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Today’s Main Points

• Remember (or learn) about probability theory
– samples, events, tables, counting
– Bayes’ Rule, and its application
– A little calculus?
– random variables
– Bernoulli and Multinomial distributions: the work-

horses of Computational Linguistics.
– Multinomial distributions from Shakespeare.
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Probability Theory

• Probability theory deals with predicting how
likely it is that something will happen.
– Toss 3 coins,

how likely is it that all come up heads?
– See phrase “more lies ahead”,

how likely is it that “lies” is noun?
– See “Nigerian minister of defense” in email,

how likely is it that the email is spam?
– See “Le chien est noir”,

how likely is it that the correct translation is
“The dog is black”?
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Probability and CompLing

• Probability is the backbone of modern
computational linguistics... because:
– Language is ambiguous
– Need to integrate evidence

• Simple example (which we will revisit later)
– I see the first word of a news article: “glacier”
– What is the probability the language is French?

English?
– Now I see the second word: “melange”.
– Now what are the probabilities?
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Experiments and Sample Spaces

• Experiment (or trial)
– repeatable process by which observations are made
– e.g. tossing 3 coins

• Observe basic outcome from
sample space, Ω, (set of all possible basic outcomes), e.g.
– one coin toss, sample space Ω = { H, T };

basic outcome = H or T
– three coin tosses, Ω = { HHH, HHT, HTH,…, TTT }
– Part-of-speech of a word, Ω = { CC1, CD2, CT3, …,  WRB36}
– lottery tickets, |Ω| = 107

– next word in Shakespeare play, |Ω| = size of vocabulary
– number of words in your Ph.D. thesis Ω = { 0, 1, … ∞ }
– length of time of “a” sounds when I said “sample”.

discrete,
countably infinite

continuous,
uncountably infinite
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Events and Event Spaces
• An event, A, is a set of basic outcomes,

i.e., a subset of  the sample space, Ω.
– Intuitively, a question you could ask about an outcome.
– Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
– e.g. basic outcome = THH
– e.g. event = “has exactly 2 H’s”, A={THH, HHT, HTH}
– A=Ω is the certain event,  A=∅ is the impossible event.
– For “not A”, we write A

• A common event space, F, is the power set of the
sample space, Ω.  (power set is written 2Ω)
– Intuitively: all possible questions you could ask about a

basic outcome.
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Probability

• A probability is a number between 0 and 1.
– 0 indicates impossibility
– 1 indicates certainty

• A probability function, P, (or probability distribution)
assigns probability mass to events in the event
space, F.
– P : F → [0,1]
– P(Ω) = 1
– Countable additivity:  For disjoint events Aj in F

P(∪j Aj) = Σj P(Aj)

• We call P(A) “the probability of event A”.
• Well-defined probability space consists of

– sample space Ω
– event space F
– probability function P



Andrew McCallum, UMass Amherst

Probability (more intuitively)

• Repeat an experiment many, many times.
(Let T = number of times.)

• Count the number of basic outcomes that are
a member of event A.
(Let C = this count.)

• The ratio C/T will approach (some unknown)
but constant value.

• Call this constant “the probability of event A”;
write it P(A).

Why is the probability this ratio of counts?  
Stay tuned! Maximum likelihood estimation at end.
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Example: Counting

• “A coin is tossed 3 times.
What is the likelihood of 2 heads?”
– Experiment: Toss a coin three times,
Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

– Event: basic outcome has exactly 2 H’s
A = {THH, HTH, HHT}

• Run experiment 1000 times (3000 coin tosses)
• Counted 373 outcomes with exactly 2 H’s
• Estimated P(A) = 373/1000 = 0.373
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Example: Uniform Distribution

• “A fair coin is tossed 3 times.
What is the likelihood of 2 heads?”
– Experiment: Toss a coin three times,
Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

– Event: basic outcome has exactly 2 H’s
A = {THH, HTH, HHT}

• Assume a uniform distribution over outcomes
– Each basic outcome is equally likely
– P({HHH}) = P({HHT}) = … = P({TTT})

• P(A) = |A| / |Ω| = 3 / 8 = 0.375
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Probability (again)

• A probability is a number between 0 and 1.
– 0 indicates impossibility
– 1 indicates certainty

• A probability function, P, (or probability distribution)
distributes probability mass of 1 throughout the event
space, F.
– P : F → [0,1]
– P(Ω) = 1
– Countable additivity:  For disjoint events Aj in F

P(∪j Aj) = Σj P(Aj)

• The above are axioms of probability theory
• Immediate consequences:

– P(∅) = 0,  P(A) = 1 - P(A),  A ⊆ B -> P(A) ≤ P(B),
Σa ∈Ω P(a) = 1, for a = basic outcome.
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Vocabulary Summary

• Experiment = a repeatable process
• Sample = a possible outcome
• Sample space = all samples for an experiment
• Event = a set of samples

• Probability = assigns a probability to each sample
distribution

• Uniform = all samples are equi-probable
distribution
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Collaborative Exercise

• You roll a fair die, then roll it again.  What is
the probability that you get the same number
from both rolls?

• Explain in terms of event spaces and basic
outcomes.
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Joint and Conditional Probability

• Joint probability of A and B:
P(A ∩ B) is usually written P(A,B)

• Conditional probability of A given B:
P(A|B) = P(A,B)
                P(B)

A B
A ∩ B

Ω Updated probability of an
  event given some evidence

P(A) = prior probability of A

P(A|B) = posterior probability
  of A given evidence B
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Joint Probability Table

sun rain sleet snow

10s 0.09 0.00 0.00 0.01
20s 0.08 0.00 0.00 0.02
30s 0.05 0.01 0.01 0.03
40s 0.06 0.03 0.01 0.00
50s 0.06 0.04 0.00 0.00
60s 0.06 0.04 0.00 0.00
70s 0.07 0.03 0.00 0.00
80s 0.07 0.03 0.00 0.00
90s 0.08 0.02 0.00 0.00
100s 0.08 0.02 0.00 0.00

P(precipitation, temperature)

it takes 40 numbers

What does it look like “under the hood”?
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Conditional Probability Table

sun rain sleet snow

10s 0.9 0.0 0.0 0.1
20s 0.8 0.0 0.0 0.2
30s 0.5 0.1 0.1 0.3
40s 0.6 0.3 0.1 0.0
50s 0.6 0.4 0.0 0.0
60s 0.6 0.4 0.0 0.0
70s 0.7 0.3 0.0 0.0
80s 0.7 0.3 0.0 0.0
90s 0.8 0.2 0.0 0.0
100s 0.8 0.2 0.0 0.0

P(precipitation | temperature)

it takes 40 numbers

What does it look like “under the hood”?
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Two Useful Rules

• Multiplication Rule
P(A,B) = P(A|B) P(B)

(equivalent to conditional probability definition from previous slide)

• Total Probability Rule (Sum Rule)
P(A) = P(A,B) + P(A,B)

or more generally, if B can take on n values
P(A) = Σi=1..n P(A,Bi)

(from additivity axiom)
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Bayes Rule

• P(A,B) = P(B,A), since P(A ∩ B) = P(B ∩ A)
• Therefore P(A|B) P(B) = P(B|A) P(A), and thus…
• P(A|B) = P(B|A)P(A)

                    P(B)

A B
A ∩ B

Ω

Bayes Rule lets you swap the
  order of the dependence
  between events…

calculate P(A|B) in terms of P(B|A).

“Normalizing constant”
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Reverend Thomas Bayes

• Rumored to have been tutored by
De Moivre.

• Was elected a Fellow of the Royal
Society in 1742 despite the fact
that at that time he had no
published works on mathematics!

• “Essay towards solving a problem
in the doctrine of chances”
published in the Philosophical
Transactions of the Royal Society
of London in 1764.1702 - 1761

Same year Mozart wrote his symphony #1 in E-flat.
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Independence

• Can we compute P(A,B) from P(A) and P(B)?
• Recall:

P(A,B) = P(B|A) P(A)   (multiplication rule)
• We are almost there: How does P(B|A) relate to P(B)?

P(B|A) = P(B) iff B and A are independent!

• Examples:
– Two coin tosses
– Color shirt I’m wearing today, what Bill Clinton had for breakfast.

• Two events A, B are independent from each other if
P(A,B) = P(A) P(B)     Equivalent to P(B) = P(B|A) (if P(A) ≠  0)

• Otherwise they are dependent.
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Joint Probability with Independence

P(precipitation, temperature)              P(precipitation) P(temperature)

it takes 40 numbers

Independence means we need far fewer numbers!

it takes 14 numbers

sun rain sleet snow

10s 0.09 0.00 0.00 0.01
20s 0.08 0.00 0.00 0.02
30s 0.05 0.01 0.01 0.03
40s 0.06 0.03 0.01 0.00
50s 0.06 0.04 0.00 0.00
60s 0.06 0.04 0.00 0.00
70s 0.07 0.03 0.00 0.00
80s 0.07 0.03 0.00 0.00
90s 0.08 0.02 0.00 0.00
100s 0.08 0.02 0.00 0.00

sun rain sleet snow
0.5 0.3 0.05 0.15

10s 0.1
20s 0.1
30s 0.1
40s 0.1
50s 0.1
60s 0.1
70s 0.1
80s 0.1
90s 0.1
100s 0.1



Andrew McCallum, UMass Amherst

Chain Rule

P(A1, A2, A3, A4,… An) =
 P(A1| A2, A3, A4,… An)
 P(A2, A3, A4,… An)

Analogous to P(A,B) = P(A|B) P(B).
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Chain Rule

P(A1, A2, A3, A4,… An) =
 P(A1| A2, A3, A4,… An)
 P(A2| A3, A4,… An)
 P(A3, A4,… An)
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Chain Rule

P(A1, A2, A3, A4,… An) =
 P(A1| A2, A3, A4,… An)
 P(A2| A3, A4,… An)
 P(A3| A4,… An)
 …
 P(An)

Furthermore, if A1…An are all independent from each other…
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Chain Rule

P(A1, A2, A3, A4,… An) =
 P(A1)
 P(A2)
 P(A3)
 …
 P(An)

If A1…An are all independent from each other
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Example: Two ways, same answer

• “A fair coin is tossed 3 times.
What is the likelihood of 3 heads?”
– Experiment: Toss a coin three times,
Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH,
TTT}

– Event: basic outcome has exactly 3 H’s
A = {HHH}

• Chain rule
P(HHH) = P(H) P(H|H) P(H|HH)

        = P(H) P(H) P(H) = (1/2)3 = 1/8
• Size of event spaces

P(HHH) = |A| / |Ω| = 1/8
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Collaborative Exercise

• Suppose one is interested in a rare syntactic
construction, parasitic gaps, which occur on average
once in 100,000 sentences.  Peggy Linguist has
developed a complicated pattern matcher that
attempts to identify sentences with parasitic gaps.
It's pretty good,but its not perfect: if a sentence has a
parasitic gap, it will say so with probability 0.95, if it
doesn't it will wrongly say so with probability 0.005.

• Suppose the test says that a sentence contains a
parasitic gap.  What is the probability that this is true?



Andrew McCallum, UMass Amherst

Finding most likely posterior event

• P(A|B) = P(B|A)P(A)    (for example, P(“lies”=Noun|“more lies ahead”)

                    P(B)

• Want to find most likely A given B,
but P(B) is sometimes a pain to calculate…

• arg maxA P(B|A)P(A) = arg maxA P(B|A)P(A)
                      P(B)

because B is constant while changing A
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Random Variables

• A random variable is a function X : Ω → Q
– in general Q=ℜn, but more generally simply Q=ℜ
– makes it easier to talk about numerical values related to event

space
• Random variable is discrete if Q is countable.
• Example: coin Q={0,1}, die Q=[1,6]
• Called an indicator variable or Bernoulli trial if Q ∈ {0,1}

• Example:
– Suppose event space comes from tossing two dice.
– We can define a random variable X that is the sum of their faces
– X : Ω → {2,..12}

Because a random variable has a numeric range, we can often do math more
easily by working with values of the random variable than directly with events.
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Probability Mass Function
• p(X=x) = P(Ax) where Ax = {a ∈ Ω : X(a)=x}
• Often written just p(x), when X is clear from context.

Write X ~ p(x) for “X is distributed according to p(x)”.
• In English:

– Probability mass function, p…
– maps some value x (of random variable X) to…
– the probability random variable X taking value x
– equal to the probability of the event Ax
– this event is the set of all basic outcomes, a, for which the

random variable X(a) is equal to x.
• Example, again:

– Event space = roll of two dice; e.g. a=<2,5>, |Ω|=36
– Random variable X is the sum of the two faces
– p(X=4) = P(A4), A4 = {<1,3>, <2,2>, <3,1>}, P(A4) = 3/36

Random variables will be used throughout the
Introduction to Information Theory, coming next class.
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Expected Value

• … is a weighted average, or mean, of a random variable
E[X] = Σx ∈ X(Ω) x · p(x)

• Example:
– X = value of one roll of a fair six-sided die:

E[X] = (1+2+3+4+5+6)/6 = 3.5
– X = sum of two rolls…

E[X] = 7

• If Y ~ p(Y=y) is a random variable, then any function g(Y)
defines a new random variable, with expected value

E[g(Y)] = Σy ∈ Y(Ω) g(y) · p(y)
• For example,

– let g(Y) = aY+b, then E[g(Y)] = a E[Y] + b
– E[X+Y] = E[X] + E[Y]
– if X and Y are independent, E[XY] = E[X] E[Y]
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Variance

• Variance, written σ2

• Measures how consistent the value is over
multiple trials
– “How much on average the variable’s value differs from

the its mean.”
• Var[X] = E[(X-E[X])2]

• Standard deviation = √ Var[X] = σ



Andrew McCallum, UMass Amherst

Joint and Conditional Probabilities
with Random Variables

• Joint and Conditional Probability Rules
– Analogous to probability of events!

• Joint probability
p(x,y) = P(X=x, Y=y)

• Marginal distribution p(x) obtained from the joint p(x,y)
p(x) = Σy p(x,y)       (by the total probability rule)

• Bayes Rule
p(x|y) = p(y|x) p(x) / p(y)

• Chain Rule
p(w,x,y,z) = p(z) p(y|z) p(x|y,z) p(w|x,y,z)
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Parameterized Distributions

• Common probability mass functions with
same mathematical form…

• …just with different constants employed.
• A family of functions, called a distribution.
• Different numbers that result in different

members of the distribution, called
parameters.

• p(a;b)
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Binomial Distribution

• A discrete distribution with two outcomes
Ω = {0, 1}               (hence bi-nomial)

• Make n experiments.
• “Toss a coin n times.”

• Interested in the probability that r of the n
experiments yield 1.

• Careful!  It’s not a uniform distribution. (q = prob of H)

•

where

! 

p(R = r | n,q) =
n
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Pictures of Binomial Distribution
binomial (n,q):
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Multinomial Distribution

• A discrete distribution with m outcomes
Ω = {0, 1, 2,… m}

• Make n experiments.
• Examples: “Roll a m-sided die n times.”

“Assuming each word is independent from the next,
generate an n-word sentence from a vocabulary of size m.”

• Interested in the probability of obtaining counts
c = c1, c2,… cm from the n experiments.

! 

p(c | n,q) =
n!

c1!c2!...cm!

" 

# 
$ 

% 

& 
' (qi)

ci

i=1..m

(
Unigram language model
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Parameter Estimation

• We have been assuming that P is given, but
most of the time it is unknown.

• So we assume a parametric family of
distributions and estimate its parameters…

• …by finding parameter values most likely to
have generated the observed data (evidence).

• …treating the parameter value as a random
variable!
Not the only way of doing parameter estimation.

This is maximum likelihood parameter estimation.
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Maximum Likelihood Parameter Estimation
Example: Binomial

• Toss a coin 100 times, observe r  heads
• Assume a binomial distribution

– Order doesn’t matter, successive flips are independent
– One parameter is q  (probability of flipping a head)
– Binomial gives p(r|n,q).  We know r and n.
– Find arg maxq p(r|n, q)
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Maximum Likelihood Parameter Estimation
Example: Binomial

• Toss a coin 100 times, observe r  heads
• Assume a binomial distribution

– Order doesn’t matter, successive flips are independent
– One parameter is q  (probability of flipping a head)
– Binomial gives p(r|n,q).  We know r and n.
– Find arg maxq p(r|n, q)

! 

likelihood = p(R = r | n,q) =
n

r

" 

# 
$ 
% 

& 
' q

r(1( q)n(r

log( likelihood = L = log(p(r | n,q))) log(qr (1( q)n(r) = r log(q) + (n ( r)log(1( q)

*L

*q
=
r

q
(
n ( r

1( q
+ r(1( q) = (n ( r)q+ q =

r

n Our familiar ratio-of-counts
is the maximum likelihood estimate!

(Notes for board)
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Binomial Parameter Estimation Examples

• Make 1000 coin flips, observe 300 Heads
– P(Heads) = 300/1000

• Make 3 coin flips, observe 2 Heads
– P(Heads) = 2/3 ??

• Make 1 coin flips, observe 1 Tail
– P(Heads) = 0 ???

• Make 0 coin flips
– P(Heads) = ???

• We have some “prior” belief about P(Heads) before
we see any data.

• After seeing some data, we have a “posterior” belief.
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Maximum A Posteriori
 Parameter Estimation

• We’ve been finding the parameters that maximize
– p(data|parameters),

not the parameters that maximize
– p(parameters|data)    (parameters are random variables!)

• p(q|n,r) = p(r|n,q) p(q|n) = p(r|n,q) p(q)
      p(r|n)               constant

• And let p(q) = 2 q(1-q)
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Maximum A Posteriori Parameter Estimation
Example: Binomial

! 

posterior = p(r | n,q)p(q) =
n

r

" 

# 
$ 
% 

& 
' q

r(1( q)n(r (6q(1( q))

log( posterior = L) log(qr+1(1( q)n(r+1) = (r +1)log(q) + (n ( r +1)log(1( q)

*L

*q
=
(r +1)

q
(
(n ( r +1)

1( q
+ (r +1)(1( q) = (n ( r +1)q+ q =

r +1

n + 2

2
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Bayesian Decision Theory

• We can use such techniques for choosing
among models:
– Which among several models best explains the data?

• Likelihood Ratio
P(model1 | data)  =   P(data|model1) P(model1)
P(model2 | data)       P(data|model2) P(model2)
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...back to our example: French vs English

• p(French | glacier, melange) versus
p(English | glacier, melange) ?

• We have real data for
– Shakespeare’s Hamlet
– Charles Dickens’ Oliver Twist

• p(Hamlet | “hand”, “death”)
p(Oliver | “hand”, “death”)
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Continuing Homework Assignment?

• EC for whatever you hand in by tonight.

• For next week:
– More time to create your own grammar
– Modify parser to keep trace, and print parse trees
– Try an additional grammar of your own creation,

and investigate ambiguities
– Work in small teams!
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Multimedia GUI
Garbage
Collection

Prog. Lang.
Semantics

Machine
Learning Planning

“Temporal reasoning for
planning has long
been studied formally.
We discuss the semantics
of several planning...”
  

Training
  data:

Testing
Document:

Categories:

Document Classification
with Probabilistic Language Modeling

.

“Plannning 
with temporal
reasoning 
has been…”

“Neural networks
and other machine
learning methods 
of classification…”

“…based on
the semantics
of program
dependence”

“Garbage
collection for
strongly-typed
languages…” 

“Multimedia
streaming
video for…”

“User
studies
of GUI…”
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A Probabilistic Approach to Classification:
“Naïve Bayes”

Pick the most probable class, given the evidence:

- a class (like “Planning”)
- a document (like “language intelligence proof...”)

Bayes Rule: “Naïve Bayes”:

- the i th word in d (like “proof”)


