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Abstract

Traditional noun phrase coreference res-
olution systems represent features only
of pairs of noun phrases. In this paper,
we propose a machine learning method
that enables features over sets of noun
phrases, resulting in a first-order proba-
bilistic model for coreference. We out-
line a set of approximations that make this
approach practical, and apply our method
to the ACE coreference dataset, achiev-
ing a 45% error reduction over a com-
parable method that only considers fea-
tures of pairs of noun phrases. This result
demonstrates an example of how a first-
order logic representation can be incorpo-
rated into a probabilistic model and scaled
efficiently.

1 Introduction

Noun phrase coreference resolution is the problem
of clustering noun phrases into anaphoric sets. A
standard machine learning approach is to perform a
set of independent binary classifications of the form
“Is mention a coreferent with mention b?”

This approach of decomposing the problem into
pairwise decisions presents at least two related diffi-
culties. First, it is not clear how best to convert the
set of pairwise classifications into a disjoint cluster-
ing of noun phrases. The problem stems from the
transitivity constraints of coreference: If a and b are
coreferent, and b and c are coreferent, then a and c
must be coreferent.

This problem has recently been addressed by a
number of researchers. A simple approach is to per-
form the transitive closure of the pairwise decisions.
However, as shown in recent work (McCallum and
Wellner, 2003; Singla and Domingos, 2005), bet-
ter performance can be obtained by performing rela-
tional inference to directly consider the dependence
among a set of predictions. For example, McCal-
lum and Wellner (2005) apply a graph partitioning
algorithm on a weighted, undirected graph in which
vertices are noun phrases and edges are weighted by
the pairwise score between noun phrases.

A second and less studied difficulty is that the
pairwise decomposition restricts the feature set to
evidence about pairs of noun phrases only. This re-
striction can be detrimental if there exist features of
sets of noun phrases that cannot be captured by a
combination of pairwise features. As a simple exam-
ple, consider prohibiting coreferent sets that consist
only of pronouns. That is, we would like to require
that there be at least one antecedent for a set of pro-
nouns. The pairwise decomposition does not make
it possible to capture this constraint.

In general, we would like to construct arbitrary
features over a cluster of noun phrases using the
full expressivity of first-order logic. Enabling this
sort of flexible representation within a statistical
model has been the subject of a long line of research
on first-order probabilistic models (Gaifman, 1964;
Halpern, 1990; Paskin, 2002; Poole, 2003; Richard-
son and Domingos, 2006).

Conceptually, a first-order probabilistic model
can be described quite compactly. A configura-
tion of the world is represented by a set of predi-
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Figure 1: An example noun coreference graph in
which vertices are noun phrases and edge weights
are proportional to the probability that the two nouns
are coreferent. Partitioning such a graph into disjoint
clusters corresponds to performing coreference res-
olution on the noun phrases.

cates, each of which has an associated real-valued
parameter. The likelihood of each configuration of
the world is proportional to a combination of these
weighted predicates. In practice, however, enu-
merating all possible configurations, or even all the
predicates of one configuration, can result in in-
tractable combinatorial growth (de Salvo Braz et al.,
2005; Culotta and McCallum, 2006).

In this paper, we present a practical method to per-
form training and inference in first-order models of
coreference. We empirically validate our approach
on the ACE coreference dataset, showing that the
first-order features can lead to an 45% error reduc-
tion.

2 Pairwise Model

In this section we briefly review the standard pair-
wise coreference model. Given a pair of noun
phrases xij = {xi, xj}, let the binary random vari-
able yij be 1 if xi and xj are coreferent. Let F =
{fk(xij , y)} be a set of features over xij . For exam-
ple, fk(xij , y) may indicate whether xi and xj have
the same gender or number. Each feature fk has an
associated real-valued parameter λk. The pairwise
model is

p(yij |xij) =
1

Zxij

exp
∑

k

λkfk(xij , yij)

where Zxij is a normalizer that sums over the two
settings of yij .

This is a maximum-entropy classifier (i.e. logis-
tic regression) in which p(yij |xij) is the probability
that xi and xj are coreferent. To estimate Λ = {λk}
from labeled training data, we perform gradient as-
cent to maximize the log-likelihood of the labeled
data.

Two critical decisions for this method are (1) how
to sample the training data, and (2) how to combine
the pairwise predictions at test time. Systems of-
ten perform better when these decisions complement
each other.

Given a data set in which noun phrases have been
manually clustered, the training data can be cre-
ated by simply enumerating over each pair of noun
phrases xij , where yij is true if xi and xj are in
the same cluster. However, this approach generates
a highly unbalanced training set, with negative ex-
amples outnumbering positive examples. Instead,
Soon et al. (2001) propose the following sampling
method: Scan the document from left to right. Com-
pare each noun phrase xi to each preceding noun
phrase xj , scanning from right to left. For each pair
xi, xj , create a training instance 〈xij , yij〉, where yij

is 1 if xi and xj are coreferent. The scan for xj ter-
minates when a positive example is constructed, or
the beginning of the document is reached. This re-
sults in a training set that has been pruned of distant
noun phrase pairs.

At testing time, we can construct an undirected,
weighted graph in which vertices correspond to
noun phrases and edge weights are proportional to
p(yij |xij). The problem is then to partition the graph
into clusters with high intra-cluster edge weights and
low inter-cluster edge weights. An example of such
a graph is shown in Figure 1.

Any partitioning method is applicable here; how-
ever, perhaps most common for coreference is to
perform greedy clustering guided by the word or-
der of the document to complement the sampling
method described above (Soon et al., 2001). More
precisely, scan the document from left-to-right, as-
signing each noun phrase xi to the same cluster
as the closest preceding noun phrase xj for which
p(yij |xij) > δ, where δ is some classification
threshold (typically 0.5). Note that this method con-
trasts with standard greedy agglomerative cluster-
ing, in which each noun phrase would be assigned
to the most probable cluster according to p(yij |xij).



Choosing the closest preceding phrase is common
because nearby phrases are a priori more likely to
be coreferent.

We refer to the training and inference methods de-
scribed in this section as the Pairwise Model.

3 First-Order Logic Model

We propose augmenting the Pairwise Model to
enable classification decisions over sets of noun
phrases.

Given a set of noun phrases xj = {xi}, let the bi-
nary random variable yj be 1 if all the noun phrases
xi ∈ xj are coreferent. The features fk and weights
λk are defined as before, but now the features can
represent arbitrary attributes over the entire set xj .
This allows us to use the full flexibility of first-order
logic to construct features about sets of nouns. The
First-Order Logic Model is

p(yj |xj) =
1

Zxj

exp
∑

k

λkfk(xj , yj)

where Zxj is a normalizer that sums over the two
settings of yj .

Note that this model gives us the representational
power of recently proposed Markov logic networks
(Richardson and Domingos, 2006); that is, we can
construct arbitrary formulae in first-order logic to
characterize the noun coreference task, and can learn
weights for instantiations of these formulae. How-
ever, naively grounding the corresponding Markov
logic network results in a combinatorial explosion of
variables. Below we outline methods to scale train-
ing and prediction with this representation.

As in the Pairwise Model, we must decide how to
sample training examples and how to combine inde-
pendent classifications at testing time. It is impor-
tant to note that by moving to the First-Order Logic
Model, the number of possible predictions has in-
creased exponentially. In the Pairwise Model, the
number of possible y variables is O(|x|2), where
x is the set of noun phrases. In the First-Order
Logic Model, the number of possible y variables is
O(2|x|): There is a y variable for each possible el-
ement of the powerset of x. Of course, we do not
enumerate this set; rather, we incrementally instan-
tiate y variables as needed during prediction.

A simple method to generate training examples
is to sample positive and negative cluster examples

uniformly at random from the training data. Positive
examples are generated by first sampling a true clus-
ter, then sampling a subset of that cluster. Negative
examples are generated by sampling two positive ex-
amples and merging them into the same cluster.

At testing time, we perform standard greedy ag-
glomerative clustering, where the score for each
merger is proportional to the probability of the
newly formed clustering according to the model.
Clustering terminates when there exists no addi-
tional merge that improves the probability of the
clustering.

We refer to the system described in this section as
First-Order Uniform.

4 Error-driven and Rank-based training
of the First-Order Model

In this section we propose two enhancements to
the training procedure for the First-Order Uniform
model.

First, because each training example consists of
a subset of noun phrases, the number of possible
training examples we can generate is exponential in
the number of noun phrases. We propose an error-
driven sampling method that generates training ex-
amples from errors the model makes on the training
data. The algorithm is as follows: Given initial pa-
rameters Λ, perform greedy agglomerative cluster-
ing on training document i until an incorrect cluster
is formed. Update the parameter vector according to
this mistake, then repeat for the next training docu-
ment. This process is repeated for a fixed number of
iterations.

Exactly how to update the parameter vector is ad-
dressed by the second enhancement. We propose
modifying the optimization criterion of training to
perform ranking rather than classification of clus-
ters. Consider a training example cluster with a neg-
ative label, indicating that not all of the noun phrases
it contains are coreferent. A classification training
algorithm will “penalize” all the features associated
with this cluster, since they correspond to a negative
example. However, because there may exists subsets
of the cluster that are coreferent, features represent-
ing these positive subsets may be unjustly penalized.

To address this problem, we propose constructing
training examples consisting of one negative exam-
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Figure 2: An example noun coreference factor graph
for the Pairwise Model in which factors fc model the
coreference between two nouns, and ft enforce the
transitivity among related decisions. The number of
y variables increases quadratically in the number of
x variables.

ple and one “nearby” positive example. In particular,
when agglomerative clustering incorrectly merges
two clusters, we select the resulting cluster as the
negative example, and select as the positive example
a cluster that can be created by merging other exist-
ing clusters.1 We then update the weight vector so
that the positive example is assigned a higher score
than the negative example. This approach allows
the update to only penalize the difference between
the two features of examples, thereby not penaliz-
ing features representing any overlapping coreferent
clusters.

To implement this update, we use MIRA (Mar-
gin Infused Relaxed Algorithm), a relaxed, online
maximum margin training algorithm (Crammer and
Singer, 2003). It updates the parameter vector with
two constraints: (1) the positive example must have
a higher score by a given margin, and (2) the change
to Λ should be minimal. This second constraint is
to reduce fluctuations in Λ. Let s+(Λ,xj) be the
unnormalized score for the positive example and
s−(Λ,xk) be the unnormalized score of the neg-
ative example. Each update solves the following

1Of the possible positive examples, we choose the one with
the highest probability under the current model to guard against
large fluctuations in parameter updates

fc
y12

x2

x1

y23
x3

y13 fc

fc

ft

y123

fc

Figure 3: An example noun coreference factor graph
for the First-Order Model in which factors fc model
the coreference between sets of nouns, and ft en-
force the transitivity among related decisions. Here,
the additional node y123 indicates whether nouns
{x1, x2, x3} are all coreferent. The number of y
variables increases exponentially in the number of
x variables.

quadratic program:

Λt+1 = argmin
Λ

||Λt − Λ||2

s.t.
s+(Λ,xj)− s−(Λ,xk) ≥ 1

In this case, MIRA with a single constraint can be
efficiently solved in one iteration of the Hildreth and
D’Esopo method (Censor and Zenios, 1997). Ad-
ditionally, we average the parameters calculated at
each iteration to improve convergence.

We refer to the system described in this section as
First-Order MIRA.

5 Probabilistic Interpretation

In this section, we describe the Pairwise and First-
Order models in terms of the factor graphs they ap-
proximate.

For the Pairwise Model, a corresponding undi-
rected graphical model can be defined as

P (y|x) =
1

Zx

∏
yij∈y

fc(yij , xij)∏
yij ,yjk∈y

ft(yij , yj,k, yik, xij , xjk, xik)



where Zx is the input-dependent normalizer and fac-
tor fc parameterizes the pairwise noun phrase com-
patibility as fc(yij , xij) = exp(

∑
k λkfk(yij , xij)).

Factor ft enforces the transitivity constraints by
ft(·) = −∞ if transitivity is not satisfied, 1 oth-
erwise. This is similar to the model presented in
McCallum and Wellner (2005). A factor graph for
the Pairwise Model is presented in Figure 2 for three
noun phrases.

For the First-Order model, an undirected graphi-
cal model can be defined as

P (y|x) =
1

Zx

∏
yj∈y

fc(yj ,xj)

∏
yj∈y

ft(yj ,xj)

where Zx is the input-dependent nor-
malizer and factor fc parameterizes the
cluster-wise noun phrase compatibility as
fc(yj ,xj) = exp(

∑
k λkfk(yj , x

j)). Again,
factor ft enforces the transitivity constraints by
ft(·) = −∞ if transitivity is not satisfied, 1 other-
wise. Here, transitivity is a bit more complicated,
since it also requires that if yj = 1, then for any
subset xk ⊆ xj , yk = 1. A factor graph for the
First-Order Model is presented in Figure 3 for three
noun phrases.

The methods described in Sections 2, 3 and 4 can
be viewed as estimating the parameters of each fac-
tor fc independently. This approach can therefore
be viewed as a type of piecewise approximation of
exact parameter estimation in these models (Sutton
and McCallum, 2005). Here, each fc is a “piece”
of the model trained independently. These pieces
are combined at prediction time using clustering al-
gorithms to enforce transitivity. Sutton and McCal-
lum (2005) show that such a piecewise approxima-
tion can be theoretically justified as minimizing an
upper bound of the exact loss function.

6 Experiments

6.1 Data
We apply our approach to the noun coreference ACE
2004 data, containing 443 news documents with
28,135 noun phrases to be coreferenced. 336 doc-
uments are used for training, and the remainder for

testing. All entity types are candidates for corefer-
ence (pronouns, named entities, and nominal enti-
ties). We use the true entity segmentation, and parse
each sentence in the corpus using a phrase-structure
grammar, as is common for this task.

6.2 Features
We follow Soon et al. (2001) and Ng and Cardie
(2002) to generate most of our features for the Pair-
wise Model. These include:

• Match features - Check whether gender, num-
ber, head text, or entire phrase matches

• Mention type (pronoun, name, nominal)

• Aliases - Heuristically decide if one noun is the
acronym of the other

• Apposition - Heuristically decide if one noun is
in apposition to the other

• Relative Pronoun - Heuristically decide if one
noun is a relative pronoun referring to the other.

• Wordnet features - Use Wordnet to decide if
one noun is a hypernym, synonym, or antonym
of another, or if they share a hypernym.

• Both speak - True if both contain an adjacent
context word that is a synonym of “said.” This
is a domain-specific feature that helps for many
newswire articles.

• Modifiers Match - for example, in the phrase
“President Clinton”, “President” is a modifier
of “Clinton”. This feature indicates if one noun
is a modifier of the other, or they share a modi-
fier.

• Substring - True if one noun is a substring of
the other (e.g. “Egypt” and “Egyptian”).

The First-Order Model includes the following fea-
tures:

• Enumerate each pair of noun phrases and com-
pute the features listed above. All-X is true if
all pairs share a feature X , Most-True-X is true
if the majority of pairs share a feature X , and
Most-False-X is true if most of the pairs do not
share feature X .



• Use the output of the Pairwise Model for each
pair of nouns. All-True is true if all pairs are
predicted to be coreferent, Most-True is true if
most pairs are predicted to be coreferent, and
Most-False is true if most pairs are predicted
to not be coreferent. Additionally, Max-True
is true if the maximum pairwise score is above
threshold, and Min-True if the minimum pair-
wise score is above threshold.

• Cluster Size indicates the size of the cluster.

• Count how many phrases in the cluster are
of each mention type (name, pronoun, nom-
inal), number (singular/plural) and gender
(male/female). The features All-X and Most-
True-X indicate how frequent each feature is
in the cluster. This feature can capture the soft
constraint such that no cluster consists only of
pronouns.

In addition to the listed features, we also include
conjunctions of size 2, for example “Genders match
AND numbers match”.

6.3 Evaluation
We use the B3 algorithm to evaluate the predicted
coreferent clusters (Amit and Baldwin, 1998). B3

is common in coreference evaluation and is similar
to the precision and recall of coreferent links, ex-
cept that systems are rewarded for singleton clus-
ters. For each noun phrase xi, let ci be the number
of mentions in xi’s predicted cluster that are in fact
coreferent with xi (including xi itself). Precision for
xi is defined as ci divided by the number of noun
phrases in xi’s cluster. Recall for xi is defined as
the ci divided by the number of mentions in the gold
standard cluster for xi. F1 is the harmonic mean of
recall and precision.

6.4 Results
In addition to Pairwise, First-Order Uniform, and
First-Order MIRA, we also compare against Pair-
wise MIRA, which differs from First-Order MIRA
only by the fact that it is restricted to pairwise fea-
tures.

Table 1 suggests both that first-order features and
error-driven training can greatly improve perfor-
mance. The First-Order Model outperforms the Pair-

F1 Prec Rec
First-Order MIRA 79.3 86.7 73.2

Pairwise MIRA 72.5 92.0 59.8
First-Order Uniform 69.2 79.0 61.5

Pairwise 62.4 62.5 62.3

Table 1: B3 results for ACE noun phrase corefer-
ence. FIRST-ORDER MIRA is our proposed model
that takes advantage of first-order features of the
data and is trained with error-driven and rank-based
methods. We see that both the first-order features
and the training enhancements improve performance
consistently.

wise Model in F1 measure for both standard train-
ing and error-driven training. We attribute some of
this improvement to the capability of the First-Order
model to capture features of entire clusters that may
indicate some phrases are not coreferent. Also, we
attribute the gains from error-driven training to the
fact that training examples are generated based on
errors made on the training data. (However, we
should note that there are also small differences in
the feature sets used for error-driven and standard
training results.)

Error analysis indicates that often noun xi is cor-
rectly not merged with a cluster xj when xj has a
strong internal coherence. For example, if all 5 men-
tions of France in a document are string identical,
then the system will be extremely cautious of merg-
ing a noun that is not equivalent to France into xj ,
since this will turn off the “All-String-Match” fea-
ture for cluster xj .

To our knowledge, the best results on this dataset
were obtained by the meta-classification scheme of
Ng (2005). Although our train-test splits may differ
slightly, the best B-Cubed F1 score reported in Ng
(2005) is 69.3%, which is considerably lower than
the 79.3% obtained with our method. Also note that
the Pairwise baseline obtains results similar to those
in Ng and Cardie (2002).

7 Related Work

There has been a recent interest in training methods
that enable the use of first-order features (Paskin,
2002; Daumé III and Marcu, 2005b; Richardson
and Domingos, 2006). Perhaps the most related is



“learning as search optimization” (LASO) (Daumé
III and Marcu, 2005b; Daumé III and Marcu,
2005a). Like the current paper, LASO is also an
error-driven training method that integrates predic-
tion and training. However, whereas we explic-
itly use a ranking-based loss function, LASO uses
a binary classification loss function that labels each
candidate structure as correct or incorrect. Thus,
each LASO training example contains all candidate
predictions, whereas our training examples contain
only the highest scoring incorrect prediction and the
highest scoring correct prediction. Our experiments
show the advantages of this ranking-based loss func-
tion. Additionally, we provide an empirical study to
quantify the effects of different example generation
and loss function decisions.

Collins and Roark (2004) present an incremental
perceptron algorithm for parsing that uses “early up-
date” to update the parameters when an error is en-
countered. Our method uses a similar “early update”
in that training examples are only generated for the
first mistake made during prediction. However, they
do not investigate rank-based loss functions.

Others have attempted to train global scoring
functions using Gibbs sampling (Finkel et al., 2005),
message propagation, (Bunescu and Mooney, 2004;
Sutton and McCallum, 2004), and integer linear pro-
gramming (Roth and Yih, 2004). The main distinc-
tions of our approach are that it is simple to imple-
ment, not computationally intensive, and adaptable
to arbitrary loss functions.

There have been a number of machine learning
approaches to coreference resolution, traditionally
factored into classification decisions over pairs of
nouns (Soon et al., 2001; Ng and Cardie, 2002).
Nicolae and Nicolae (2006) combine pairwise clas-
sification with graph-cut algorithms. Luo et al.
(2004) do enable features between mention-cluster
pairs, but do not perform the error-driven and rank-
ing enhancements proposed in our work. Denis and
Baldridge (2007) use a ranking loss function for pro-
noun coreference; however the examples are still
pairs of pronouns, and the example generation is not
error driven. Ng (2005) learns a meta-classifier to
choose the best prediction from the output of sev-
eral coreference systems. While in theory a meta-
classifier can flexibly represent features, they do not
explore features using the full flexibility of first-

order logic. Also, their method is neither error-
driven nor rank-based.

McCallum and Wellner (2003) use a conditional
random field that factors into a product of pairwise
decisions about pairs of nouns. These pairwise de-
cisions are made collectively using relational infer-
ence; however, as pointed out in Milch et al. (2004),
this model has limited representational power since
it does not capture features of entities, only of pairs
of mention. Milch et al. (2005) address these issues
by constructing a generative probabilistic model,
where noun clusters are sampled from a generative
process. Our current work has similar representa-
tional flexibility as Milch et al. (2005) but is discrim-
inatively trained.

8 Conclusions and Future Work

We have presented learning and inference proce-
dures for coreference models using first-order fea-
tures. By relying on sampling methods at training
time and approximate inference methods at testing
time, this approach can be made scalable. This re-
sults in a coreference model that can capture features
over sets of noun phrases, rather than simply pairs of
noun phrases.

This is an example of a model with extremely
flexible representational power, but for which exact
inference is intractable. The simple approximations
we have described here have enabled this more flex-
ible model to outperform a model that is simplified
for tractability.

A short-term extension would be to consider fea-
tures over entire clusterings, such as the number of
clusters. This could be incorporated in a ranking
scheme, as in Ng (2005).

Future work will extend our approach to a wider
variety of tasks. The model we have described here
is specific to clustering tasks; however a similar for-
mulation could be used to approach a number of lan-
guage processing tasks, such as parsing and relation
extraction. These tasks could benefit from first-order
features, and the present work can guide the approx-
imations required in those domains.

Additionally, we are investigating more sophis-
ticated inference algorithms that will reduce the
greediness of the search procedures described here.
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