

Implicatures

Decision theory

Conclusion 000

The pragmatics of questions and answers, Part 2: Partition semantics and decision-theoretic pragmatics

Christopher Potts

UMass Amherst Linguistics

CMPSCI 585, December 4, 2007

Intro	Questions	Implicatures	Decision theory	Conclusion
•0	000000	00000000	000000000	000

Example (After Solan and Tiersma 2005:220)

 ${\mathcal A}$ I lost my wallet. Do you know where it is?

 $\mathcal B$ I saw it on the kitchen table earlier.

Intro	Questions	Implicatures	Decision theory	Conclusion
•0	000000	00000000	000000000	000

Example (After Solan and Tiersma 2005:220)

Context: \mathcal{B} has pocketed \mathcal{A} 's wallet.

- \mathcal{A} I lost my wallet. Do you know where it is?
- $\mathcal B$ I saw it on the kitchen table earlier.

Intro	Questions	Implicatures	Decision theory	Conclusion
•0	000000	00000000	000000000	000

Example (After Solan and Tiersma 2005:220)

Context: \mathcal{B} has pocketed \mathcal{A} 's wallet.

- \mathcal{A} I lost my wallet. Do you know where it is?
- $\mathcal B$ I saw it on the kitchen table earlier.

Observations

- *B*'s answer is superficially *partial*.
- But contextual factors might lead *A* to believe that *B* in fact over answered. (Enrichment: "No, but ...")

Intro	Questions	Implicatures	Decision theory	Conclusion
•0	000000	00000000	000000000	000

Example (After Solan and Tiersma 2005:220)

Context: \mathcal{B} has pocketed \mathcal{A} 's wallet.

- \mathcal{A} I lost my wallet. Do you know where it is?
- ${\mathcal B}$ I saw it on the kitchen table earlier.

Observations

- *B*'s answer is superficially *partial*.
- But contextual factors might lead *A* to believe that *B* in fact over answered. (Enrichment: "No, but ...")

What pragmatic facts has $\mathcal B$ leveraged into a devious answer?

Intro	Questions	Implicatures	Decision theory	Conclusion
0	000000	00000000	000000000	000

This lecture

- We'll explore the partition semantics for questions, using it to define some initial pragmatic principles.
- We'll develop a decision-theoretic perspective on the partition semantics and its pragmatics, with the goal of developing a more general treatment based in information theory.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Question semantics

Groenendijk and Stokhof (1982)

Interrogative denotations partition the information state into equivalence classes based on the extension of the question predicate.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Question semantics

Groenendijk and Stokhof (1982)

Interrogative denotations partition the information state into equivalence classes based on the extension of the question predicate.

Answering

- Fully congruent answers identify a single cell.
- Partial answers overlap with more than one cell.
- Over-answers identify a proper subset of one of the cells.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

 $\llbracket \textit{Did Sam laugh?} \rrbracket =$

$$\Big\{ \{ v \in W \mid v \in \llbracket \mathsf{laugh}(\mathsf{sam}) \rrbracket \text{ iff } w \in \llbracket \mathsf{laugh}(\mathsf{sam}) \rrbracket \Big\} \ \Big| \ w \in W \Big\}$$

[laughed(sam)]	W - [[laughed(sam)]]
----------------	----------------------

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

[Did Sam laugh?] =

$$\left\{ \{ v \in W \mid v \in \llbracket \mathsf{laugh}(\mathsf{sam}) \rrbracket \text{ iff } w \in \llbracket \mathsf{laugh}(\mathsf{sam}) \rrbracket \} \ \middle| \ w \in W \right\}$$

[laughed(sam)]	W – [[laughed(sam)]]
----------------	----------------------

Answers

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

[Did Sam laugh?] =

$$\Big\{ \{ v \in \mathcal{W} \mid v \in \llbracket ext{laugh(sam)}
bracket ext{ iff } w \in \llbracket ext{laugh(sam)}
bracket \ \mid w \in \mathcal{W} \Big\}$$

$$\llbracket laughed(sam)
rbrace W - \llbracket laughed(sam)
rbrace$$

Answers Yes.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

[Did Sam laugh?] =

$$\Big\{ \{ v \in \mathcal{W} \mid v \in \llbracket ext{laugh(sam)}
bracket ext{ iff } w \in \llbracket ext{laugh(sam)}
bracket \ \mid w \in \mathcal{W} \Big\}$$

$$\llbracket laughed(sam)
rbrace W - \llbracket laughed(sam)
rbrace$$

Answers No.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

[Who laughed?] =

 $\left\{ \{v \in W \mid \forall d. \llbracket \texttt{laugh}
bracket(d)(v) \text{ iff } \llbracket \texttt{laugh}
bracket(d)(w) \right\} \ \left| \ w \in W \right\}$

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

[Who laughed?] =

 $\left\{ \{v \in W \mid \forall d. \llbracket \texttt{laugh} \rrbracket(d)(v) \text{ iff } \llbracket \texttt{laugh} \rrbracket(d)(w) \right\} \ \middle| \ w \in W \right\}$

Answers

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

[Who laughed?] =

 $\left\{ \{v \in W \mid \forall d. \llbracket \texttt{laugh} \rrbracket(d)(v) \text{ iff } \llbracket \texttt{laugh} \rrbracket(d)(w) \right\} \ \middle| \ w \in W \right\}$

Answers

Bart and Lisa.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

[Who laughed?] =

 $\left\{ \{v \in W \mid \forall d. \llbracket \texttt{laugh} \rrbracket(d)(v) \text{ iff } \llbracket \texttt{laugh} \rrbracket(d)(w) \right\} \ \middle| \ w \in W \right\}$

Answers

Bart, Lisa, Maggie, and Burns.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

[Who laughed?] =

 $\left\{ \{v \in W \mid \forall d. \llbracket \texttt{laugh} \rrbracket(d)(v) \text{ iff } \llbracket \texttt{laugh} \rrbracket(d)(w) \right\} \ \middle| \ w \in W \right\}$

Answers

No one.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

We get a rough measure of the extent to which p answers Q by inspecting the cells in Q with which p has a nonempty intersection:

Definition (Answer values)

$$\mathsf{Ans}(p,Q) = ig\{q \in Q \mid p \cap q
eq \emptysetig\}$$

Example

Bart: Did Sam laugh? Lisa:

[laughed(sam)]	$W - \llbracket laughed(sam) rbracket$
----------------	---

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

We get a rough measure of the extent to which p answers Q by inspecting the cells in Q with which p has a nonempty intersection:

Definition (Answer values)

$$\mathsf{Ans}(p,Q) = ig\{ q \in Q \mid p \cap q
eq \emptyset ig\}$$

	e rt: Did Sam laugh? a: Yes.	Anc = 1
LIS	[laughed(sam)]	$ \operatorname{Ans} = 1$ W - [laughed(sam)]
	[laughed(sam)]	

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

We get a rough measure of the extent to which p answers Q by inspecting the cells in Q with which p has a nonempty intersection:

Definition (Answer values)

$$\mathsf{Ans}(p,Q) = ig\{ q \in Q \mid p \cap q
eq \emptyset ig\}$$

Example	e		
	t: Did Sam laugh? a: No.	$ \operatorname{Ans} =1$	
	[laughed(sam)]	W – [[laughed(sam)]]	

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

We get a rough measure of the extent to which p answers Q by inspecting the cells in Q with which p has a nonempty intersection:

Definition (Answer values)

$$\mathsf{Ans}(p,Q) = ig\{q \in Q \mid p \cap q
eq \emptysetig\}$$

Example

Bart: Did Sam laugh?

Lisa: I heard some giggling.

|Ans| = 2

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Overly informative answers

Ans values are a bit too blunt:

if $|\operatorname{Ans}(p, Q)| = 1$, then $|\operatorname{Ans}(p', Q)| = 1$ whenever $p' \subseteq p$.

Example

Bart: Is Sam happy at his new job? Lisa:

[happy(sam)]	W — [[happy(sam)]]
--------------	--------------------

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Overly informative answers

Ans values are a bit too blunt:

if $|\operatorname{Ans}(p, Q)| = 1$, then $|\operatorname{Ans}(p', Q)| = 1$ whenever $p' \subseteq p$.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Overly informative answers

Ans values are a bit too blunt:

if $|\operatorname{Ans}(p, Q)| = 1$, then $|\operatorname{Ans}(p', Q)| = 1$ whenever $p' \subseteq p$.

Example

Bart: Is Sam happy at his new job? Lisa: Yes, and he hasn't been to jail yet. |Ans| = 1

[[happy(sam)]]	W — [[happy(sam)]]
----------------	--------------------

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

A preference ordering

Definition (Relevance; G&S, van Rooij)

$$p \succ_Q q$$
 iff $\operatorname{Ans}(p, Q) \subset \operatorname{Ans}(q, Q)$ or
 $\operatorname{Ans}(p, Q) = \operatorname{Ans}(q, Q)$ and $q \subset p$

00 0000000 000000000 0000 0000	Intro	Questions	Implicatures	Decision theory	Conclusion
	00	000000	00000000	000000000	000

A preference ordering

Definition (Relevance; G&S, van Rooij)

$$p \succ_Q q$$
 iff $Ans(p, Q) \subset Ans(q, Q)$ or
 $Ans(p, Q) = Ans(q, Q)$ and $q \subset p$

Example

In the previous example,

 $\llbracket happy(sam) \rrbracket \succ_{\llbracket ?happy(sam) \rrbracket} \llbracket happy(sam) \land no-jail(sam) \rrbracket$

While their Ans values are the same, the first is a superset of the second.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	00000	00000000	000000000	000

Ordering questions

We can order questions as well, via the granularity of the cells.

Example

Where are you from? $\begin{cases} \approx \text{ Which planet are you from?} \\ \approx \text{ Which country are you from?} \\ \approx \text{ Which city are you from?} \\ & \cdots \end{cases}$

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Ordering questions

We can order questions as well, via the granularity of the cells.

Example

Where are you from? $\begin{cases} \approx \text{ Which planet are you from?} \\ \approx \text{ Which country are you from?} \\ \approx \text{ Which city are you from?} \\ & \dots \end{cases}$

Definition (Fine-grainedness; G&S)

$$Q \sqsubseteq Q' ext{ iff } orall q \in Q ext{ } \exists q' \in Q' ext{ } q \subseteq q'$$

If Q is more fine-grained than Q', then an exhaustive answer to Q is more informative than an exhaustive answer to Q'.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Conversational implicatures

If $\llbracket p \rrbracket$ is not maximal with regard to the ordering $\succ_{\llbracket Q \rrbracket}$, then "p" will be laden with conversational implicatures.

The goal To get a grip on the nature and source of these incongruence implicatures.

Congruence out of incongruence

Zeevat (1994)

A proper partial answer is then one where the answerer indicates that she is not giving a full answer to the question that was asked, but a standard answer to a weaker question.

Congruence out of incongruence

Zeevat (1994)

A proper partial answer is then one where the answerer indicates that she is not giving a full answer to the question that was asked, but a standard answer to a weaker question. It is then the task of the person interpreting the answer to work out the weaker question on the basis of the formal properties of the answer and the original question.

Congruence out of incongruence

Zeevat (1994)

A proper partial answer is then one where the answerer indicates that she is not giving a full answer to the question that was asked, but a standard answer to a weaker question. It is then the task of the person interpreting the answer to work out the weaker question on the basis of the formal properties of the answer and the original question.

 Surely someone has said the comparable thing for overly informative answers! I haven't found a source yet, though.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	0000000	000000000	000

Partial answers

A What city does Barbara live in?

Moscow	Petersburg	New York	Boston
Kazan	Volgograd	Chicago	Austin

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000		000000000	000
	answers A Vhat city does B	arbara live in? ——	B → Well, she lives in 1	RUSSIA.

Moscow	Petersburg	New York	Boston
Kazan	Volgograd	Chicago	Austin

in this case, recoverable from the intonation (Büring, 1999)

Moscow	Petersburg	New York	Boston
Kazan	Volgograd	Chicago	Austin

question and reply.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	0000000	000000000	000

Over-answering: A Gricean classic

Is C happy at his new job? \mathcal{A}

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	0000000	000000000	000

Over-answering: A Gricean classic

Is C happy at his new job? \longrightarrow Yes, and he hasn't been to prison. \mathcal{A} \mathcal{B}

just one of the many questions that \mathcal{B} might be addressing

just one of the many questions that $\mathcal B$ might be addressing

Grice (1975)

At this point A might well inquire what B was implying, what he was suggesting, or even what he meant by saying that Chad not been to prison. The answer might be any one of such things as that C is the sort of person likely to yield to the temptation provided by his occupation, that ...

just one of the many questions that \mathcal{B} might be addressing

[C is happy]	[C is not happy]
--------------	------------------

just one of the many questions that \mathcal{B} might be addressing

 $[Yes] \\ [No] \end{cases} \succ [Is C happy at his new job?] [Yes, and he hasn't been to jail.]$

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Over-answering: Pragbot data

Did you find anything? \mathcal{A}

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	0000000	000000000	000

Over-answering: Pragbot data

Did you find anything? \longrightarrow yep, h at the top exit \mathcal{A} \mathcal{B}

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	0000000	000000000	000

Over-answering: Pragbot data

the extra information is a product of the task: they need to retrieve specific cards

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Over-answering: Required for felicity

Is Ali in room 443? A

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Over-answering: Required for felicity

Is Ali in room 443? \longrightarrow No, she's in room 434 \mathcal{A} \mathcal{B}

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Over-answering: Required for felicity

a nearly conventionalized case of over-answering, though contextual factors can bring out the polarquestion understanding

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	000000000	000000000	000

Over-answering via enrichment

Okay, do we have fire coming up through the roof yet? *A*

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	000000000	000000000	000

Over-answering via enrichment

$\begin{array}{ccc} \textit{Okay, do we have fire coming} & & & \textit{We have a lot of hot embers} \\ \textit{up through the roof yet?} & & & \textit{blowing through.} \\ & & & \mathcal{B} \end{array}$

Strictly speaking, we enrich this to "*No, but...*", based on our assumptions about the speaker's cooperativity and epistemic state. A robotic "No" would be terrible in this context!

B

Strictly speaking, we enrich this to "*No, but...*", based on our assumptions about the speaker's cooperativity and epistemic state. A robotic "No" would be terrible in this context!

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	000000000	000000000	000

The relation \sqsubseteq is a partial one, and hence not all questions are comparable along this dimension. Speakers exploit this fact:

Do we have a quiz today? \mathcal{A}

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	000000000	000000000	000

The relation \sqsubseteq is a partial one, and hence not all questions are comparable along this dimension. Speakers exploit this fact:

Do we have a quiz today? \longrightarrow It's rainy outside. \mathcal{A} \mathcal{B}

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	000000000	000000000	000

The relation \sqsubseteq is a partial one, and hence not all questions are comparable along this dimension. Speakers exploit this fact:

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	000000000	000000000	000

The relation \sqsubseteq is a partial one, and hence not all questions are comparable along this dimension. Speakers exploit this fact:

Topic changing via an answer whose question is incomparable to the original one. However, if it is known that there is always a quiz when the weather is bad, then the two questions might be contextually comparable.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	000000000	000000000	000

Uncertainty

Example (After Solan and Tiersma 2005:220)

(**Context**: \mathcal{B} has pocketed \mathcal{A} 's wallet.)

 \mathcal{A} I lost my wallet. Do you know where it is?

 $\mathcal B$ I saw it on the kitchen table earlier.

It's natural to enrich this to *No*, *but*..., but that inference depends upon implicit assumptions about \mathcal{B} 's cooperativity.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	000000000	000000000	000

Uncertainty

Example (After Solan and Tiersma 2005:220)

(**Context**: \mathcal{B} has pocketed \mathcal{A} 's wallet.)

 \mathcal{A} I lost my wallet. Do you know where it is?

 ${\cal B}$ I saw it on the kitchen table earlier.

It's natural to enrich this to *No*, *but*..., but that inference depends upon implicit assumptions about \mathcal{B} 's cooperativity.

General pragmatic principles and their limits

- Our general pragmatic inferences tell us only that \mathcal{B} 's answer is non-maximal, and thus that some other question is in play.
- Our assumptions about the context take us to more specific enrichments.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Desiderata

Earlier, I suggested that we keep two questions in mind:

- What counts as a felicitous answer?
- What shapes the questions themselves?

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Desiderata

Earlier, I suggested that we keep two questions in mind:

- What counts as a felicitous answer?
- What shapes the questions themselves?

What shapes Q, and what determines Q'?

The final section of this talk introduces some concepts from decision theory, with the goal of answering all these questions.

Intro 00	Questions 000000	Implicatures 00000000	Decision theory	Conclusion

Decision theory

The study of how (rational) agents make decisions (often under uncertainty (Luce and Raiffa, 1957; Lewis, 1986; Hansson, 2005).

For the purposes of this talk, we require only the basic structure of decision problems. We'll see that, with a decision problem fixed, we gain an understanding of

- where question meanings come from; and
- how two discourse participants might disagree on what the question(s) should be.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Decision problems

Definition (Decision problems)

A decision problem is a structure $DP = (W, S, P_S, A, U_S)$:

- W is a space of possible states of affairs;
- *S* is an agent;
- *P_S* is a (subjective) probability distribution for agent *S*;
- A is a set of actions that S can take; and
- U_S is a utility function for S, mapping action-world pairs to real numbers.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	00000000	000

Example: Schlepp the umbrella?

Example (Should agent S bring his umbrella with him?)

The chance of rain is 60%. *S* is no fan of rain and hates to get wet. It's not good, but not terrible, to carry the umbrella on a dry day. Best of all is sunshine with no umbrella to schlepp.

	rain			no rain	
U_S	w ₁	<i>w</i> ₂	W3	W4	W5
umbrella	2	2	2	-2	-2
no umbrella	-8	-8	-8	8	8

Example: Schlepp the umbrella?

Example (Should agent S bring his umbrella with him?)

The chance of rain is 60%. *S* is no fan of rain and hates to get wet. It's not good, but not terrible, to carry the umbrella on a dry day. Best of all is sunshine with no umbrella to schlepp.

	rain		no rain		
U_S	w ₁	<i>w</i> ₂	W3	w4	<i>w</i> ₅
umbrella	2	2	2	-2	-2
no umbrella	-8	-8	-8	8	8

Solution concept

S is deciding under uncertainty. If he is rational, he will choose the action with the highest *expected utility* — a calculation that balances his utility values with probabilities.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Expected utilities

Expected utilities take risk into account when measuring the usefulness of performing an action.

Definition

For decision problem $DP = (W, S, P_S, A, U_S)$ the *expected utility* of an action $a \in A$

$$\mathsf{EU}_{DP}(a) = \sum_{w \in W} P(\{w\}) \cdot U(a, w)$$

00 000000 00000000 0000000 000	Intro	Questions	Implicatures	Decision theory	Conclusion
	00	000000	00000000	000000000	000

Solving decision problems

Definition (Utility value of a decision problem) Let $DP = (W, S, P_S, A, U_S)$ be a decision problem.

 $\mathsf{UV}(DP) = \max_{a \in A} \mathsf{EU}_{DP}(a)$

Definition (Solving a decision problem)

Let $DP = (W, S, P_S, A, U_S)$ be a decision problem. The solution to DP is

choose a such that $EU_{DP}(a) = UV(DP)$

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	00000000	000

Solving the umbrella problem

- UV(Schlepp) = $\max_{a \in \{\text{umbrella}, \text{no-umbrella}\}} EU(a)$ = 0.4
- The optimal action is umbrella.

Utility value of new information

Incoming information might change the decision problem by changing the expected utilities.

Definition (Conditional expected utility)

Let $DP = (W, S, P_S, A, U_S)$ be a decision problem.

$$\mathsf{EU}_{DP}(a|p) = \sum_{w \in W} P(\{w\}|p) \cdot U(a,w)$$

Utility value of new information

Incoming information might change the decision problem by changing the expected utilities.

Definition (Conditional expected utility)

Let $DP = (W, S, P_S, A, U_S)$ be a decision problem.

$$\mathsf{EU}_{DP}(a|p) = \sum_{w \in W} P(\{w\}|p) \cdot U(a,w)$$

Example

- EU(no-umbrella) = -1.6
- $EU(no-umbrella | \{w_4, w_5\}) = 8.0$
- (given no rain)

- EU(umbrella) = .4
- $EU(umbrella|\{w_1, w_2, w_3\}) = 2.0$

(given no rain)

Changes to the utility value

The utility value of new information is a measure of the extent to which it changes the utility value of the decision problem.

Definition

$$\mathsf{UV}_{DP}(p) = \max_{a \in A} \mathsf{UV}_{DP}(a|p) - \mathsf{UV}(DP)$$

Example

For the umbrella example, the utility value jumps from .4 to 8.0 when we learn that it will be sunny. Thus:

 $\mathsf{UV}_{\mathsf{Schlepp}}(\{w_4, w_5\}) = 8.0$

00 000000 00000000 0000000 0000000 00000	000

Action propositions

Definition (van Rooij) $DP = (W, S, P_S, A, U_S)$ is a decision problem and $a \in A$.

$$a^* = \{w \in W \mid U_S(a, w) \geqslant U_S(a', w) \text{ for } a' \in A\}$$

Example (Action propositions for schlepping the umbrella)

			rain		no	rain	
	U_S	<i>w</i> ₁	<i>w</i> ₂	W ₃	<i>w</i> 4	w ₅	
	umbrella	2	2	2	-2	-2	
	no umbrella	-8	-8	-8	8	8	
umbrella [*] = { w_1, w_2, w_3 } no umbrella [*] = { w_4, w_5 }							

00 000000 00000000 0000000 0000000 00000	000

Action propositions

Definition (van Rooij) $DP = (W, S, P_S, A, U_S)$ is a decision problem and $a \in A$.

$$a^* = \{w \in W \mid U_S(a, w) \geqslant U_S(a', w) \text{ for } a' \in A\}$$

Example (Action propositions for schlepping the umbrella)

			rain		no	rain	
	U_S	<i>w</i> ₁	<i>w</i> ₂	W ₃	<i>w</i> 4	w ₅	
	umbrella	2	2	2	-2	-2	
	no umbrella	-8	-8	-8	8	8	
umbrella [*] = { w_1, w_2, w_3 } no umbrella [*] = { w_4, w_5 }							

We've induced a question meaning from the utility function.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Optimal understandings

Example (Pragbot data)

Context: Player 2 is looking for

Player 2: Did you find anything? [...] Player 1: yep, h at the top exit

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	00000000	000

A decision-theoretic view of (in)congruence

Incongruous answers don't signal an alternative question, but rather an alternative decision problem, one that the answerer would like to address/solve.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Summing up and looking ahead

A unified pragmatics

Basic relations between questions and between questions and their answers provides a unified perspective on partial answering, over-answering, and the gray area between them.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	0 00

Summing up and looking ahead

Greater generality via decision theory

The decision-theoretic approach frees us from having to define everything in terms of questions. Decision problems are more general, and thus they can be used to understand other discourse moves.

Intro	Questions	Implicatures	Decision theory	Conclusion
00	000000	00000000	000000000	000

Info

This material is based upon work supported by Army Research Office contract number W911NF-07-1-0216. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Army Research Office.

References and data sources I

- Büring, Daniel. 1999. Topic. In Peter Bosch and Rob van der Sandt, eds., Focus Linguistic, Cognitive, and Computational Perspectives, 142–165. Cambridge: Cambridge University Press.
- Grice, H. Paul. 1975. Logic and conversation. In Peter Cole and Jerry Morgan, eds., Syntax and Semantics, volume 3: Speech Acts, 43–58. New York: Academic Press.
- Groenendijk, Jeroen and Martin Stokhof. 1982. Semantic analysis of wh-complements. *Linguistics and Philosophy* 5(2):175–233.
- Hansson, Sven Ove. 2005. Decision Theory: A Brief Introduction. Stockholm: Stockholm Royal Institute of Technology, 2nd edition. URL http://www.infra.kth.se/~soh/decisiontheory.pdf.
- Lewis, David. 1986. *Philosophical Papers*, volume 2. New York: Oxford University Press.
- Luce, R. Duncan and Howard Raiffa. 1957. *Games and Decisions: Introduction and Critical Survey.* New York: John Wiley and Sons.
- Solan, Lawrence M. and Peter M. Tiersma. 2005. *Speaking of Crime: The Language of Criminal Justice*. Chicago, IL: University of Chicago Press.
- Zeevat, Henk. 1994. Questions and exhaustivity in update semantics. In Reinhard Muskens H Bunt and G. Rentier, eds., *Proceedings of the International Workshop on Computational Semantics*, 211–221. Tilburg: ITK.