the temporal order of the input se-
quence. When the disorder of reduce input in the system is bounded,
a sufficiently large buffer can guarantee the input order to the online
sessionization algorithm. In the first experiment, we set the buffer
size, i.e. the state size, to 0.5KB.

Fig. 7(a) shows the comparison of 1-pass SM, MR-hash, and INC-
hash in terms of map and reduce progress. Before the map tasks
finish, the reduce progress of 1-pass SM and MR-hash is blocked
by 33%. MR-hash blocks since incremental computation is not
supported. In 1-pass SM, the sort-merge mechanism blocks the
reduce function until map tasks finish; a combine function can’t
be used here since all the records must be kept for output. In
contrast, INC-hash’s reduce progress keeps up with the map progress
up to around 1,300s, because it performs incremental in-memory
processing and generates pipelined output until the reduce memory
is filled with states. After 1,300s, some data is spilled to disk, so the
reduce progress slows down. After map tasks finish, it takes 1-pass
SM and MR-hash longer to complete due to the large size of reduce
spills (around 250GB as shown in Table 3). In contrast, INC-hash
finishes earlier due to smaller reduce spills (51GB).

Thus by supporting incremental processing, INC-hash can pro-
vide earlier output, and generates less spill data, which further
reduces the running time after the map tasks finish.

User click counting & Frequent user identification. In con-
trast to sessionization, user-click counting can employ a combine
function and the states completely fit in memory at the reducers.

Fig. 7(b) shows the results for user click counting. 1-pass SM
applies the combine function in each reducer whenever its buffer fills
up, so its progress is more of a step function. Since MR-hash does
not support the combine function, its overall progress only reaches
33% when the map tasks finish. In contrast, INC-hash makes steady
progress through 66% due to its full incremental computation. Note
that since this query does not allow any early output, no technique
can progress beyond 66% until all map tasks finish.

This workload generates less shuffled data, reduce spill data, and
output data when compared to sessionization (see Table 3). Hence
the workload is not as disk- and network-I/O- intensive. Conse-
quently both hash-based techniques have shorter running times,
when compared to 1-pass SM, due to the reduction in CPU overhead
gained by eliminating the sort phase.

We further evaluate MR-hash and INC-hash with frequent user
identification. This query is based on user click counting, but allows
a user to be output whenever the counter of the user reaches 50.
Fig. 7(c) shows 1-pass SM and MR-hash perform similarly as in
user click counting, as the reduce function cannot be applied until
map tasks finish. The reduce progress of INC-hash completely keeps
up with the map progress due to the ability to output early.

In summary, given sufficient memory, INC-hash performs fully in-
memory incremental processing, due to which, its reducer progress
can potentially keep up with the map progress for queries that allow
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(a) Sessionization (0.5KB state).
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(b) User click counting.
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(c) Frequent user identification (clicks≥ 50).
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(d) Sessionization with INC-hash.
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(e) Sessionization with DINC-hash.
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(f) Trigram counting with INC- & DINC-hash.

Figure 7: Progress report using hash implementations.

Table 3: Comparing optimized Hadoop (using sort-merge), MR-hash,
and INC-hash .

Sessionization 1-Pass SM MR-hash INC-hash
Running time (s) 4424 3577 2258
Map CPU time per node (s) 936 566 571
Reduce CPU time per node (s) 1104 1033 565
Map output / Shuffle (GB) 245 245 245
Reduce spill (GB) 250 256 51
User click counting 1-Pass SM MR-hash INC-hash
Running time (s) 1430 1100 1113
Map CPU time per node (s) 853 444 443
Reduce CPU time per node (s) 39 41 35
Map output / Shuffle (GB) 2.5 2.5 2.5
Reduce spill (GB) 1.1 0 0
Frequent user identification 1-Pass SM MR-hash INC-hash
Running time (s) 1435 1153 1135
Map CPU time per node (s) 855 442 441
Reduce CPU time per node (s) 38 38 34
Map output / Shuffle (GB) 2.5 2.5 2.5
Reduce spill (GB) 1.1 0 0

Table 4: Comparing sessionization to INC-hash with 0.5KB state, INC-
hash with 2KB state, and DINC-hash with 2KB state.

INC (0.5KB) INC (2KB) DINC (2KB)
Running time (s) 2258 3271 2067
Reduce spill (GB) 51 203 0.1

early output. Hash techniques can run faster if I/O and network are
not bottlenecks due to the elimination of sorting.

6.2 Large Key-state Space
We next evaluate INC-hash and DINC-hash for incremental pro-

cessing for workloads with a large key-state space, which can trigger
substantial I/O. Our evaluation uses two workloads below:

Sessionization with varying state size. Fig. 7(d) shows the map
and reduce progress under three state sizes: 0.5KB, 1KB, and 2KB.
A larger state size means that the reduce memory can hold fewer
states and that the reduce progress diverges earlier from the map
progress. Also, larger states cause more data to be spilled to disk, as

shown in Table 4. So after map tasks finish, the time for processing
data from disk is longer. To enable DINC-hash for sessionization,
we evict a state from memory if: (1) all the clicks in the state belong
to an expired session; (2) the counter of the state is zero. Rather
than spilling the evicted state to disk, the clicks in it can be directly
output. As shown in Table 4, DINC-hash only spills 0.1 GB data
in reduce with 2KB state size, in contrast to 203 GB for the same
workload in INC-hash. As shown in Fig. 7(e), the reduce progress
of DINC-hash closely follows the map progress, and spends little
time processing the on-disk data after mappers finish.

We further quote numbers about stock Hadoop for this workload
(see Table 1). Using DINC-hash, the reducers output continuously
and finish as soon as all mappers finish reading the data in 34.5
minutes, with 0.1GB internal spill. In contrast, the original Hadoop
system returns all the results towards the end of the 81 minute job,
causing 370GB internal data spill to disk, 3 orders of magnitude
more than DINC-hash.

Trigram Counting. Fig. 7(f) shows the map and reduce progress
plot for INC-hash and DINC-hash. The reduce progress in both
keeps growing below, but close to the map progress, with DINC-
hash finishing a bit faster. In this workload, the reduce memory
can only hold 1/30 of the states, but less than half of the input data
is spilled to disk in both approaches. This implies that both hash
techniques hold a large portion of hot keys in memory. DINC-hash
does not outperform INC-hash like with sessionization because
the trigrams are distributed more evenly than the user ids, so most
hot trigrams appear before the reduce memory fills up. INC-hash
naturally holds them in memory. The reduce progress in DINC-hash
falls slightly behind that of INC-hash because if the state of a key is
evicted, and the key later gets into memory again, the counter in its
state starts from zero again, making it harder for a key to reach the
threshold of 1,000. Both hash techniques finish the job in the range
of 4,100-4,400 seconds. In contrast, 1-pass SM takes 9,023 seconds.
So both hash techniques outperform Hadoop.

In summary, results in this section show that our hash techniques
significantly improve the progress of the map tasks, due to the



elimination of sorting, and given sufficient memory, enable fast
in-memory processing of the reduce function. For workloads that
require a large key-state space, our frequent-key mechanism signifi-
cantly reduces I/Os and enables the reduce progress to keep up with
the map progress, thereby realizing incremental processing.

7. RELATED WORK
Query Processing using MapReduce [5, 11, 16, 17, 19, 23] has
been a research topic of significant interest lately. To the best of our
knowledge, none of these systems support incremental one-pass ana-
lytics as defined in our work. The closest work to ours is MapReduce
Online [6] which we discussed in detail in Sections 2 and 3. Dryad
[23] uses in-memory hashing to implement MapReduce group-by
but falls back on the sort-merge implementation when the data size
exceeds memory. Merge Reduce Merge [22] implements hash join
using a technique similar to our baseline MR-hash, but lacks further
implementation details. Several other projects are in parallel to our
work: The work in [2] focuses on optimizing Hadoop parameters
and ParaTimer [13] aims to provide an indicator of remaining time
of MapReduce jobs. Neither of them improves MapReduce for in-
cremental computation. Finally, many of the above systems support
concurrent MapReduce jobs to increase system resource utilization.
However, the resources consumed by each task will not reduce, and
concurrency does not help achieve one-pass incremental processing.

Parallel Databases: Parallel databases [9, 8] require special hard-
ware and lacked sufficient solutions to fault tolerance, hence hav-
ing limited scalability. Their implementations use hashing inten-
sively. In contrast, our work leverages the massive parallelism of
MapReduce and extends it to incremental one-pass analytics. We
use MR-hash, a technique similar to hybrid hash used in parallel
databases [9], as a baseline. Our more advanced hash techniques
emphasize incremental processing and in-memory processing for
hot keys in order to support parallel stream processing.

Distributed Stream Processing has considered a distributed fed-
eration of participating nodes in different administrative domains
[1] and the routing of tuples between nodes [20], without using
MapReduce. Our work differs from these techniques as it considers
the new MapReduce model for massive partitioned parallelism and
extends it to incremental one-pass processing, which can be later
used to support stream processing.

Parallel Stream Processing: The systems community has devel-
oped parallel stream systems like System S [24] and S4 [15]. These
systems adopt a workflow-based programming model and leave
many systems issues such as memory management and I/O opera-
tions to user code. In contrast, MapReduce systems abstract away
these issues in a simple user programming model and automatically
handle the memory and I/O related issues in the system.

8. CONCLUSIONS
In this paper, we examined the architectural design changes that

are necessary to bring the benefits of the MapReduce model to
incremental one-pass analytics. Our empirical and theoretical anal-
yses showed that the widely-used sort-merge implementation for
MapReduce partitioned parallelism poses a fundamental barrier to
incremental one-pass analytics, despite optimizations. We proposed
a new data analysis platform that employs a purely hash-based frame-
work, with various techniques to enable incremental processing and
fast in-memory processing for frequent keys. Evaluation of our
Hadoop-based prototype showed that it can significantly improve
the progress of map tasks, allows the reduce progress to keep up
with the map progress with up to 3 orders of magnitude reduction of

internal data spills, and enables results to be returned early. In future
work, we will extend our one-pass analytics platform to support
a wider range of incremental computation tasks with minimized
I/O, online aggregation with early approximate answers, and stream
query processing with window operations.
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