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ABSTRACT
We present a class of richly structured, undirected hidden
variable models suitable for simultaneously modeling text
along with other attributes encoded in different modalities.
Our model generalizes techniques such as principal compo-
nent analysis to heterogeneous data types. In contrast to
other approaches, this framework allows modalities such as
words, authors and timestamps to be captured in their nat-
ural, probabilistic encodings. A latent space representation
for a previously unseen document can be obtained through
a fast matrix multiplication using our method. We demon-
strate the effectiveness of our framework on the task of au-
thor prediction from 13 years of the NIPS conference pro-
ceedings and for a recipient prediction task using a 10-month
academic email archive of a researcher. Our approach should
be more broadly applicable to many real-world applications
where one wishes to efficiently make predictions for a large
number of potential outputs using dimensionality reduction
in a well defined probabilistic framework.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database Applications—data mining

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Undirected Graphical Models, Topic Modeling, Text Min-
ing, Author Prediction, Recipient Prediction, Multimodal
Heterogeneous Data

1. INTRODUCTION
Many tasks in data mining involve the processing of high

dimensional data with heterogeneous attributes. In practice,
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we often ignore the heterogeneity of attributes and assume
that they come from the same source or distribution, and
deal with the problem of data dimensionality by projecting
the data into a lower dimensional representation. Princi-
pal component analysis (PCA) [14] is widely used in data
mining and knowledge discovery to achieve dimensionality
reduction from real valued input data. The singular value
decomposition (SVD) of a centered data matrix can be used
to obtain the eigen decomposition of the covariance matrix
of data. The eigenvectors of the SVD are called the principal
components [11] of the data.

Latent semantic analysis (LSA), proposed by Deerwester
et al. [6], is a way to index documents through decom-
posing a term-document matrix using PCA. In this frame-
work, a matrix consisting of integer word counts for each
document is decomposed and the eigenvectors found tend
to place higher weight on groups of words which correspond
to the notion of semantic topics. Documents projected into
the lower dimensional latent space can then be indexed more
efficiently. While ad hoc methods can be used to augment
a term document matrix with other information, the under-
lying assumptions of traditional PCA for modeling text are
inappropriate.

In particular, recently Roweis and Ghahramani [21] out-
lined the connection between linear Gaussian latent variable
models and a wide variety of methods including PCA. Prob-
abilistic PCA is defined as a linear Gaussian latent variable
model. The generative process defined by the model is that
data in the reduced dimensional latent space are drawn from
an isotropic Gaussian distribution. The observed data are
then drawn from a Gaussian distribution with a linearly
projected mean. Standard PCA can be easily derived as
a special case of probabilistic PCA, where observed data
are drawn deterministically from the linear projection of the
lower dimensional data [26]. Other recent work has used this
insight to obtain supervised forms of the probabilistic PCA
techniques [32].

While vector space representations for text documents
are widely used in a variety of fields and applications [23],
from the probabilistic interpretation of PCA, it is clear that
the model assumptions implicit within the original LSA ap-
proach for documents are inappropriate. For example, nega-
tive values in the term document matrix should not be pos-
sible within the framework of an underlying model. Further-
more, documents can consist of a rich variety of attributes
such as information concerning authors, time stamps and
various other relationships. We are interested in capturing



this richness of information using an appropriate probabilis-
tic model.

A number of probabilistically motivated methods have
been proposed to obtain more realistic principal components
for documents. One variation of LSA, the probabilistic LSA
(PLSA) model was proposed by Hofmann [13] in which doc-
uments are represented with a more natural “bag of words”
encoding in which each word arises from a hidden, discrete
topic variable.

The general approach of PLSA has been extended to a
method known as latent Dirichlet allocation (LDA) [3], which
is now a state-of-the-art method for document topic mod-
eling. LDA is a three-level hierarchical Bayesian model in
which each item in a collection is modeled as a finite mixture
over an underlying set of topics and each topic is modeled as
an infinite mixture over an underlying set of topic probabil-
ities. A survey of a number of similar techniques, also called
discrete PCA, is given in [4]. These methods are all based on
directed probabilistic graphical models where interactions
between variables are encoded as conditional probabilities.
However, for richly structured documents such modeling re-
strictions are limiting, as explained in Section 2.1.

To address existing modeling limitations we develop and
present an approach here based on undirected probabilis-
tic graphical models. Our model couples words encoded as
draws of discrete random variables with a multidimensional
continuous latent variable in a probabilistically principled
framework. Extending this general approach we show how
to model other attributes of documents such as authors and
timestamps in a natural way. We then show how the well-
known benefits of supervised dimensionality reductions are
also easily obtained through a minor modification of our op-
timization procedure. Finally, we present qualitative results
recovering topics within 13-year academic conference pro-
ceedings and a 10-month academic email archive. We then
present quantitative results for authorship identification for
research papers and recipient prediction for email messages.

2. GRAPHICAL MODELS AND
TOPIC MODELING

It is common to describe and categorize probabilistic mod-
els as either directed or undirected graphical models (also
known as, using Bayesian networks and Markov random
fields). Models of words alone such as LDA [3, 9] are an ex-
ample of a directed model. Other directed models have been
proposed for heterogeneous information also associated with
documents. For example, stochastic block structure models
[20, 16] have been developed for relations between entities,
the mixed membership technique [7] models words and re-
search paper citations, words and authors are modeled by
Steyvers et al. [24], senders and recipients in an email social
network are modeled by McCallum et al. [17], words and
relations such as voting patterns are modeled by Wang et
al. [28], while words and their timestamps are modeled by
Blei and Lafferty [2] and Wang and McCallum [27].

2.1 Directed Models
Directed graphical models can be described as generative

processes and thus enjoy modeling and computational bene-
fits conferred from conditional independencies, such as sim-
ple sampling procedures. However, in many applications,
the dependency between two random variables in directed

models can be difficult to describe and specify as a gen-
erative process and the direction of directed edges in the
underlying graph can arguably be set either way. For exam-
ple, when considering the authors and topics of documents,
one can give reasonable arguments about either authors →
topics or topics → authors. Particularly, when dealing with
multiple modalities, the huge number of possible configu-
rations of these directions between a large number of ran-
dom variables have complicated the application of directed
models to more complex multimodal, heterogeneous textual
data.

Furthermore, in state-of-the-art hierarchical Bayesian mod-
els such as LDA, exact posterior inference over hidden topic
variables and parameters is typically intractable and approx-
imate inference techniques such as variational methods [15],
Gibbs sampling [1] and expectation propagation [19] are em-
ployed to address these issues. As a result, the inference for
obtaining a topic decomposition for a previously unseen doc-
ument can be slow and troublesome.

2.2 Undirected Models
Recently, a class of structured undirected latent variable

models have gained attention for topic modeling – largely
due to the fact that once model parameters have been op-
timized, inference of hidden topics for a new document has
the complexity of a matrix multiplication, which is fast com-
pared to hierarchical Bayesian models.

The exponential family harmonium (EFH) is one of the
earlier pieces of work in this direction [29]. In Welling et
al. [29], a specific model for latent semantic indexing of
documents is also outlined in which a consistent conditional
Gaussian distribution for hidden (topic) variables is coupled
with a corresponding Bernoulli or Discrete distribution for
bucketed counts of every word across the vocabulary of a
text document collection.

The two-layer structures in EFHs have an important prop-
erty: the random variables at the two layers are condition-
ally independent given each other, which provides the prop-
erty that the mapping from one layer to the other layer
can be done by a simple matrix multiplication (and possi-
bly some trivial follow-up transformations). However, there
is no free lunch. The faster inference leads to more difficult
learning due to the intractable normalizing constant in these
types of undirected models. Fortunately, the contrastive di-
vergence [12] approach has been shown to be efficient for
inference and effective for learning in these models. Further
and more importantly, in many situations involving docu-
ment processing, training can be done off-line, which gives
us more freedom in learning.

Based on the two-layer factorization structure of an EFH,
there are several other undirected topic models that have
been recently proposed for various tasks. For example, a
dual-wing harmonium (DWH) model [30] has been applied
to captioned images. In this model hidden topics are condi-
tional Gaussian given words and word counts are distributed
according to a Poisson distribution and Gaussians for color
histograms. This model, with some extensions, has been ap-
plied to video classification on a benchmark data set with
good performance [31]. The rate adapting Poisson (RAP)
model [8] is similar, but with Poisson distributions for words
counts and Binomial (Bernoulli) distributions for hidden
topics. The RAP model has been applied to document re-
trieval and object recognition to demonstrate its properties.
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Figure 1: Graphical representations for our models. Shaded random variables are observed word tokens,
authors and timestamps of documents.

Most recently, a two-layer structured model has been shown
to be very effective when it is applied to the Netflix movie
ratings, a large but sparse tabular data set [22].

Undirected models of this structure have another impor-
tant property that directed models lack: a more accurate
characterization of rare words. As discussed in [30], in di-
rected models such as latent Dirichlet allocation, a word is
always generated from a single topic. When its count is low,
this behavior becomes a very strong assumption or limita-
tion. In the harmonium-structured models, a word arises
from a distribution influenced by all the topics. This differ-
ent mechanism might play a crucial role in certain applica-
tions.

2.3 Our Approach
Textual documents such as research papers are very rich

media that contains not only the text body considered by
most of the topic models, but authors, citations, venues,
and timestamps as well. Like the DWH model [30] for cap-
tioned images, we want to take advantage of the multimodal
information from text documents.

In this paper, we propose a novel model, called general-
ized component analysis (GCA), based on the traditional
two layer factorization structure but with dramatically dif-
ferent semantics. At the hidden layer, previous models as-
sume either Gaussian distributions or Binomial (Bernoulli)
distributions. In our model, conditioned on observations,
a random variable at the hidden layer follows a Log-normal
distribution and takes advantage of both continuity and pos-
itivity. We believe that in this setting more interpretable
results arise.

To capture the rich structure of a document including
attributes such as authors and timestamps we associate dif-
ferent coupling matrices for each of the different attributes.
In general each attribute type is encoded as a different “bag
of discrete attributes”. Importantly, when conditioned on
topics, draws from the bag are independent. However, when
topics are unobserved, all draws are dependent. In our spe-
cific experiments here, we model words, authors and times-
tamps using this construction.

We associate a Discrete distribution for the identity of
each observed word, thus each word token is drawn in a
replicated fashion akin to traditional ‘bag-of-words’ mod-
els. Note here that all the word tokens share a common

SYMBOL DESCRIPTION
T number of topics
D number of documents
V number of unique words
A number of authors
C number of discretized timestamps
Nd number of word tokens in document d
Sd number of authors in document d
Mw T × (V − 1) connection matrix for word
Ma T × (A− 1) connection matrix for author
Mc T × (C − 1) connection matrix for time
tdi the ith topic of document d
wdj the jth word of document d
adk the kth author of document d
cd the (discretized) timestamp of document d

Table 1: Notation used in this paper

connection matrix between word layer and topic layer. By
contrast, in [29] a different connection matrix is needed for
each word and word count level. As discussed in [29], vari-
ous continuous exponential family distributions can be used
to augment models for real valued attributes. The Pois-
son distributions adopted in [30] and [8] make it possible
to use only one connection matrix, but when reconstructing
the document counter vectors during contrastive divergence
training (see Section 3), there is no guarantee that the re-
constructed document has the same length of the original
document. In such a case, at early stages of learning, the
learning rate of the gradient update has to be carefully set
to a small value as reported in [8] and this makes the model
difficult to learn. Our model implicitly takes the document
length as an input, and we find empirically that the learning
process converges faster. Authors are also associated with
a Discrete distribution in our setting. We now present the
details of our model for generalized component analysis.

3. GENERALIZED COMPONENT
ANALYSIS

In contrast to previous undirected topic models, in our
new model, generalized component analysis (GCA), words
are encoded as individual observations instead of word counts.



Because of the conditional independencies between two lay-
ers, we can describe the model in plate notation, shown in
Figure 1(a). The notation used in this paper is shown in Ta-
ble 1. For clarity, we expand the model for document d as
shown in Figure 1(b) into a restricted Boltzmann machine
or exponential family harmonium structure.

Following a common approach for describing a general
exponential family two layer architecture, we specify our
model as follows:

1. Consider first, at hidden (topic) layer, a Log-normal
distribution p(tdi) = Log-normal(0, 1) for each latent
topic in document d; and

2. at the observation layer,

(a) a Discrete distribution P (wdj) = Discrete(0) for
each word token in document d,

(b) a Discrete distribution P (adk) = Discrete(0) for
each author of document d, and

(c) a Discrete distribution P (cd) = Discrete(0) for
the timestamp of document d;

where we use the notation Log-normal(µ, σ2) for a Log-
normal distribution with parameters µ and σ2 — the mean
and variance of the variable’s logarithm, and Discrete(θ) is a
Discrete distribution (for example, with words) with natural
parameter θk (k = 1, · · · , V − 1) that can be transformed

into the probability vector πk = eθk/
PV

v=1 e
θv (note here

we set θV = 0).
For simplicity, as shown in the above description, we do

not use local potentials, but it is straightforward to define
and learn these potentials as well, as demonstrated in pre-
vious harmonium-structured models [29, 30, 8]. Also, as in
the DWH model, it is possible to mix together discrete and
continuous distributions for different modalities, for exam-
ple, we could utilize some continuous distribution such as
Gaussian and Beta to model time without discretization as
in [27].

Once we defined the form we wish the observed and hidden
layers to take, we couple the random variables within the two
layers by the connection matrix Mw, Ma and Mc to obtain
a joint probability distribution in exponential family form
as follows:

P (td,wd,ad, cd) ∝ exp(

TX
i=1

(− log(tdi)−
1

2
log2(tdi)

+(

NdX
j=1

Mw
iwdj

+

SdX
k=1

Ma
iadk

+Mc
icd

) log(tdi))) (1)

where, for notational convenience, we set Mw
iV = 0, for i =

1, · · · , T , Ma
iA = 0, for i = 1, · · · , T , and Mc

iC = 0, for
i = 1, · · · , T .

Consequently, it is easy to verify the conditional distribu-
tions still remain in the same exponential family but with
shifted parameters,

p(tdi|wd,ad, cd)

= Log-normal(

NdX
j=1

Mw
iwdj

+

SdX
k=1

Ma
iadk

+Mc
icd
, 1)

= Log-normal(

V −1X
j=1

Mw
ijmdj +

SdX
k=1

Ma
iadk

+Mc
icd
, 1) (2)

P (wdj |td) = Discrete(

TX
i=1

log(tdi)M
w
i· ) (3)

P (adk|td) = Discrete(

TX
i=1

log(tdi)M
a
i·) (4)

P (cd|td) = Discrete(

TX
i=1

log(tdi)M
c
i·) (5)

where mdj is the count of word j in document d.
From the joint probability of all random variables (Eqn.

1), we can marginalize out the latent topic variables, and
obtain the marginal likelihood of the observed document d.
Note that there is no marginal independence between the
observed variables although they are conditionally indepen-
dent give the hidden topics.

P (wd,ad, cd)

∝ exp(
1

2

TX
i=1

(

V −1X
j=1

Mw
ijmdj +

SdX
k=1

Ma
iadk

+Mc
icd

)2)

Our objective function, the marginal likelihood of the
whole corpus, thus can be calculated (up to a normalizing
constant) as

DY
d=1

P (wd,ad, cd)

∝ exp(
1

2

DX
d=1

TX
i=1

(

V −1X
j=1

Mw
ijmdj +

SdX
k=1

Ma
iadk

+Mc
icd

)2) (6)

3.1 Parameter Learning by Contrastive Di-
vergence

Parameters of our model could be learned by gradient as-
cent on the marginal (log) likelihood in Eqn. 6. However,
due to the intractability of the normalizing constant, it is dif-
ficult to calculate the gradient of the log-likelihood. We use
contrastive divergence [12] which has been shown to greatly
improve learning efficiency in harmonium architectures [29,
30, 8].

The main idea of contrastive divergence is that we can
truncate a Gibbs sampler with only one (or a few) iterations,
and use the distribution of the samples (say, ŵd or equiv-
alently m̂dk, d = 1, . . . , D, and k = 1, . . . , V − 1) from the
truncated chain to approximate the model distribution.1 In
this way, the learning rule, by taking derivatives of the (un-
nomalized) log-likelihood objective function in Eqn. 6, can
be written as the difference between the empirical average
〈·〉p̃ where p̃ denotes the empirical distribution determined
by our observations, and the approximated (by contrastive
divergence) model average 〈·〉pCD where pCD denotes the
model distribution approximated by the samples from the
truncated Gibbs chain in our contrastive divergence learn-
ing.

δMw
ij ∝

DX
d=1

(mdj(

V −1X
v=1

Mw
ivmdv +

SdX
k=1

Ma
iadk

+Mc
icd

)

−m̂dj(

V −1X
v=1

Mw
ivm̂dv +

SdX
k=1

Ma
iâdk

+Mc
iĉd

))−
Mw

ij

σ2
(7)

1More details on contrastive divergence learning can be
found in [12].



Algorithm 1 Learning via Contrastive Divergence

1: Input: document wd,ad, cd (d = 1, · · · , D), topic# T
2: Initialize connection matrix Mw,Ma,Mc randomly
3: repeat
4: for d = 1 to D do
5: for i = 1 to T do
6: Draw tdi, according to p(tdi|wd,ad, cd) in Eqn. 2
7: end for
8: for j = 1 to Nd do
9: Draw ŵdj , according to P (wdj |td) in Eqn. 3

10: end for
11: for k = 1 to Sd do
12: Draw âdk, according to P (adk|td) in Eqn. 4
13: end for
14: Draw ĉd, according to P (cd|td) in Eqn. 5
15: end for
16: for i = 1 to T do
17: for j = 1 to V − 1 do
18: Update Mw

ij , according to Eqn. 7
19: end for
20: for k = 1 to A− 1 do
21: Update Ma

ik, according to Eqn. 8
22: end for
23: for b = 1 to C − 1 do
24: Update Mc

ib, according to Eqn. 9
25: end for
26: end for
27: until Mw,Ma,Mc converge

Similarly, we can obtain the learning rules for the other
two connection matrices,

δMa
ik ∝

DX
d=1

(I(k ∈ ad)(

V −1X
v=1

Mw
ivmdv +

SdX
k=1

Ma
iadk

+Mc
icd

)

−I(k ∈ âd)(

V −1X
v=1

Mw
ivm̂dv +

SdX
k=1

Ma
iâdk

+Mc
iĉd

))− Ma
ik

σ2
(8)

and,

δMc
ib ∝

DX
d=1

(I(b = cd)(

V −1X
v=1

Mw
ivmdv +

SdX
k=1

Ma
iadk

+Mc
icd

)

−I(b = ĉd)(

V −1X
v=1

Mw
ivm̂dv +

SdX
k=1

Ma
iâdk

+Mc
iĉd

))− Mc
ib

σ2
(9)

where I(q ∈ Q) and I(a = b) are indicator functions, and the
last terms in all formulae come from a Gaussian prior over
parameters (with variance σ2) which provides smoothing to
help cope with sparsity in the training data [5]. This prior
favors parameters that are closer to zero, and penalize (both
positive and negative) large values of parameters. We sum-
marize the above contrastive divergence learning procedures
in Algorithm 1.

The introduction of this prior also helps alleviate the iden-
tifiability problem as reported in [29] and [8], that is, it
makes the model more identifiable. Without further spe-
cial handling of identifiability issues, we still get surpris-
ingly accurate and interpretable results as shown in Section
5. Priors over weights can also influence the effectiveness of
dimensionality reduction. A corpus usually has an intrinsic
number of topics that is unknown, and in general, we either

try many settings and select the best, or use nonparametric
methods to estimate this number [25]. When given inappro-
priate number of topics, a model without a prior will try to
duplicate some topic or create some random (but usually not
trivial) topics. With priors, the spurious topics will gradu-
ally become trivial (near zero everywhere) since the priors
push the weights toward zero where there is not enough data
evidence supporting them.

3.2 Discriminative Learning
To explicitly emphasize that we want to infer one modal-

ity from other modalities, we can perform discriminative
training by optimizing our model for a conditional likelihood
(CL). Other alternatives include multi-conditional learning
(MCL), a training criterion based on weighted combinations
of multiple log conditional likelihoods [18].

The update rules can be simplified during discriminative
learning since we do not need to reconstruct the modalities
that we are not aiming to infer. In this section, we use an
author prediction task as an example to illustrate how to do
discriminative training in GCA, namely, we are interested
in inferring authors from the given text and timestamp of a
document. This task is fundamentally difficult considering
there could often be hundreds of possible authors.

Using the discriminative learning criterion, we can obtain
an alternative, simpler objective function

QD
d=1 P (ad|wd, cd).

Similar to Eqn. 7, 8, and 9 in regular training, we can ar-
rive at the learning rules under discriminative learning as
follows,

δMw
ij ∝

DX
d=1

mdj(

SdX
k=1

Ma
iadk

−
SdX

k=1

Ma
iâdk

)−
Mw

ij

σ2

δMa
ik ∝

DX
d=1

(I(k ∈ ad)(

V −1X
v=1

Mw
ivmdv +

SdX
k=1

Ma
iadk

+Mc
icd

)

− I(k ∈ âd)(

V −1X
v=1

Mw
ivmdv +

SdX
k=1

Ma
iâdk

+Mc
icd

))− Ma
ik

σ2

δMc
ib ∝

DX
d=1

I(b = cd)(

SdX
k=1

Ma
iadk

−
SdX

k=1

Ma
iâdk

)− Mc
ib

σ2

In Section 5, we show the difference between the two train-
ing criteria, and empirically demonstrate that discriminative
learning is significantly better for tasks such as author pre-
diction for research papers and recipient prediction for email
messages.

4. DATA SETS
We apply our models to two large text corpora, academic

research papers and email messages of a researcher, and
show the results in Section 5.

4.1 NIPS Data Set
The NIPS proceeding data set consists of the full text

of the 13 years of proceedings from the Neural Information
Processing Systems (NIPS) Conferences 1987 to 1999.2 In
addition to downcasing and removing stopwords and num-
bers, we also removed the words appearing less than five
times in the corpus—many of them produced by OCR er-
rors. Two-letter words (primarily coming from equations),

2http://www.cs.toronto.edu/∼roweis/data.html



“Biological Neuroscience” “Reinforcement Learning” “Probabilistic Methods”
cells .439 training -.556 learning .318 image -.536 data .364 state -.512
cell .361 networks -.500 policy .266 data -.444 model .307 time -.454
firing .360 error -.472 reinforcement .252 images -.431 mixture .271 neuron -.449
cortex .357 network -.470 control .239 recognition -.345 gaussian .260 neural -.429
cortical .355 speech -.465 state .234 feature -.315 likelihood .225 system -.422
stimulus .327 neural -.461 action .233 object -.271 image .221 control -.405
spike .314 classifier -.436 actions .158 visual -.270 distribution .217 neurons -.373
synaptic .310 class -.412 weight .153 features -.263 bayesian .213 analog -.363
synapses .275 word -.410 states .151 gaussian -.241 images .204 network -.359
motion .268 state -.407 controller .150 classification -.233 em .189 circuit -.335

Table 2: Three topics from a 20-topic run of our model on 13 years of NIPS research papers. The “Title”
above the word lists of each topic is our own summary of the topics. For each topic, we show the top 10
positive words (left) and the top 10 negative ones (right) with the corresponding weights. Here, for displaying
convenience, we have multiplied all the learned weights by a factor of 10. The learned topics are considered
well known to exist within the NIPS community.

were removed, except for “ML”, “AI”, “KL”, “BP”, “EM”
and “IR.”

We also remove the authors who published fewer than 6
NIPS papers during 1987-1999, and only keep the papers co-
authored by at least one of the remaining authors. Our data
set contains 873 research papers, 125 authors, 13,576 unique
words, and 1,173,343 word tokens in total. The timestamps
we use are the publication years of the papers.

4.2 Academic Email Data Set
This data set consists of the last author’s email archive of

the ten months from January to October 2004 and here we
only consider all the emails sent by McCallum to facilitate
the recipient prediction task. In order to model only the new
text entered by the author of each message, it is necessary
to remove “quoted original messages” in replies. We elimi-
nate this extraneous text by a simple heuristic: all text in a
message below a “forwarded message” line or timestamp is
removed. This heuristic does incorrectly delete text that are
interspersed with quoted email text. Words are formed from
sequences of alphabetic characters; stopwords are removed,
and all text is downcased.

Similarly to the preprocessing steps used for the NIPS
data set, we remove the recipients who got fewer than 6
emails from McCallum during that period and only keep the
emails received by at least one of the remaining recipients.
The data set contains 4,643 email messages, 190 recipients,
8,693 unique words, and 97,418 word tokens in total. Each
document’s timestamp is determined by the month the mes-
sage was sent.

5. EXPERIMENTAL RESULTS
In this section, we first show several lists over words, au-

thors and time for several learned topics, as anecdotal evi-
dence, and then we compare our model with previous mod-
els in author prediction on the NIPS data set and recipient
prediction on the Email data set.

5.1 Interpretable Topics for Conference Pa-
pers and Email Messages

We present the word list for a subset of topics learned
within our weight matrices from the NIPS data set, first
only using the text modality as shown in Table 2. Immedi-

ately, we can see that all the positive words provide a broad,
vivid summary of topics well known to exist within the NIPS
community: Biological Neuroscience, Reinforcement Learn-
ing and Probabilistic Methods. Other topics not shown ex-
hibit words characteristic of topics such as Computational
Neuroscience. Interestingly, the negatively weighted words
are also common words in other topics, and serve to separate
this topic from others possibly confused with it.

In contrast, we believe that the topics which emerge when
our model possesses author and time components tend to
be more subtle and in some sense of higher fidelity. For
example, Table 3 illustrates a VLSI topic and a Vision Sci-
ence topic extracted from the NIPS data under the richer
model. Interestingly, authors exhibit different co-occurrence
patterns. For example, in our selection here, C. Koch is
present in both the VLSI and Vision Science topic while
T. Sejnowski is highly prominent only in the Vision Science
topic and J. Platt is highly prominent only in the VLSI topic.
A selection of (early) NIPS publications from these authors
is given in Table 4 to further illustrate the effectiveness of
our model and the relevance of these topics.

Table 5 depicts a selection of topics extracted from Mc-
Callum’s email archive. The first topic concerns the writ-
ing of a paper with collaborators with usernames: fuchun,
wellner and mhay. User jensen was also involved in ear-
lier stages of the research and other people lower on the list
were not involved with the paper but are collaborators and
assistants. The second topic concerns the construction of a
system for finding email contact information from the web.
Users culotta and ronb were heavily involved in the system
construction. User pereira is involved with the associated
project called ‘CALO.’ Also interestingly, from the tempo-
ral modality, we can find this piece of work was primarily
done in January and February, 2004, the annual spring pa-
per submission season.

5.2 Author Prediction on NIPS Data Set
Author prediction for a document is fundamentally diffi-

cult: (1) in practice, the pool of potential authors for a given
document could be very large; (2) the number of authors
on a test document is often unknown. Obviously, accuracy
across so many authors would not be informative. Here, we
use the mean reciprocal rank (MRR) measure to evaluate
the performance of models.



“VLSI”
Words People Year

analog 0.080 basis -0.091 Platt, J 0.207 Sejnowski, T -0.466 1991 0.138
pulse 0.068 representation -0.089 Harris, J 0.205 Mel, B -0.384 1997 0.122
chip 0.066 pca -0.086 Alspector, J 0.153 Dayan, P -0.349 1992 0.080
vlsi 0.066 representations -0.084 Koch, C 0.153 Mozer, M -0.346 1993 0.051
velocity 0.056 class -0.084 Lazzaro, J 0.146 Zemel, R -0.331 1998 0.050
synapse 0.049 structure -0.081 Principe, J 0.137 Cottrell, G -0.314 1989 0.032
circuit 0.047 face -0.079 Mead, C 0.135 Tenenbaum, J -0.304 1987 0.028
voltage 0.042 mixture -0.078 Cauwenberghs, G 0.112 Wiles, J -0.293 1996 0.021
trajectory 0.042 context -0.075 Mjolsness, E 0.108 Pouget, A -0.283 1999 0.000
circuits 0.041 zemel -0.072 Maass, W 0.100 Ahmad, S -0.267 1990 -0.013

“Vision Science”
Words People Year

orientation 0.083 decision -0.095 Sejnowski, T 0.398 Bartlett, P -0.278 1989 0.038
dominance 0.080 bounds -0.089 Koch, C 0.375 Jaakkola, T -0.240 1991 0.032
visual 0.080 risk -0.088 Pouget, A 0.289 Shavlik, J -0.239 1988 0.029
ocular 0.079 theorem -0.087 Kawato, M 0.263 Tesauro, G -0.207 1994 0.006
velocity 0.078 margin -0.080 Obermayer, K 0.260 Thrun, S -0.207 1996 0.005
stimuli 0.075 trees -0.075 Nowlan, S 0.230 Bengio, Y -0.199 1997 0.002
eye 0.075 boosting -0.072 Dayan, P 0.219 Kowalczyk, A -0.194 1999 0.000
cortex 0.070 policy -0.070 Zemel, R 0.214 Cohn, D -0.181 1992 -0.013
cortical 0.069 cost -0.069 Lee, D 0.199 Baluja, S -0.178 1990 -0.038
lgn 0.068 algorithms -0.067 Li, Z 0.198 Lee, Y -0.177 1987 -0.048

Table 3: Two topics (VLSI and Vision Science) from a 20-topic run of our model on 13 years of NIPS research
papers. The “Title” above the word lists of each topic is our own summary of the topics. For each topic, we
show the top 10 positive words/authors (left) and the top 10 negative ones (right) with the corresponding
weights and the top 10 timestamps. We use our model to explicitly account for words, authors and time.

Terrence J. Sejnowski
— Recurrent Eye Tracking Network Using a Distributed Representation of Image Motion. NIPS 1991
— Combining Visual and Acoustic Speech Signals with a Neural Network Improves Intelligibility. NIPS 1989
John C. Platt
— Analog Circuits for Constrained Optimization. NIPS 1989
— An Analog VLSI Chip for Radial Basis Functions. NIPS 1992
Christof Koch
— An Integrated Vision Sensor for the Computation of Optical Flow Singular Points. NIPS 1998
— Analog VLSI Circuits for Attention-Based, Visual Tracking. NIPS 1996
— An Analog VLSI Saccadic Eye Movement System. NIPS 1993

Table 4: A selection of NIPS publications from several authors shown in Table 3.

In traditional information retrieval, given a query, we rank
the documents in a corpus by some score, such as vector-
space cosine similarity between document and query [23],
and query likelihood [33] and take the top ones as the re-
trieved documents. Obviously, not all the retrieved docu-
ments are relevant to the given query. In our setting, we
project a given test document and all of the training docu-
ments into latent space, and rank all the training documents
according vector based cosine similarity with the test docu-
ment. When the intersection of the author sets of the test
document and a retrieved document is not empty, we out-
put that the retrieved document as relevant. The reciprocal
rank of a test document is the reciprocal of the rank at
which the first relevant response was returned, or 0 if none
of the responses contained a relevant answer. The score for
a sequence of queries is the mean of the individual query’s
reciprocal ranks.

We randomly split the NIPS data set into training set
(9/10, 786 documents) and test set (1/10, 87 documents).
We compare our models (discriminatively trained and reg-
ularly trained) with the author-topic (AT) model [24] and
singular value decomposition (SVD), all using 20 hidden top-
ics.

We compare our results with GCA to those of the author-
topic (AT) model — a Bayesian network, in which each au-
thor’s interests are modeled with a mixture of topics [24].
In its generative process for each document d, a set of au-
thors, ad, is observed. To generate each word, an author x
is chosen uniformly from this set, then a topic t is selected
from a multinomial topic distribution θx that is specific to
the author, and then a word w is generated from a topic-
specific multinomial distribution φt over words. θ and φ
are drawn from conjugate Dirichlet priors. The posterior
estimates θ̂ and φ̂ of these two mixtures can be obtained



“Writing a Paper on Coreference”
Words People Month

paper 0.053 email -0.019 fuchun 0.412 culotta -0.073 5 0.470
model 0.047 people -0.015 wellner 0.395 ronb -0.065 2 0.335
section 0.037 find -0.003 mhay 0.373 traustik -0.030 9 0.208
inference 0.034 addrie -0.001 jensen 0.192 viola -0.021 6 0.157
results 0.030 clyde -0.001 pereira 0.085 system -0.021 3 0.106
models 0.028 calobase -0.000 lafferty 0.073 lsaul -0.017 8 0.031
work 0.028 sgml -0.000 kate 0.060 souccar -0.013 7 0.012
coreference 0.025 green -0.000 mahadeva 0.050 tzhang -0.013 10 0.000
ben 0.024 remotely -0.000 casutton 0.045 jst@ -0.012 4 -0.135
text 0.023 emacs -0.000 jean 0.040 szmiller -0.012 1 -0.223

“Building a Contact Finding System”
Words People Month

aron 0.026 model -0.006 culotta 0.357 fuchun -0.168 1 0.334
data 0.021 research -0.006 weili 0.116 wellner -0.153 2 0.309
email 0.018 inference -0.003 ronb 0.111 mhay -0.131 9 0.112
people 0.015 spider -0.003 pereira 0.105 saunders -0.109 7 0.012
find 0.011 paper -0.003 viola 0.097 mikem -0.062 6 0.003
results 0.011 mccallum -0.003 lafferty 0.086 jensen -0.041 10 0.000
ron 0.010 fuchun -0.002 traustik 0.074 adingle -0.035 4 -0.060
calo 0.010 papers -0.002 ghuang 0.046 slfeng -0.015 5 -0.064
class 0.009 prototype -0.002 hough 0.032 jean -0.014 3 -0.093
training 0.009 mysql -0.002 casutton 0.031 msindela -0.014 8 -0.176

Table 5: A topic concerning the writing of a paper about coreference techniques (top) and a topic about
building a system for finding email contacts (bottom). The “Title” above the word lists of each topic is our
own summary of the topics. For each topic, we show the top 10 positive words/recipients (left) and the top 10
negative ones (right) with the corresponding weights and the top 10 timestamps. Topics were found within
McCallum’s email archive using our model for words, authors and timestamps encoded for each month.

Data Set Discriminative Learning Regular Learning Author-Topic Model SVD Words Only
NIPS 0.8742 0.4590 0.5094 0.3791 0.2637
Email 0.6009 0.3060 0.3715 0.2706 0.2207

Table 6: The best mean reciprocal rank (MRR) score for GCA with discriminative learning, GCA with regular
learning, the author-topic (AT) model and SVD. We also include the MRR score of GCA on the word part
of the data set only to show the benefit of including additional information from non-word modalities. All
models are trained with 20 hidden topics.

conveniently during the training stage by Gibbs sampling,
variational methods, or expectation propagation.

To predict an author a of a given new document d, we
can calculate the posterior probability of author a given wd

using Bayes rule, P (a|wd) ∝ P (wd|a)P (a). Here, for sim-
plicity, we treat the timestamps of documents as additional
words. The author(s) with highest posterior probabilities
are our predictions. The prior of author a, P (a), can be es-
timated by counting how many times he/she (co-)authored
a paper in the training set, and the data likelihood of the
words can be obtained by summing over all possible topic
assignments of each token, as shown below,

P (wd|a) =

NdY
i=1

 
TX

t=1

θ̂atψ̂twdi

!
.

We also compare our model versus SVD: we ignore the
heterogeneity of the data, and aggregate the word counts,
the authors, and the timestamps of the documents into a
big matrix, conduct SVD analysis, and then find the lower
dimensional representations of the documents.

The MRR scores are shown in Table 6. To demonstrate
the advantage of incorporating information from multiple
modalities, we also run the model on words only. As ob-
served in Table 6, even with regular training, our model
outperforms SVD and AT with uniform prior on authors
(not shown in Table 6). With discriminative training, our
model is significantly better than SVD and the author-topic
model, achieving a MRR score more than twice as large as
from SVD.

Note that, (1) author prediction on test documents for the
author-topic model is relatively slow because we need sum
over all possible topic assignments of each word token. On
the other hand, both for GCA and SVD, this can be done
by simple matrix multiplication; (2) training can be done
offline, however we want to point out that discriminative
learning is much more efficient in our setting than regular
learning because we do not need to reconstruct the words
and time during contrastive divergence learning.

We also show how the MRR scores change on the NIPS
data set as the number of learning iterations increase in Fig-



Figure 2: The mean reciprocal rank (MRR) scores
vs. number of iterations for different models on the
NIPS data set. All models are trained with 20 hid-
den topics.

ure 2. These curves also serve as additional evidence regard-
ing whether the number of training iterations is sufficient.

5.3 Recipient Prediction on Email Data Set
Recipient prediction (also called CC prediction) has re-

cently attracted significant interest. As an important office
application, recipient prediction seems very similar to au-
thor prediction discussed in the previous section. We can
easily adapt the same setting used for author prediction to
do recipient prediction. We randomly split the Email data
set into training set (9/10, 4,179 documents) and test set
(1/10, 464 documents).

The MRR scores are reported in Table 6. Again, we can
quickly see that the discriminatively trained GCA greatly
outperforms other models. The MRR scores change on the
Email data set as the number of learning iterations increase
are shown in Figure 3 for different models.

Also, we can find that MRR scores are consistently worse
than the ones on NIPS data set. Our conjecture is that the
body message of an email is in general much shorter than a
research paper; an email’s body message can be as simple as
one word. Additionally, the text in email body is composed
by the sender, although it should reflect recipients’ interests
or expertise.

6. CONCLUSION AND DISCUSSION
We have proposed a new harmonium-structured undirected

model for large text collections that simultaneously take
into account information from multiple modalities. For the
discrete attributes of documents such as words, unlike the
previous models, the new model still allows the words to
come from a discrete distribution in a ‘bag-of-words’ fash-
ion. Thus, our model implicitly takes document length as
input, which greatly increases the efficiency during the con-
trastive divergence learning.

We have shown interpretable topics over various document
attributes (words, authors, time) on two large text collec-
tions, and demonstrate better mean reciprocal rank (MRR)
performance, over other models, on author prediction task

Figure 3: The mean reciprocal rank (MRR) scores
vs. number of iterations for different models on the
Email data set. All models are trained with 20 hid-
den topics.

on the NIPS data set and recipient prediction task on the
Email data set. Our models can be applied to tasks with
similar objectives such as targeted advertising.

Our models with these hidden layer structures allow a
great deal of flexibility to incorporate information from mul-
tiple modalities as demonstrated. In directed models, typ-
ically when a new source of information is introduced, de-
pendencies with other variables are carefully hand specified,
and in many cases, dependencies are too complicated to be
explicitly expressed. Furthermore, likelihoods from different
modalities are often not comparable and weighting param-
eters are often needed as in [27]. We see great potential to
combine a wide variety of information from other attributes
and robustly create extremely rich models that could have
been particularly hard to devise in a directed model. We
believe the model presented in this paper and other simi-
lar ones will play an important role in modeling data with
heterogeneous attributes.
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