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Abstract

Most of the popular topic models (such as Latent Dirichlet Allocation) have an underlying assump-
tion: bag of words. However, text is indeed a sequence of discrete word tokens, and without considering
the order of words (in another word, the nearby context where a word is located), the accurate meaning of
language cannot be exactly captured by word co-occurrences only. In this sense, collocations of words
(phrases) have to be considered. However, like individual words, phrases sometimes show polysemy
as well depending on the context. More noticeably, a composition of two (or more) words is a phrase
in some context, but not in other contexts. In this paper, we propose a new probabilistic generative
model that automatically determines unigram words and phrases based on context and simultaneously
associates them with mixture of topics, and show very interesting results on large text corpora.

1 Introduction

n-gram phrases (or collocations) are fundamentally important in many areas of natural language processing
(e.g., parsing, machine translation and information retrieval). Phrase as the whole carries more information
than the sum of its individual components, thus it is much more crucial in determining the topics of document
collections than individual words. However, most of the topic models (such as Latent Dirichlet Allocation
(Blei et al., 2003)) assume that words are generated independently to each other, i.e., under the bag of
words assumption. The possible over complicacy caused by introducing phrases makes these topic models
completely ignore them. It is true that these models with the bag of words assumption have enjoyed a big
success, and attracted a lot of interests from researchers with different backgrounds. We believe that a topic
model considering phrases would be more useful in certain applications.

Assume that we conduct topic analysis on a large collection of research papers. Not surprisingly, we
will end up with a particular topic on acknowledgment (or funding agency) since many papers have an
acknowledgment section (which is not tightly coupled with the content of papers). A topic model with
the bag of words assumption ranks very high words like “health” and “science”. However, these words
have other common meanings and we are not crystal clear why they are ranked so high in acknowledgment
topic. A topic model with phrases would associate them with other words to form highly-ranked phrases:
“National Institutes of Health” and “National Science Foundation”.

Phrases often have specialized meaning, but it is not always the case. For instance, “neural networks”
is considered as a phrase because of the frequent use of it as a fixed expression. However, it specifies
two distinct concepts: biological neural network in neuroscience and artificial neural networks in modern
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(a) Wallach’s model (b) LDA-Collocation model (c) Topicaln-gram model

Figure 1: Threen-gram models (D: # of documents;T : # of topics;W : # of unique words)

usage. Without consulting the context where the term is located, there is no way to determine its actual
meaning. In many situations, topic is very useful to accurately determine the meaning. Also, topic can play
a role in phrase discovery. Considering learning English, a beginner usually has difficulty in telling “strong
tea” from “powerful tea” (Manning & Schutze, 1999), which are both grammatically correct. The topic
associated with “tea” might help to discover the misuse of “powerful”.

Is a phrase born to be one? Let us consider another example, in politics topic, “white house” is a proper
noun, however, in other topics such as real estate, it does even not mean a phrase, that is, it is not idiomatic
at all.

In this paper, we propose a new topicaln-gram model that is able to automatically determine unigram
words and phrases based on context and simultaneously assign mixture of topics to both individual words
andn-gram phrases. The ability to form phrase only where appropriate our model possesses is unique,
which distinguish it from the traditional collocation discovery methods discussed in Section 3, in which a
discoveredphrase is treated as aphraseno matter what the context is.

2 n-gram Models

Before going to the topicaln-gram model, we first describe two relatedn-gram models in the same flavor.
For simplicity, the models discussed in this section take the1st order Markov assumption, that is, they are
actually bigram models. However, all the models have the ability to “model” higher ordern-grams (for
n > 2) by concatenating consecutive bigrams.

2.1 Bigram Topic Model

Wallach (2005) recently developed a Bigram Topic Model on the basis of the Hierarchical Dirichlet Lan-
guage Model (MacKay & Peto, 1994), by incorporating the concept of topic into bigram models. This
model is one of the solutions for the “neural network” example in Section 1. We assume a dummy word
w0 existing at the beginning of each document. The graphical model presentation of this model is shown in
Figure 1(a). The generative process of this model can be described as follows:

1. Draw multinomialσzw from a Dirichlet priorδ;
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2. For each documentd, draw a multinomialθ(d) from a Dirichlet priorα; then for each wordw(d)
i in

documentd:

(a) Drawz(d)
i from multinomialθ(d);

(b) Draww(d)
i from multinomialσ

z
(d)
i w

(d)
i−1

.

2.2 LDA Collocation Model

The LDA Collocation Model (Steyvers & Griffiths, 2005) introduces a new set of random variables (for
bigram status)x (xi = 1: wi−1 andwi form a bigram;xi = 0: they do not) which denotes whether
a bigram can be formed with the previous word token, in addition to the two sets of random variablesz
andw. Thus, it has the power to decide whether to generate a bigram or a unigram. At this aspect, it is
more realistic than Wallach’s model which always generates bigrams. After all, unigrams are the major
components in a document. We assume the status variablex1 is observed, and only unigram is allowed at
the beginning of a document. If we want put more constraints into the model (e.g., no bigram is allowed
for sentence/paragraph boundary; only unigram can be considered for the next word after a stop word is
removed; etc.), we can assume that the corresponding status variables are observed as well. Although the
LDA Collocation model does not generate topic-wise bigrams, a bigram can obtain a topic in a post-hoc
way: the first term of a phrase is always generated from the LDA part which carries a topic assignment, and
one can take that as the topic of the phrase. This processing does not always assign a reasonable topic to a
phrase as everyone can expect. The graphical model presentation of this model is shown in Figure 1(b). The
generative process of the LDA Collocation model can be described as follows:

1. Draw multinomialφz from a Dirichlet priorβ;

2. Draw binomialψw from a Beta priorγ;

3. Draw multinomialσw from a Dirichlet priorδ;

4. For each documentd, draw a multinomialθ(d) from a Dirichlet priorα; then for each wordw(d)
i in

documentd:

(a) Drawx(d)
i from binomialψ

w
(d)
i−1

;

(b) Drawz(d)
i from multinomialθ(d);

(c) Draww(d)
i from multinomialσ

w
(d)
i−1

if x(d)
i = 1; else draww(d)

i from multinomialφ
z
(d)
i

.

2.3 Topicaln-gram Model

The topicaln-gram (TNG) model is not a pure addition of Wallach’s model and LDA Collocation model.
It can solve the problem associated with “neural network” example as Wallach’s model, and automatically
determine whether a composition of two terms is indeed a bigram as in LDA collocation model. However,
like other collocation discovery methods discussed in Section 3, a discovered bigram is always a bigram in
LDA Collocation model. One of the key contributions of our model is to make it possible to decide whether
to form a bigram for the same two consecutive word tokens depending on their nearby context (i.e., co-
occurrences). Thus, additionally, our model is a perfect solution for the “white house” example in Section 1.
As in LDA collocation model, we may assume some ofx are observed for the same reason. The graphical
model presentation of this model is shown in Figure 1(c). Its generative process can be described as follows:

1. Draw multinomialφz from a Dirichlet priorβ;
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2. Draw binomialψzw from a Beta priorγ;

3. Draw multinomialσzw from a Dirichlet priorδ;

4. For each documentd, draw a multinomialθ(d) from a Dirichlet priorα; then for each wordw(d)
i in

documentd:

(a) Drawx(d)
i from binomialψ

z
(d)
i−1w

(d)
i−1

;

(b) Drawz(d)
i from multinomialθ(d);

(c) Draww(d)
i from multinomialσ

z
(d)
i w

(d)
i−1

if x(d)
i = 1; else draww(d)

i from multinomialφ
z
(d)
i

.

Before discussing the inference problem of our model, let us pause for a brief interlude on topic consis-
tency of terms in a bigram. As shown in the above, the topic assignments for the two terms in a bigram are
not required to be identical. Revealing this will surely be enough to cause some readers to stop. However,
we are not convinced that this inconsistency is a bad thing from experimental results and our discussion with
colleagues. Not like in the LDA Collocation model (the topic of the first term is the topic of the phrase),
if a topic of phrase is really needed, we can have the choices to take the topic of the first/last word token
or the most common topic in the phrase. In this paper, we will use the topic of the last term as the topic
of phrase for simplicity. Furthermore, we could enforce the consistency in the model with ease, by simply
adding two more sets of arrows (zi−1 → zi andxi → zi). Accordingly, we could substitute Step 4(b) in
the above generative process with “Drawz(d)

i from multinomialθ(d) if x(d)
i = 1; else letz(d)

i = z
(d)
i−1;” In

this way, a word has the option to inherit a topic assignment from the previous word if they form a bigram
phrase. From now on, we will focus on the model shown in Figure 1(c).

Finally we want to emphasize that the topical n-gram model is not only a new method for distilling
n-gram phrases depending on nearby context, but also a more sensible topic model than the ones using word
co-occurrences alone.

Exact inference like EM on the topicaln-gram model in general produces very poor results due to the
large number of parameters in the model, thus, many local maxima. We use Gibbs sampling to conduct ap-
proximate inference in this paper. To reduce the uncertainty introduced byθ, φ, ψ, andσ, we could integrate
them out with no trouble because of the conjugate prior setting in our model. Starting from the joint distri-
butionP (w, z,x|α, β, γ, δ), we can work out the conditional probabilitiesP (zi, xi|z−i,x−i,w, α, β, γ, δ)
conveniently1using Bayes rule, wherez−i denotes the topic assignments for all word tokens except word
wi, andx−i represents the bigram status for all tokens except wordwi. During Gibbs sampling, we draw
the topic assignmentzi and the bigram statusxi iteratively2 for each wordwi according to the following
conditional probability distribution:

P (zi, xi|z−i,x−i,w, α, β, γ, δ) ∝
γxi+pzi−1wi−1xiP1

k=0(γk+pzi−1wi−1k)
(αzi + qdzi

) ×


βwi+nziwiPV
v=1(βv+nziv)

if xi = 0
δwi+mziwi−1wiPV
v=1(δv+mziwi−1v)

if xi = 1

wherenzw represents how many times wordw is assigned into topicz as a unigram,mzwv represents how
many times wordv is assigned to topicz as the2nd term of a bigram given the previous wordw, pzwk

denotes how many times the status variablex = k given the previous wordw and the previous word’s topic
z, andqdz represents how many times a word is assigned to topicz in documentd. Note all counts here do
not include the assignment of the token being visited.

1One could further calculateP (zi| . . .) andP (xi| . . .) as in a traditional Gibbs sampling procedure.
2For some observedxi, only zi needs to be drawn.
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3 Related Work

Collocation has long been studied by lexicographers and linguists in various ways. Traditional collocation
discovery methods range from frequency to variance, to hypothesis testing, to mutual information. The
simplest method is counting. Justeson and Katz (1995) combined a small amount of linguistic knowledge (a
part-of-speech filter) with frequency and found surprisingly meaningful phrases. Variance based collocation
discovery (Smadja, 1993) considered collocations in a more flexible way than fixed phrases. However, high
frequency and low variance can be accidental. Hypothesis testing can be used to assess whether or not two
words occur together more often than chance. Many statistical tests have been explored, for example,t-test
(Church & Hanks, 1989),χ2 test (Church & Gale, 1991), and likelihood ratio test (Dunning, 1993). More
recently, an information-theoretically motivated method for collocation discovery is mutual information
(Church et al., 1991; Hodges et al., 1996).

The Hierarchical Dirichlet Language Model (MacKay & Peto, 1994) is closely related to Wallach’s
model (Wallach, 2005). The probabilistic view of smoothing in language models showed how to take ad-
vantage of a bigram model in a Bayesian way.

The main stream of topic modeling has gradually gained a probabilistic flavor as well in the past decade.
One of the most popular topic model, Latent Dirichlet Allocation (LDA), which makes the bag of words
assumption, has made a big impact in the fields of natural language processing and statistical machine
learning (Blei et al., 2003). Three models we discussed in Section 2 all contain an LDA component which
is responsible for the topic part.

In our point of view, the HMMLDA model (Griffiths et al., 2005) is the first attack to word dependency
in the topic modeling framework. They presented HMMLDA as a generative composite model that takes
care of both short-range syntactic dependencies and long-range semantic dependencies between words; its
syntactics part is a Hidden Markov Model and the semantic component is a topic model (LDA). Excellent
results based on this model are shown on tasks such as part-of-speech tagging and document classification.

4 Experimental Results

We apply the Topicaln-gram model to the NIPS proceeding dataset, which consists of the full text of the
13 years of proceedings from 1987 to 1999 Neural Information Processing Systems (NIPS) Conferences.
In addition to downcasing and removing stopwords and numbers, we also removed the words appearing
less than five times in the corpus—many of them produced by OCR errors. Two-letter words (primarily
coming from equations), were removed, except for “ML”, “AI”, “KL”, “BP”, “EM” and “IR.” The dataset
contains 1,740 research papers, 13,649 unique words, and 2,301,375 word tokens in total. Topics found by
the Topicaln-gram model are shown in Table 1 as anecdotal evidence, with comparison to the corresponding
closest (by KL divergence) topics found by LDA.

The “Reinforcement Learning” topic provides an extremely salient summary of the corresponding re-
search area. The LDA topic assembles many common words used in reinforcement learning, but in its word
list, there are quite a few generic words (such as “function”, “dynamic”, “decision”) which are common and
highly probable in many other topics as well. In TNG, we can find that these generic words are associated
with other words to formn-gram phrases (such as “Markov decision process”, etc.) which are only highly
probable in reinforcement learning. More importantly, by formingn-gram phrases, the unigram word list
produced by TNG is also cleaner. For example, because of the prevalence of generic words in LDA, highly
related words (such as “Q-learning” and “goal”) are not ranked high enough to be shown in the top 20 word
list. On the contrary, they are ranked very high in the TNG’s unigram word list.

In other three topics, we can find similar phenomena as well. For example, in “Human Receptive
System”, some generic words (such as “field”, “receptive”, etc.) are actually the components of the popular
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Reinforcement Learning Human Receptive System
LDA n-gram (2+) n-gram (1) LDA n-gram (2+) n-gram (1)
state reinforcement learning action motion receptive field motion
learning optimal policy policy visual spatial frequency spatial
policy dynamic programming reinforcement field temporal frequency visual
action optimal control states position visual motion receptive
reinforcement function approximator actions figure motion energy response
states prioritized sweeping function direction tuning curves direction
time finite-state controller optimal fields horizontal cells cells
optimal learning system learning eye motion detection figure
actions reinforcement learning rl reward location preferred direction stimulus
function function approximators control retina visual processing velocity
algorithm markov decision problems agent receptive area mt contrast
reward markov decision processes q-learning velocity visual cortex tuning
step local search goal vision light intensity moving
dynamic state-action pair space moving directional selectivity model
control markov decision process step system high contrast temporal
sutton belief states environment flow motion detectors responses
rl stochastic policy system edge spatial phase orientation
decision action selection problem center moving stimuli light
algorithms upright position steps light decision strategy stimuli
agent reinforcement learning methods transition local visual stimuli cell

Speech Recognition Support Vector Machines
LDA n-gram (2+) n-gram (1) LDA n-gram (2+) n-gram (1)
recognition speech recognition speech kernel support vectors kernel
system training data word linear test error training
word neural network training vector support vector machines support
face error rates system support training error margin
context neural net recognition set feature space svm
character hidden markov model hmm nonlinear training examples solution
hmm feature vectors speaker data decision function kernels
based continuous speech performance algorithm cost functions regularization
frame training procedure phoneme space test inputs adaboost
segmentation continuous speech recognition acoustic pca kkt conditions test
training gamma filter words function leave-one-out procedure data
characters hidden control context problem soft margin generalization
set speech production systems margin bayesian transduction examples
probabilities neural nets frame vectors training patterns cost
features input representation trained solution training points convex
faces output layers sequence training maximum margin algorithm
words training algorithm phonetic svm strictly convex working
frames test set speakers kernels regularization operators feature
database speech frames mlp matrix base classifiers sv
mlp speaker dependent hybrid machines convex optimization functions

Table 1: The four topics from a 50-topic run of TNG on 13 years of NIPS research papers with their closest
counterparts from LDA. TheTitle above the word lists of each topic is our own summary of the topic. To
better illustrate the difference between TNG and LDA, we list then-grams (n > 1) and unigrams separately
for TNG. Each topic is shown with the 20 sorted highest-probability words. The TNG model produces
clearer word list for each topic by associating many generic words (such as “set”, “field”, “function”, etc.)
with other words to formn-gram phrases.

phrases in this area as shown in the TNG model. “System” is ranked high in LDA, but almost meaningless,
and on the other hand, it is not appeared in the top word lists of TNG. Some extremely related words (such
as “spatial”), ranked very high in TNG, are absent in LDA’s top word list. In “Speech Recognition”, the
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dominating generic words (such as “context”, “based”, “set”, “probabilities”, “database”) make the LDA
topic less understandable than even just the TNG’s unigram word list.

In many situations, a crucially related word might be not mentioned enough to be clearly captured in
LDA, on the other hand, it would become very salient as a phrase due to the relatively strong co-occurrence
pattern in an extremely sparse setting for phrases. The “Support Vector Machines” topic provides one such
example. We can imagine that “kkt” will be mentioned no more than a few times in a typical NIPS paper, and
it appears only as a part of the phrase “kkt conditions”. The TNG model satisfyingly capture it successfully
as a highly probable phrase in the SVM topic.

As we discussed before, higher-ordern-grams (n > 2) can be approximately modeled by concatenating
consecutive bigrams in the TNG model, as shown in Table 1 (such as Markov decision process, hidden
Markov model and support vector machines).

To further evaluate the Topicaln-gram model against a standard task, we employ the TNG model within
language modeling framework to conduct ad-hoc retrieval on TREC collections.

4.1 Ad-hoc Retrieval

Information retrieval performance can be boosted if the similarity between a user query and a document is
calculated by common phrases instead of common words (Fagan, 1989; Evans et al., 1991; Strzalkowski,
1995; Mitra et al., 1997). Most research on phrases in information retrieval has employed an independent
collocation discovery module, e.g., using the methods described in Section 3. In this way, a phrase can be
indexed exactly as an ordinary word. In our topicaln-gram model we do not need a separate module for
phrase discovery, and everything can be integrated into a language modeling framework. We compare the
TNG model with the LDA-based document model recently proposed by Wei and Croft (2006).

5 Conclusions

In this paper, we have presented the Topicaln-gram model. The TNG model is able to automatically
determine to form an-gram (and further assign a topic) or not, based on its surrounding context. Examples
of topics found by the TNG models are visually better than their LDA counterparts. We also demonstrated
how the TNG model can help improve retrieval performance in ad-hoc retrieval tasks on TREC collections.

Unlike some traditional phrase discovery methods, the TNG model provides a systematic way to model
(topical) phrases and can be seamlessly integrated with many probabilistic frameworks for various tasks
such as ad-hoc retrieval, machine translation and statistical parsing.
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