
Andrew McCallum, UMass Amherst

Noisy Channel, N-grams & Smoothing
Lecture #9

Introduction to Natural Language Processing
CMPSCI 585, Fall 2007

University of Massachusetts  Amherst

Andrew McCallum



Andrew McCallum, UMass Amherst

Today’s Main Points

• Application of the Noisy Channel Model
• Markov Models

– including Markov property definition
• Smoothing

– Laplace, (Lidstone’s, Held-out, Good-Turing.)
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Noisy Channel Model

• Optimize Encoder for throughput and accuracy.
– compression: remove all redundancy
– accuracy: adding controlled redundancy

• Capacity: rate at which can transmit information with
arbitrarily low probability of error in W’
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Noisy Channel in NLP
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Probabilistic Language Modeling
• Assigns probability p(t) to a word sequence

t = w1w2 w3w4 w5w6…
• Chain rule and joint/conditional probabilities for text t:

The chain rule leads to a history-based model: 
we predict following things from past things.
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n-gram models
the classic example of a statistical model of language

• Each word is predicted according to a conditional
distribution based on limited context

• Conditional Probability Table (CPT): p(X|“both”)
– p(of|both) = 0.066
– p(to|both) = 0.041
– p(in|both) = 0.038

• a.k.a. Markov (chain) models
– sequences of random variables in which the future variable is

determined by the present variable, but is independent of the way
in which the present state arose from its predecessors
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1-gram model

• Simplest linear graphical model
• Words are random variables, arrows are

direct dependencies between them (CPTs)
• These simple engineering models have been

amazingly successful.

<s> In both ??

W1 W2 W3 W4

First-order Markov model, P(wt|wt-1)
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n-th order Markov models

• First order Markov assumption = bigram

• Similarly, n-th order Markov assumption

• Most commonly, trigram (2nd order)
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Andrei Andreyevich Markov

• Graduate of Saint Petersburg
University (1878), where he began a
professor in 1886.

• Mathematician, teacher political activist
– In 1913, when the government

celebrated the 300th anniversary of the
House of Romanov family, Markov
organized a counter-celebration of the
200th anniversary of Bernoulli’s
discovery of the Law of Large
Numbers.

• Markov was also interested in poetry
and he made studies of poetic style.

1856 - 1922
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Markov’s Model

• Took 20,000 characters from Pushkin’s Eugene
Onegin to see if it could be approximated by a
simple chain of characters.

0.3370.663consonant
0.8720.128vowel

consonantvowel
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Markov Approximations to English

• Zero-order approximation, P(c)
– XFOML RXKXRJFFUJ ZLPWCFWKCRJ

FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD
• First-order approximation, P(c|c)

– OCRO HLI RGWR NWIELWIS EU LL
NBNESEBYA TH EEI ALHENHTTPA OOBTTVA

• Second-order approximation, P(c|c,c)
– ON IE ANTSOUTINYS ARE T INCTORE ST BE S

DEAMY ACHIN D ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY TOBE SEACE
CTISBE

[From Shannon’s original paper]
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Markov Approximations to English (cont.)

• Third-order approximation, P(w|w,w,w)
– IN NO IST LAT WHEY CRATICT FROURE BIRS

GROCID PONDENOME OF DEMONSTURES OF
THE REPTABIN IS REGOACTIONA OF CRE

• Markov Random Field with 1000 “features”
– WAS REASER IN THERE TO WILL WAS BY

HOMES THING BE RELOVERATED THER
WHICH CONSISTS AT FORES ANDITING WITH
PROVERAL THE CHESTRAING FOR HAVE TO
INTRALLY OF QUT DIVERAL THIS OFFECT
INATEVER THIFER CONTRANDED STATER

[Della Pietra, Della Pietra & Lafferty, 1997]
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Word-based Approximations

• First-order approximation
– representing and speedily is an good apt or come

can different natural here he the a in came the to
of to expert gray come to furnishes the line
message had be

• Second-order approximation
– the head and in frontal attack on an English writer

that the character of this point is therefore another
method for the letters that the time of who ever
told the problem for an unexpected

Shannon’s comment (1948): “It would be interesting if further approximations could
be constructed, but the labor involved becomes enormous at the next stage.”
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n-gram models

• Core language model for the engineering task of
better predicting the next word:
– Speech recognition
– OCR
– Context-sensitive spelling correction

• It has only recently that improvements have
been made for these tasks [Alshawi ‘96, Wu ‘97]

• But linguistically, they are appallingly simple and
naïve.
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Why might n-gram models not work?

• Relationships (say between subject and verb)
can be arbitrarily distant and convoluted, as
linguists love to point out:
– The man on the sidewalk, without pausing to look

at what was happening down the street, and quite
oblivious to the situation that was about to befall
him, confidently strode into the center of the road.



Andrew McCallum, UMass Amherst

Why do they work?

• That kind of thing doesn’t happen much
• Collins (1997)

– 74% of dependencies (in the Penn Treebank,
WSJ) are with an adjacent word (95% with one
less than 5 words away), once one treats simple
NPs as units
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Evaluation of language models

• Best evaluation of probability model is task-based!
• As substitute for evaluating one component, standardly

use corpus per-word cross entropy:

• Or perplexity
– units = average number of choices, scaled for uniform distr.
– high = unpredictable
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Parameter Estimation
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Maximum Likelihood Estimate

• Relative frequency
• Makes training data a probable as possible
• Overfits
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Limitations of the
Maximum Likelihood Estimator

• Problem: often infinitely surprised when
unseen word appears, P(unseen) = 0
– Problem: this happens commonly
– Probabilities of zero-count words are too low
– Probabilities of nonzero-count words are too high
– Estimates for high count words are fairly accurate
– Estimates for low count words are unstable
– We need “smoothing”
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Sparsity

• How often does an every day word like “kick” occur in a
million words of text?
– “kick”: about 10 [depends vastly on genre, of course]
– “wrist”: about 5

• Normally we want to know about something bigger than a
single word, like how often you “kick a ball”, or how often
the dative alternation “he kicked the baby a toy” occurs.

• How often can we expect that to occur in 1 million words?
• Almost never.
• “There’s no data like more data”

– Must be of the right domain
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Severity of the sparse data problem

Vocab size 260,741 words, 365M words training

1.7 x 10166.8 x 1010possible

75,349,88814,494,217>0

8,728,7893,413,290>4

3,654,791970,4343

9,229,9582,065,4692

53,737.3508,045,0241

3-grams2-gramscount
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The Zero Problem

• Necessarily some zeros
– trigram model: 1.7 x 1016 parameters
– but only 2.6 x 106 words of training data

• How should we distribute some probability
mass over all possibilities in the model
– optimal situation: even the least frequent trigram

would occur several times, in order to distinguish
its probability versus other trigrams

– optimal situation cannot happen, unfortunately
(how much data would we need?)

• Two kinds of zeros: p(w|h)=0, or even p(h)=0
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Laplace smoothing

• V is the vocabulary size (assume fixed,
closed vocabulary)

• This is the Bayesian maximum a posteriori
estimator you get by assuming a uniform prior
on multinomials (a Dirichlet prior)
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Dirichlet Distribution

• “Multinomial” is a die: a distribution over a
finite alphabet of outcomes

• “Dirichlet” is a dice generator: a distribution
over multinomials!

• It is a conjugate prior for multinomials
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Dirichlet Examples

For α1 = σ2 = α
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Laplace Smoothing

• Problem: gives too much probability mass to unseens
• Not good for large vocabulary, comparatively little data

(NLP!)
• e.g. 10,000 word vocab, 1,000,000 words of training data,

but “comes across” occurs 10 times.  Of those, 8 times
next word is “as”
– PMLE(as|comes across) = 0.8
– PLaplace(as|comes across) = (8+1)/(10+10000)=0.0009

• Quick fix: Lidstone’s law (Mitchell’s 1997 “m-estimate”):
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How much mass to allocate to unseens?

• For Laplace smoothing,
in P(.|comes across), 10,000/10,010 of the
prob mass is given to unseen events.

• How do we know that this is too much?
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Absolute discounting
• Idea is that we want to discount counts of seen things

a little, and reallocate this probability mass to
unseens

• By subtracting a fixed count, probability estimates for
commonly seen things are scarcely affected, while
probabilities of rare things are greatly affected

• If the discount is around δ=0.75, then seeing
something once is not so different than not having
seen it at all
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Held Out Estimator

• How do you know how likely you are to see a new
word type in the future (in a certain context)?
– Examine some further text and find out

(empirical held-out estimators = validation)
– Divide data into two pots: training data, validation data
– N = number of (non-unique) bigrams in training
– Nr = number of unique bigrams with freq r in training
– Tr = number of times that all bigrams appearing r times

in the training data appeared in the validation data.

Tr/Nr is an “improved estimate for r”.
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Pots of data for
estimating and testing models

• Major error: testing on your training data
• Overfitting: expect future events to be too much like

the events on which it was trained, rather than
allowing sufficiently for other possibilities.

• Training data
• Validation data
• Testing data

– Development test data
– Final test data

• Don’t report results on just one test set, but average
of many, and report variance… use a test of
statistical significance
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Held-out Estimator with Cross-validation

• Reshuffle the training data several times into
pots of training and validation data

• Calculate pho(w1w2) for each split, then
average them.

• Extreme case of cross-validation:
leave-one-out cross validation
– Train on N-1 of the words, validate on 1 word
– How much probability mass would be reserved for

the unseen words in this case?
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Good-Turing Smoothing

• Derivation reflects leave-one-out estimation
– For each word token in data, call it the validation

set; remaining data is training set.
– The validation-set word has count r in training set.
– See how often any word has r counts in training

set.  (How many different words have count r?)
– This will happen every time word left out has r+1

counts in original data
– So total count mass of r count words is assigned

from mass of r+1 count words =Nr+1 x (r+1)
– Apply to low counts; not needed (harmful!) for high

count words
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Good-Turing smoothing

• All words with same count get same
probability (as before)

• Count mass of words with r+1 occurrences is
assigned to words with r occurrences.

• r* is corrected frequency estimates for a word
occurring r times
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Estimated frequencies in AP newswire
(Church & Gale 1991)

7.247.180.001237.218
6.216.210.001096.217
5.195.200.0009595.236
4.224.220.0008224.215
3.243.220.0006853.234
2.242.230.0005482.243
1.261.240.0004111.252
0.4460.396.0002740.44801
0.0000270.0000370.0001370.0000270
fGTfdelfLapfempricalr=fMLE
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Differentiating based on history

• So far the methods considered have all used
nothing but the raw frequency of an n-gram.
– “the large” P(large|the)
– “the mauve” P(mauve|the)
– if C(“the large”) = C(“the mauve”) (e.g. = 0)

then P(large|the) = P(mauve|the)
– This doesn’t seem right

• Also use frequency of its (n-1)-gram
– p(large)
– p(mauve)
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Linear Interpolation

• Estimate probability of an n-gram from a weighted
average of low-order…high order n-grams.

• where λ’s sum to 1
• set λ’s by hand or from held-out data
• they can be functions of (equivalence-classed histories)
• Also known as “shrinkage” [Stein 1957]

• Works surprisingly well!
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Assigning Probability to
the “Unseen” Event

• At test time, see word, u, that wasn’t seen at
training time

• P(u) = ?

• Replace all singleton word tokens in training
data with special token, <UNK>
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Smoothing: Rest of the story

• Other methods:
– backoff (Katz 1987): Try four-gram, if zero-count,

try tri-gram, if zero-count, try bi-gram,…
– Kneser and Ney (1995): Backoff n-gram counts

not proportional to frequency of n-gram in training
data but to expectation of how often it should
occur in novel trigram (since one only uses backoff
estimate when trigam not found)

– Witten-Bell discounting
– Smoothed maximum entropy models
– See (Chen and Goodman 1998) for a survey.
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• Progress in the field is often dominated, not
by the need to create fancier more complex
models,

• but by the need to do a good job of estimating
parameters for the simpler models we already
have.
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Statistical Language Modeling

Noam Chomsky

But it must be recognized that the
notion of “probability of a sentence”
is an entirely useless one, under any
known interpretation of the term.

(1969)

Fred Jelinek

Anytime a linguist leaves the group,
the [speech] recognition rate goes up.
  (while at IBM speech group, 1988).
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• Progress in the field is often dominated, not
by the need to create fancier more complex
models,

• but by the need to do a good job of estimating
parameters for the simpler models we already
have.

• Real benefit comes from targeted
enhancements, and sharp tool set of
excellent estimation techniques
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Distinctiveness of NLP as an ML problem

• Most structure is hidden
• Relational, constraint satisfaction nature
• Long pipelines, with cascading errors
• Large and strange, sparse discrete distributions
• Large scale
• Feature-driven; performance driven
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HW#4

• Naive Bayes Classifier
– Spam vs Ham
– English vs French vs Spanish vs Klingon
– “Sliding window” Part-of-Speech” tagger

• N-gram language model
– Train and generate language
– Use for spelling correction (there vs their)

As, usual, your choice:
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HW#4 Help
Accuracy Evaluation

Result of running classifier on a test set:
filename trueclass predclass p(predclass|doc)
filename trueclass predclass p(predclass|doc)
filename trueclass predclass p(predclass|doc)
...

Accuracy = (TP+TN) / (TP+TN+FP+FN)
Precision = TP / (TP+FP)
Recall = TP / (TP+FN)
F1 = harmonic mean of Precision & Recall

TNFNpred ham

FPTPpred spam

true hamtrue spam
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HW#4 Help
Precision-Recall Curve

Result of running classifier on a test set:
filename trueclass predclass p(predclass|doc)
filename trueclass predclass p(predclass|doc)
filename trueclass predclass p(predclass|doc)
...

Accuracy = (TP+TN) / (TP+TN+FP+FN)
Precision = TP / (TP+FP)
Recall = TP / (TP+FN)
F1 = harmonic mean of Precision & Recall

TNFNpred ham

FPTPpred spam

true hamtrue spam
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HW#4 Help
Accuracy-Coverage Curve

Result of running classifier on a test set:
filename trueclass predclass p(predclass|doc)
filename trueclass predclass p(predclass|doc)
filename trueclass predclass p(predclass|doc)
...

Accuracy = (TP+TN) / (TP+TN+FP+FN)
Precision = TP / (TP+FP)
Recall = TP / (TP+FN)
F1 = harmonic mean of Precision & Recall

TNFNpred ham

FPTPpred spam

true hamtrue spam
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HW#4 Help
Working with log-probabilities

• Getting back to p(c|d)
– Subtract a constant to make all non-positive
– exp()


