Statistical Models of Semantics and Unsupervised Language Discovery Lecture #18

Introduction to Natural Language Processing CMPSCI 585, Fall 2007

Andrew McCallum Computer Science Department University of Massachusetts Amherst

Including slides from Chris Manning, Dan Klein, Rion Snow & Patrick Pantel.

Attachment Ambiguity

- Where to attach a phrase in the parse tree?
- "I saw the man with the telescope."
 - What does "with a telescope" modify?
 - Is the problem AI complete? Yes, but...
 - Proposed simple structural factors
 - Right association [Kimball 1973]
 'low' or 'near' attachment = 'early closure' of NP
 - Minimal attachment [Frazier 1978] (depends on grammar) = 'high' or 'distant' attachment = 'late closure' (of NP)

Attachment Ambiguity

- "The children ate the cake with a spoon."
- "The children ate the cake with frosting."
- "Joe included the package for Susan."
- "Joe carried the package for Susan."
- Ford, Bresnan and Kaplan (1982): "It is quite evident, then, that the closure effects in these sentences are induced in some way by the choice of the lexical items."

Lexical acquisition, semantic similarity

- Previous models give same estimate to all unseen events.
- Unrealistic could hope to refine that based on semantic classes of words
- Examples
 - "Susan ate the cake with a durian."
 - "Susan had never eaten a fresh durian before."
 - Although never seen "eating pineapple" should be more likely than "eating holograms" because pineapple is similar to apples, and we have seen "eating apples".

An application: selectional preferences

- Most verbs prefer arguments of a particular type. Such regularities are called selectional preferences or selectional restrictions.
- "Bill drove a..." Mustang, car, truck, jeep
- Selectional preference strength: how strongly does a verb constrain direct objects
- "see" versus "unknotted"

Measuring selectional preference strength

- Assume we are given a clustering of (direct object) nouns. Resnick (1993) uses WordNet.
- Selectional association between a verb and a class

$$S(v) = D(P(C|v)||P(C)) = \sum_{c} P(c|v) \log \frac{P(c|v)}{P(c)}$$

Proportion that its summand contributes to preference strength.

$$A(v,c) = \frac{P(c|v)\log\frac{P(c|v)}{P(c)}}{S(v)}$$

• For nouns in multiple classes, disambiguate as most likely sense: $A(v,n) = \max_{c \in \text{classes}(n)} A(v,c)$

Selection preference strength (made up data)

<u>Noun class c</u>	<u>P(c)</u>	<u>P(c eat)</u>	<u>P(c see)</u>	<u>P(c find)</u>
people	0.25	0.01	0.25	0.33
furniture	0.25	0.01	0.25	0.33
food	0.25	0.97	0.25	0.33
action	0.25	0.01	0.25	0.01
SPS S(v)		1.76	0.00	0.35

A(eat, food) = 1.08A(find, action) = -0.13

Selectional Preference Strength example (Resnick, Brown corpus)

Verb v	Noun n	A(v, n)	Class	Noun n	A(v, n)	Class
answer	request	4.49	speech act	tragedy	3.88	communication
find	label	1.10	abstraction	fever	0.22	psych. feature
hear	story	1.89	communication	issue	1.89	communication
remember	reply	1.31	statement	smoke	0.20	article of commerce
repeat	comment	1.23	communication	journal	1.23	communication
read	article	6.80	writing	fashion	-0.20	activity
see	friend	5.79	entity	method	-0.01	method
write	letter	7.26	writing	market	0.00	commerce

But how might we measure word similarity for word classes?

• Vector spaces

A document-by-word matrix A.

	cosmonaut	astronaut	moon	car	truck
d_1	1	0	1	1	0
d_2	0	1	1	0	0
d_3	1	0	0	0	0
d_4	0	0	0	1	1
d_5	0	0	0	1	0
d_6	0	0	0	0	1

But how might we measure word similarity for word classes?

 Vector spaces word-by-word matrix B

	cosmonaut	astronaut	moon	car	truck
cosmonaut	2	0	1	1	0
astronaut	0	1	1	0	0
moon	1	1	2	1	0
car	1	0	1	3	1
truck	0	0	0	1	2

A modifier-by-head matrix C

	cosmonaut	astronaut	moon	car	truck
Soviet	1	0	0	1	1
American	0	1	0	1	1
spacewalking	1	1	0	0	0
red	0	0	0	1	1
full	0	0	1	0	0
old	0	0	0	1	1

Similarity measures for binary vectors

Similarity measureDefinitionmatching coefficient $|X \cap Y|$ Dice coefficient $\frac{2|X \cap Y|}{|X|+|Y|}$ Jaccard coefficient $\frac{|X \cap Y|}{|X \cup Y|}$ Overlap coefficient $\frac{|X \cap Y|}{\min(|X|,|Y|)}$ cosine $\frac{|X \cap Y|}{\sqrt{|X| \times |Y|}}$

Cosine measure

$$\cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| |\vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

maps vectors onto unit circle by dividing through by lengths:

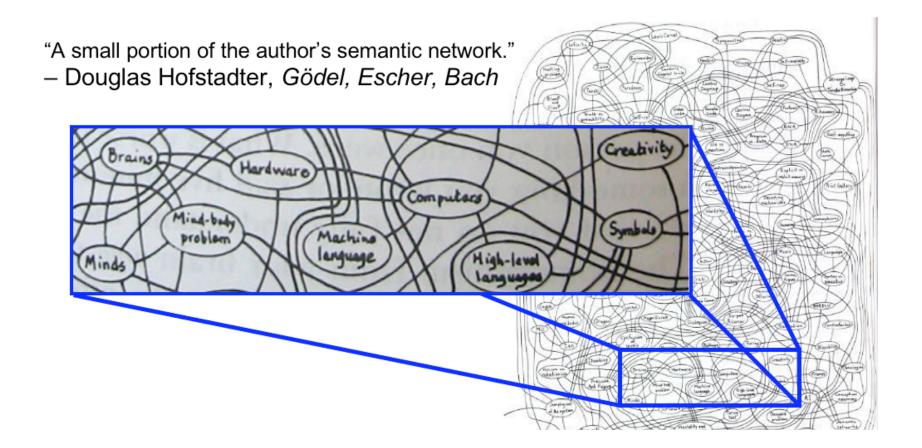
$$\vec{x}| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Example of cosine measure on word-by-word matrix on NYT

Focus word	Nearest neighbors							
garlic	sauce	.732	pepper	.728	salt	.726	cup	.726
fallen	fell	.932	decline	.931	rise	.930	drop	.929
engineered	genetically	.758	drugs	.688	research	.687	drug	.685
Alfred	named	.814	Robert	.809	William	.808	W	.808
simple	something	.964	things	.963	You	.963	always	.962

Probabilistic measures

(Dis-)similarity measure	Definition
KL divergence	$D(p \ q) = \sum_i p_i \log \frac{p_i}{q_i}$
Skew	$D(q\ \alpha r+(1-\alpha)q)$
Jensen-Shannon (was IRad)	$\tfrac{1}{2}D(p\ \tfrac{p+q}{2}) + D(q\ \tfrac{p+q}{2})$
L_1 norm (Manhattan)	$\sum_i p_i - q_i $

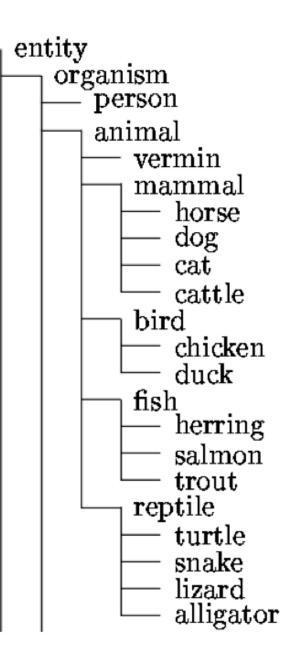

Neighbors of word "company" [Lee]

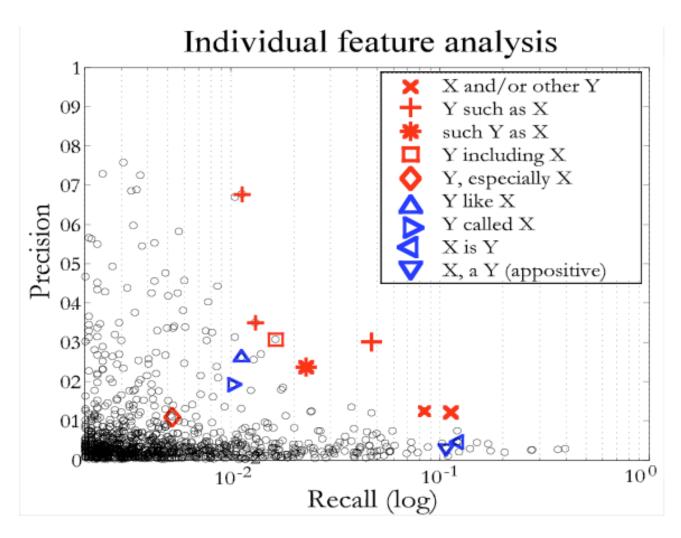
Skew ($\alpha = 0.99$)	JS.	Euclidean
airline	business	city
business	airline	airline
bank	firm	industry
agency	bank	program
firm	state	organization
department	agency	bank
manufacturer	group	system
network	govt.	today
industry	city	series
govt.	industry	portion

Learning syntactic patterns for automatic hypernym discovery

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.

• It has long been a goal of AI to automatically acquire structured knowledge directly from text, e.g, in the form of a semantic network.

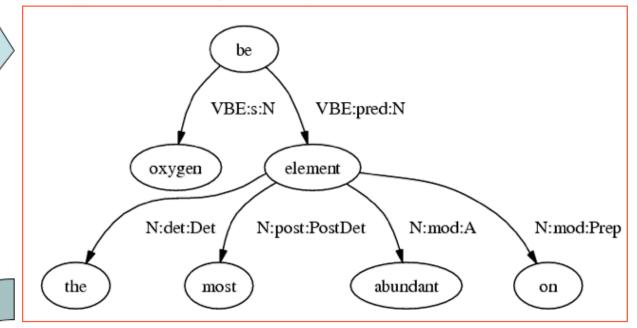



We aim to classify whether a noun pair (X, Y) participates in one of the following semantic relationships:

Hypernymy (ancestor)

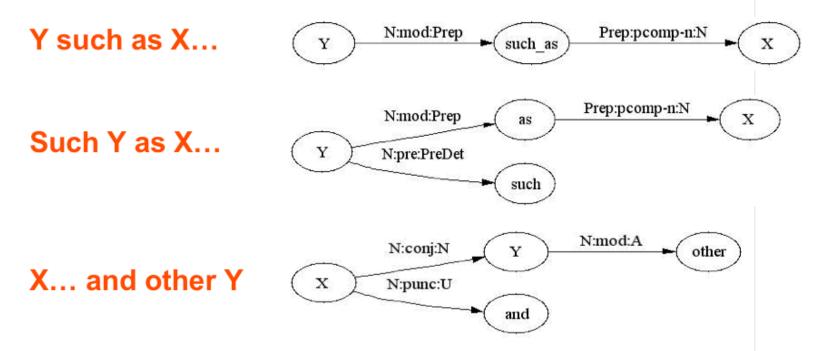
 $Y > X_{H}$ if "X is a kind of Y". entity $> organism > person_{H}$

Coordinate Terms (taxonomic sisters) if X and Y possess a common hypernym, i.e. $\exists Z$ such that "X and Y are both kinds of Z." horse $\Box_C \log \Box_C cat$



- Precision/recall for 69,592 classifiers (one per feature)
- Classifier *f* classifies noun pair **x** as hypernym iff $x_f > 0$
- In red: patterns originally proposed in (Hearst, 1992)

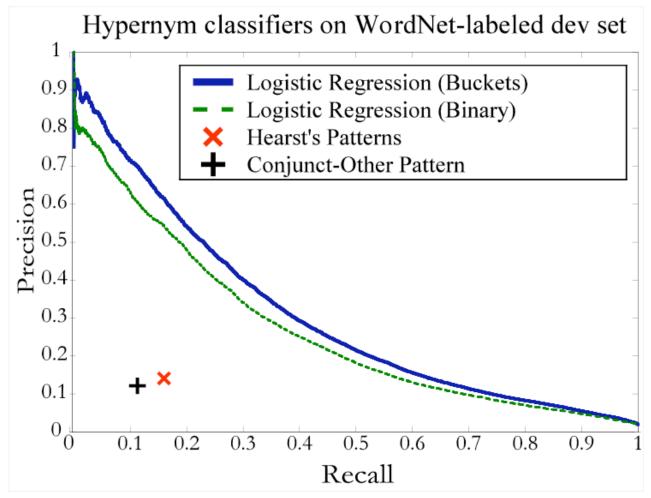
"Oxygen is the most abundant element on the moon."


Dependency Graph:

Dependency Paths (for "oxygen / element"):

-N:s:VBE, "be" VBE:pred:N -N:s:VBE, "be" VBE:pred:N,(the,Det:det:N) -N:s:VBE, "be" VBE:pred:N,(most,PostDet:post:N) -N:s:VBE, "be" VBE:pred:N,(abundant,A:mod:N) -N:s:VBE, "be" VBE:pred:N,(on,Prep:mod:N)

Rediscovering Hearst's Patterns


Proposed in (Hearst, 1992) and used in (Caraballo, 2001), (Widdows, 2003), and others – but what about the rest of the lexico-syntactic pattern space?

Example: Using the "Y called X" Pattern for Hypernym Acquisition MINIPAR path: -N:desc:V.call.call.-V:vrel:N \rightarrow "<hypernym> 'called' <hyponym>"

None of the following links are contained in WordNet (or the training set, by extension).

Hyponym	Hypernym	Sentence Fragment			
efflorescence	condition	and a condition called efflorescence			
'neal_inc	company	The company, now called O'Neal Inc			
hat_creek_outfit	ranch	run a small ranch called the Hat Creek Outfit.			
tardive_dyskinesia	problem	irreversible problem called tardive dyskinesia			
hiv-1	aids_virus	infected by the AIDS virus, called HIV-1.			
bateau_mouche	attraction	sightseeing attraction called the Bateau Mouche			
kibbutz_malkiyya	collective_farm	Israeli collective farm called Kibbutz Malkiyya			
Type of Noun Pair NE: Person NE: Place NE: Company NE: Other Not Named Entity:	 7 "John F. 7 "Diamon 2 "America 1 "Is Elvis 	Example Pair "John F. Kennedy / president", "Marlin Fitzwater / spokesman" "Diamond Bar / city", "France / place" "American Can / company", "Simmons / company" "Is Elvis Alive / book" "earthquake / disaster", "soybean / crop"			

A better hypernym classifier

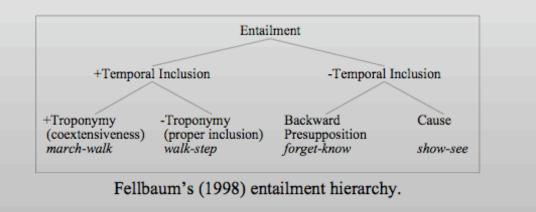
- 10-fold cross validation on the WordNet-labeled data
- Conclusion: 70,000 features are more powerful than 6

VERBOCEAN: Mining the Web for Fine-Grained Semantic Verb Relations

Timothy Chklovski and Patrick Pantel

Why Detect Semantic Rels between Verbs?

- So that we can
 - Understand the relationship when it's not stated
 - Napoleon *fought* and *won* the battle
 - During the holidays, people wrap and unwrap presents
 - Soldiers prefer to avoid getting wounded and killed
 - Use the relationship when summarizing across documents (e.g. same event, preceding event)
 - The board considered the offer of \$3B
 - The board accepted the offer \$3.8B
 - The board okayed the offer of approximately \$4B
 - Determine if two people have similar views on and event
 - "I nudged him."
 - "He shoved me."
- Hard to do manually



Why use Web? Motivating Intuition

- Small collections are tough: Semantics is often implied (Lenat, Chklovski)
- The Web's 10¹² is a lot of words
- So, Use small bits of more detailed text to help with mass of general text
 - Patterns issued to a search engine and their correlation

- Levin's classes (similarity)
 - 3200 verbs in 191 classes
- PropBank
 - 4,659 framesets (1.4 framesets per verb)
- VerbNet
 - 191 coarse-grained groupings (with overlap)
- FrameNet
- WordNet
 - troponomy
 - antonymy
 - entailment
 - cause

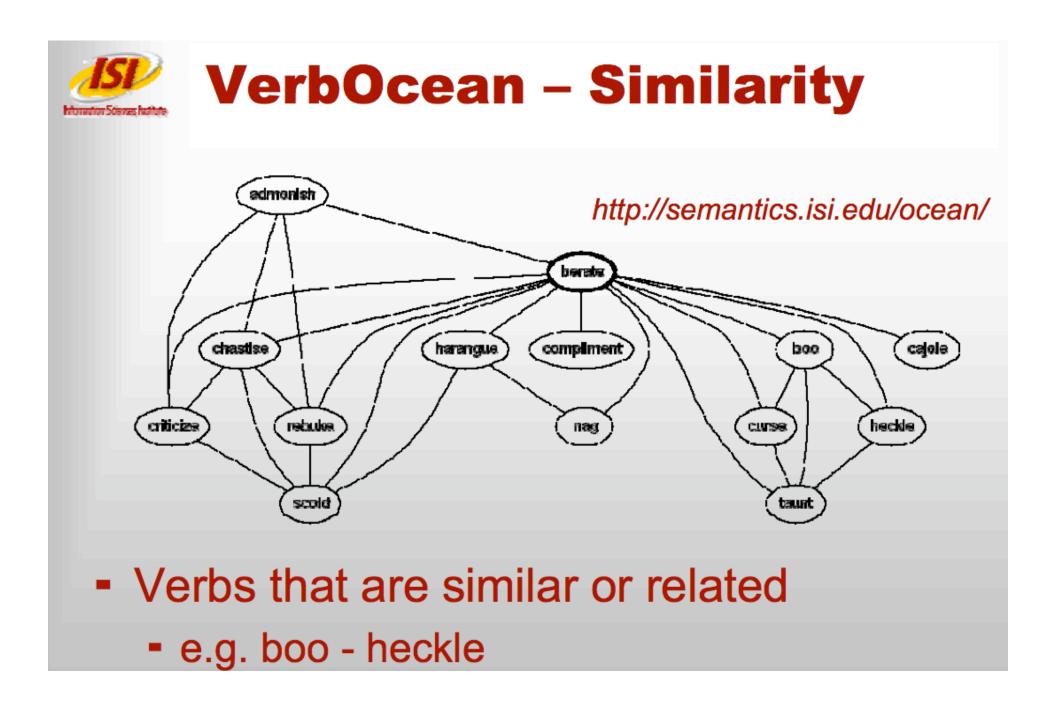
VerbOcean: Web-based Extraction of Verb Relations

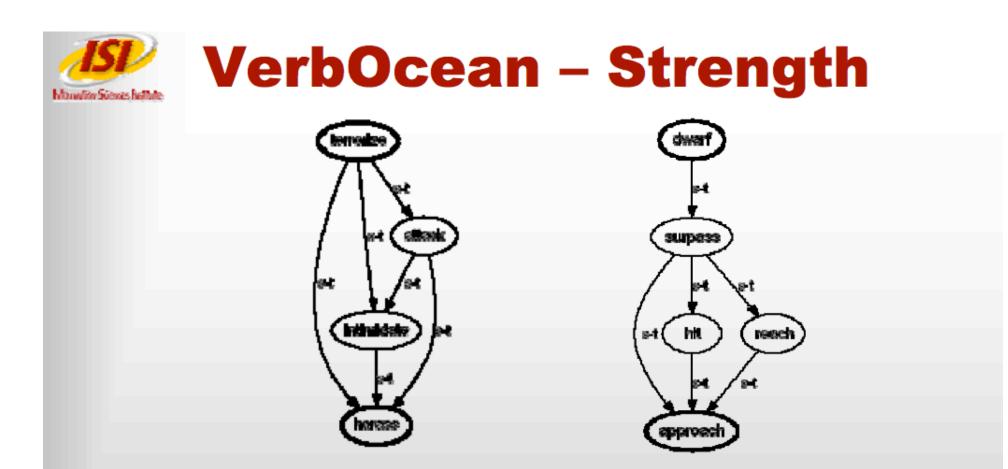
- VerbOcean is a network of verb relations
 - Currently, over 3400 nodes with on average 13 relations per verb
- Detected relation types are:
 - similarity
 - strength
 - antonymy
 - enablement
 - temporal precedence (happens-before)
- Download from http://semantics.isi.edu/ocean/

Three stages:

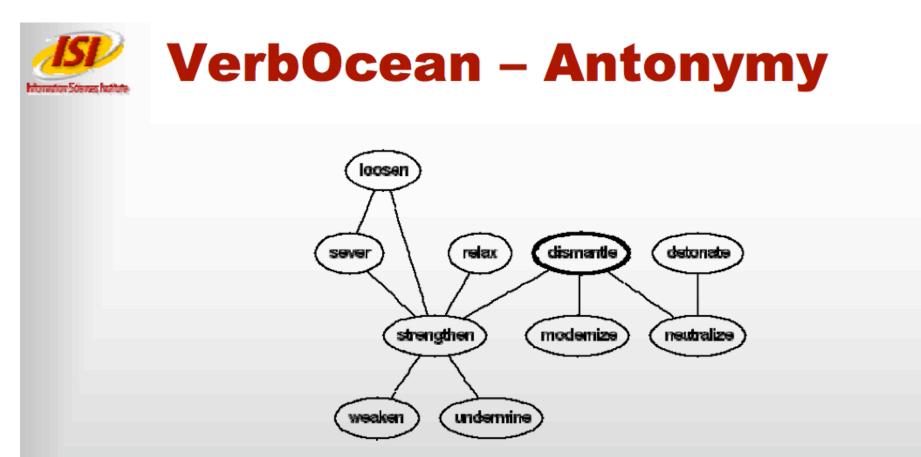
- Identify pairs of highly associated verbs co-occurring on the Web with sufficient frequency using DIRT (Lin and Pantel 2001)
- For each verb pair
 - test patterns associated with each semantic relation
 - E.g. Temporal Precedence:
 - "to X and then Y", "Xed and then Yed"
 - calculate a score for each possible semantic relation
- Compare the strengths of the individual semantic relations and output a consistent set as the final output

prefer the most specific and then strongest relations

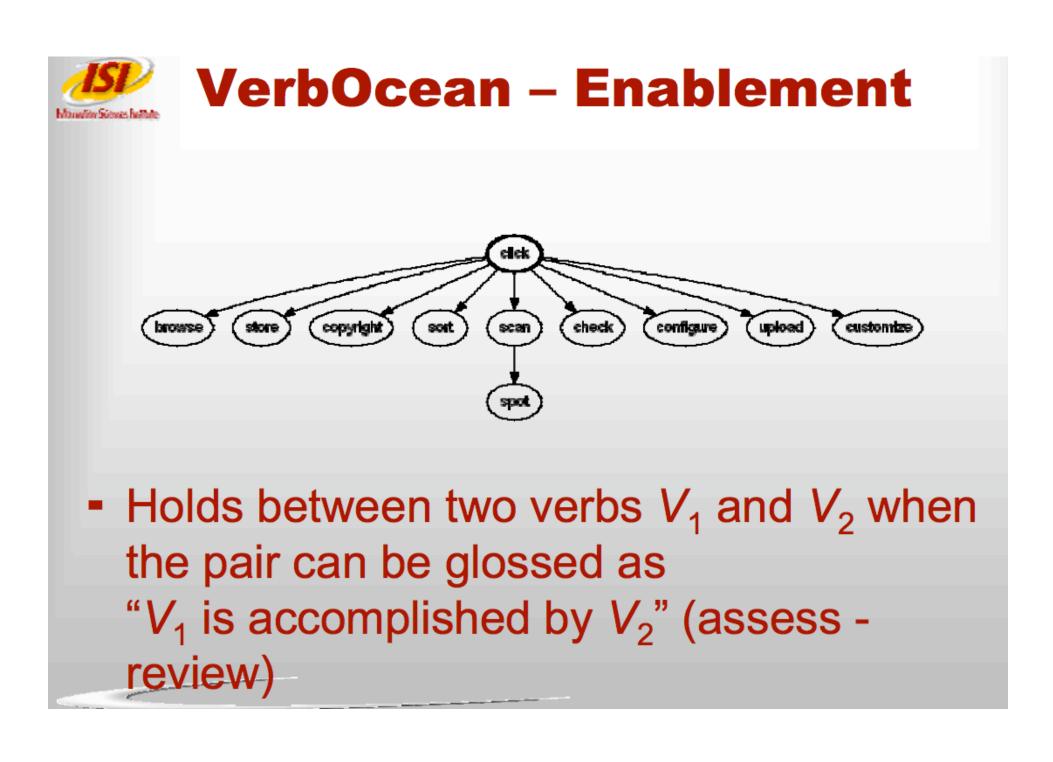



Lexical Patterns

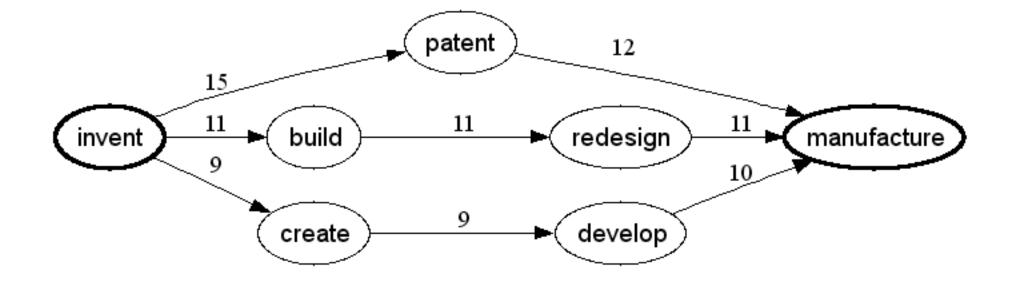
SEMANTIC RELATION	Surface Patterns	Example
similarity (4)	X ie Y Xed and Yed	"She heckled and taunted the comedian."
strength (8)	X even Y Xed even Yed Xed and even Yed not just Xed but Yed	"He not just harassed, but terrorized her."
enablement (4)	Xed * by Ying the Xed * by Ying or to X * by Ying the	"She saved the document by clicking the button."
antonymy (7)	either X or Y either Xs or Ys Xed * but Yed	"There's something about Mary: you will either love or hate her."
happens-before (12)	to X and then Y Xed * and then Yed to X and later Y to X and subsequently Y Xed and subsequently Yed	"He designed the prototype and then patented it."


Lexical Patterns Match...

- Refined to decrease capturing wrong parts of speech or incorrect semantic relations
 - Xed * by Ying the; Xed * by Ying or
 - "... waved at by parking guard ..."
 - "... encouraged further by sailing lessons ..."

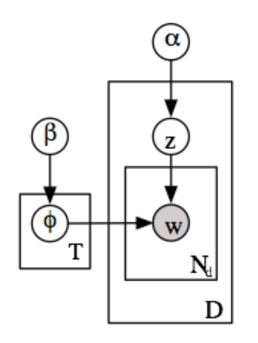


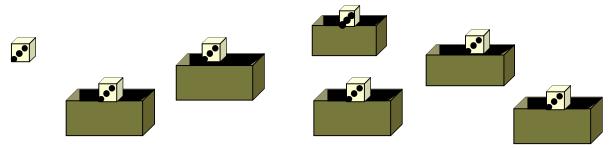
- Similar verbs that denote a more intense, thorough, comprehensive or absolute action
 - e.g. change-of-state verbs that denote a more complete change (shock → startle)



- Semantic opposition
 - switching thematic roles associated with the verb (buy sell)
 - stative verbs (live die)
 - sibling verbs which share a parent (walk run)
 - restitutive opposition: antonymy + happens-before
 - (damage repair)

Semantic Relation	Examples	Semantic Relation	Examples	Semantic Relation	Examples
similarity	maximize :: enhance produce :: create reduce :: restrict	enablement	assess :: review accomplish :: complete double-click :: click	happens before	detain :: prosecute enroll :: graduate schedule :: reschedule
strength	permit :: authorize surprise :: startle startle :: shock	antonymy	assemble :: dismantle regard :: condemn roast :: fry		


Appendix. Sample relations extracted by our system.


Topic Models

Unsupervised Models of Word Co-occurrences

A Probabilistic Approach

• Define a probabilistic generative model for documents.

 Learn the parameters of this model by fitting them to the data and a prior.

$$\phi^* = \arg \max_{\phi} p(\phi | D_1 D_2 ...) = p(D_1 D_2 ... | \phi) p(\phi)$$

Φ

Clustering words into topics with Latent Dirichlet Allocation

[Blei, Ng, Jordan 2003]

Example:

α θ Ζ Т N_d D <u>Generative</u> <u>Process:</u>

For each document:

Sample a distribution over topics, θ For each word in doc

Sample a topic, z

70% Iraq war 30% US election

Iraq war

Sample a word from the topic, *w*

"bombing"

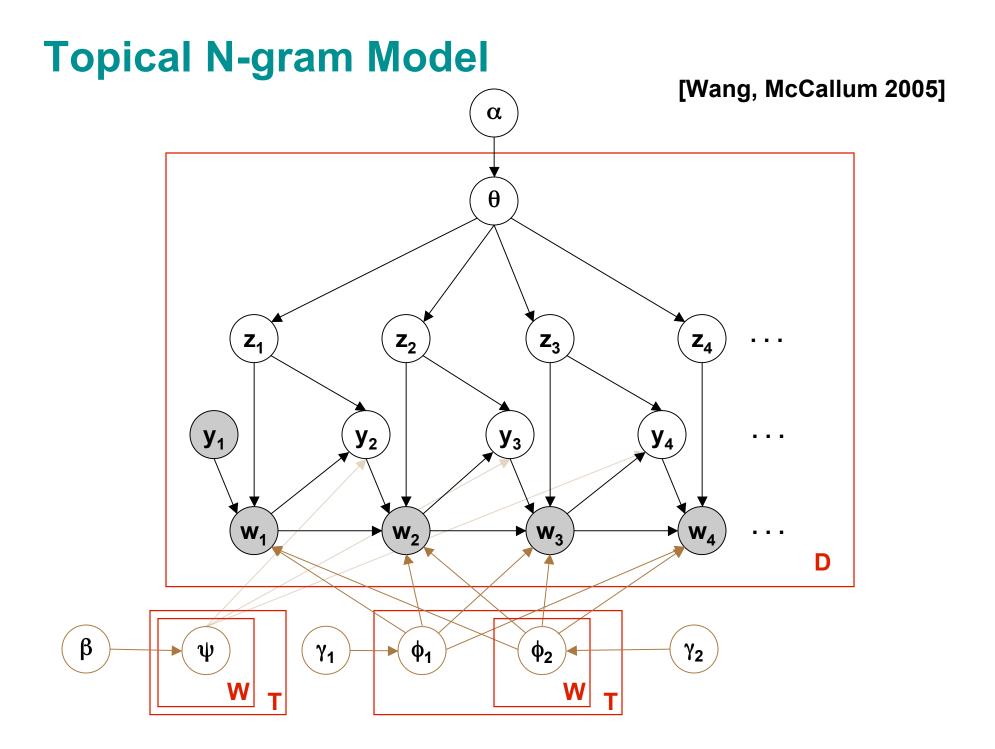
Example topics induced from a large collection of text

DISEASE	WATER	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FISH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SWIM	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMMING		CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE	POOL	IMAGINATION	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIKE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	SHELL	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHARK	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS		BASKETBALI	
VIRUS	SHELLS	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISM		IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLPHINS	CONSCIOUSNESS	5 FICTION	DIRECTION		HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUIRE
BODY	DIVE	BEING	TELLS	MAGNETISM	1 SCIENTIST	SPORTS	OPPORTUNITY
INFECTIONS	DOLPHIN	MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN	UNDERWATER	HOPE	NOVEL	INDUCED	SCIENCES	TERRY	ABLE

[Tennenbaum et al]

Example topics induced from a large collection of text

DISEASE	WATER	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FISH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SWIM	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMMING	THOUGHT	CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE	POOL	IMAGINATION	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIKE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	SHELL	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHARK	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS	MANY E	BASKETBALI	
VIRUS	SHELLS	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISMS		IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLPHINS	CONSCIOUSNES	S FICTION	DIRECTION	PHYSICS	HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUIRE
BODY	DIVE	BEING	TELLS	MAGNETISM	1 SCIENTIST	SPORTS	OPPORTUNITY
INFECTIONS	DOLPHIN	MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN (HOPE	NOVEL	INDUCED	SCIENCES	TERRY	ABLE


[Tennenbaum et al]

Collocations

- An expression consisting of two or more words that correspond to some conventional way of saying things.
- Characterized by limited *compositionality*.
 - *compositional*: meaning of expression can be predicted by meaning of its parts.
 - "dynamic programming", "hidden Markov model"
 - "weapons of mass destruction"
 - "kick the bucket", "hear it through the grapevine"

Topics Modeling Phrases

- Topics based only on unigrams often difficult to interpret
- Topic discovery itself is confused because important meaning / distinctions carried by phrases.
- Significant opportunity to provide improved language models to ASR, MT, IR, etc.

LDA Topic

<u>LDA</u>

algorithms algorithm genetic problems efficient

Topical N-grams

genetic algorithms genetic algorithm evolutionary computation evolutionary algorithms fitness function

Topic Comparison

learning optimal reinforcement state problems policy dynamic action programming actions function markov methods decision rl continuous spaces step policies planning

Topical N-grams (2) Topical N-grams (1)

reinforcement learning optimal policy dynamic programming optimal control function approximator prioritized sweeping finite-state controller learning system reinforcement learning rl function approximators markov decision problems markov decision processes local search state-action pair markov decision process belief states stochastic policy action selection upright position reinforcement learning methods policy action states actions function reward control agent q-learning optimal goal learning space step environment system problem steps sutton policies

Topic Comparison

motion visual field position figure direction fields eye location retina receptive velocity vision moving system flow edge center light local

Topical N-grams (2) Topical N-grams (1)

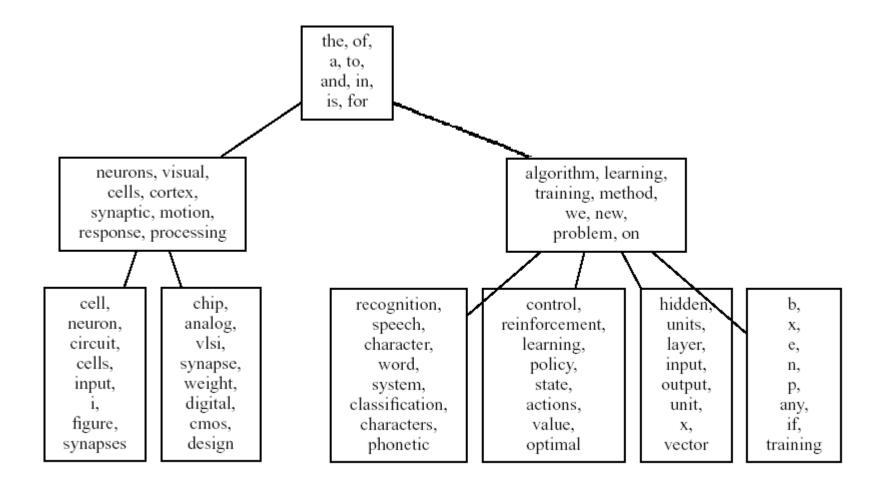
receptive field spatial frequency temporal frequency visual motion motion energy tuning curves horizontal cells motion detection preferred direction visual processing area mt visual cortex light intensity directional selectivity high contrast motion detectors spatial phase moving stimuli decision strategy visual stimuli

motion response direction cells stimulus figure contrast velocity model responses stimuli moving cell intensity population image center tuning complex directions

Topic Comparison

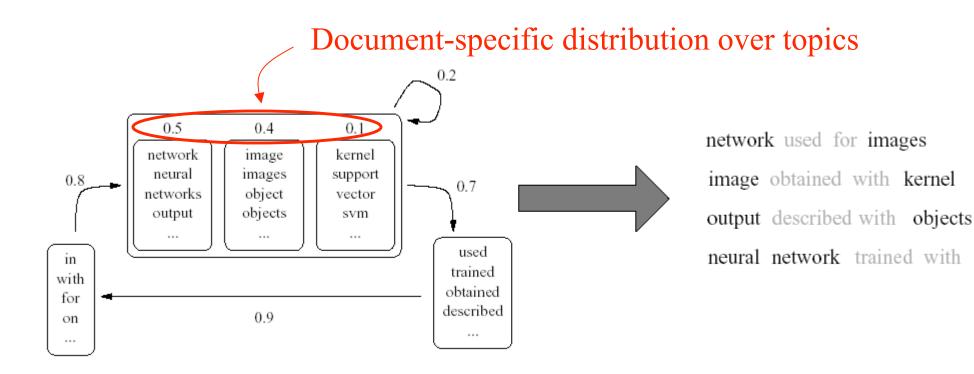
LDA

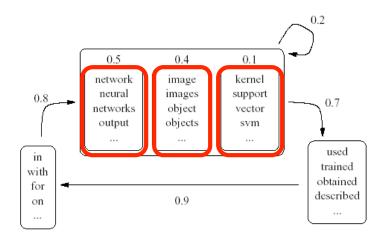
word system recognition hmm speech training performance phoneme words context systems frame trained speaker sequence speakers mlp frames segmentation models


Topical N-grams (2) Topical N-grams (1)

speech recognition training data neural network error rates neural net hidden markov model feature vectors continuous speech training procedure continuous speech recognition gamma filter hidden control speech production neural nets input representation output layers training algorithm test set speech frames speaker dependent

speech word training system recognition hmm speaker performance phoneme acoustic words context systems frame trained sequence phonetic speakers mlp hybrid


Unsupervised learning of topic hierarchies


(Blei, Griffiths, Jordan & Tenenbaum, NIPS 2003)

Joint models of syntax and semantics (Griffiths, Steyvers, Blei & Tenenbaum, NIPS 2004)


 Embed topics model inside an *n*th order Hidden Markov Model:

Semantic classes

FOOD	MAP	DOCTOR	BOOK	GOLD	BEHAVIOR	CELLS	PLANTS
FOODS	NORTH	PATIENT	BOOKS	IRON	SELF	CELL	PLANT
BODY	EARTH	HEALTH	READING	SILVER	INDIVIDUAL	ORGANISMS	LEAVES
NUTRIENTS	SOUTH	HOSPITAL	INFORMATION	COPPER	PERSONALITY	ALGAE	SEEDS
DIET	POLE	MEDICAL	LIBRARY	METAL	RESPONSE	BACTERIA	SOIL
FAT	MAPS	CARE	REPORT	METALS	SOCIAL	MICROSCOPE	ROOTS
SUGAR	EQUATOR	PATIENTS	PAGE	STEEL	EMOTIONAL	MEMBRANE	FLOWERS
ENERGY	WEST	NURSE	TITLE	CLAY	LEARNING	ORGANISM	WATER
MILK	LINES	DOCTORS	SUBJECT	LEAD	FEELINGS	FOOD	FOOD
EATING	EAST	MEDICINE	PAGES	ADAM	PSYCHOLOGISTS	LIVING	GREEN
FRUITS	AUSTRALIA	NURSING	GUIDE	ORE	INDIVIDUALS	FUNGI	SEED
VEGETABLES	GLOBE	TREATMENT	WORDS	ALUMINUM	PSYCHOLOGICAL	MOLD	STEMS
WEIGHT	POLES	NURSES	MATERIAL	MINERAL	EXPERIENCES	MATERIALS	FLOWER
FATS	HEMISPHERE	PHYSICIAN	ARTICLE	MINE	ENVIRONMENT	NUCLEUS	STEM
NEEDS	LATITUDE	HOSPITALS	ARTICLES	STONE	HUMAN	CELLED	LEAF
CARBOHYDRATE	S PLACES	DR	WORD	MINERALS	RESPONSES	STRUCTURES	ANIMALS
VITAMINS	LAND	SICK	FACTS	POT	BEHAVIORS	MATERIAL	ROOT
CALORIES	WORLD	ASSISTANT	AUTHOR	MINING	ATTITUDES	STRUCTURE	POLLEN
PROTEIN	COMPASS	EMERGENCY	REFERENCE	MINERS	PSYCHOLOGY	GREEN	GROWING
MINERALS	CONTINENTS	PRACTICE	NOTE	TIN	PERSON	MOLDS	GROW

Syntactic classes

SAID	THE	MORE	ON	GOOD	ONE	HE	BE
ASKED	HIS	SUCH	AT	SMALL	SOME	YOU	MAKE
THOUGHT	THEIR	LESS	INTO	NEW	MANY	THEY	GET
TOLD	YOUR	MUCH	FROM	IMPORTANT	TWO	Ι	HAVE
SAYS	HER	KNOWN	WITH	GREAT	EACH	SHE	GO
MEANS	ITS	JUST	THROUGH	LITTLE	ALL	WE	TAKE
CALLED	MY	BETTER	OVER	LARGE	MOST	IT	DO
CRIED	OUR	RATHER	AROUND	*	ANY	PEOPLE	FIND
SHOWS	THIS	GREATER	AGAINST	BIG	THREE	EVERYONE	USE
ANSWERED	THESE	HIGHER	ACROSS	LONG	THIS	OTHERS	SEE
TELLS	А	LARGER	UPON	HIGH	EVERY	SCIENTISTS	HELP
REPLIED	AN	LONGER	TOWARD	DIFFERENT	SEVERAL	SOMEONE	KEEP
SHOUTED	THAT	FASTER	UNDER	SPECIAL	FOUR	WHO	GIVE
EXPLAINED	NEW	EXACTLY	ALONG	OLD	FIVE	NOBODY	LOOK
LAUGHED	THOSE	SMALLER	NEAR	STRONG	BOTH	ONE	COME
MEANT	EACH	SOMETHING	BEHIND	YOUNG	TEN	SOMETHING	WORK
WROTE	MR	BIGGER	OFF	COMMON	SIX	ANYONE	MOVE
SHOWED	ANY	FEWER	ABOVE	WHITE	MUCH	EVERYBODY	LIVE
BELIEVED	MRS	LOWER	DOWN	SINGLE	TWENTY	SOME	EAT
WHISPERED	ALL	ALMOST	BEFORE	CERTAIN	EIGHT	THEN	BECOME

Corpus-specific factorization (NIPS)

	imaga	data	state	membrane	chip	avparts	kernel	network
\mathbf{v}	image					experts		
\mathbf{O}	images	gaussian	policy	synaptic	analog	expert	support	neural
	object	mixture	value	cell	neuron	gating	vector	networks
J	objects	likelihood	function	*	digital	hme	svm	output
	feature	posterior	action	current	synapse	architecture	kernels	input
5	recognition	prior	reinforcement	dendritic	neural	mixture	#	training
emanti	views	distribution	learning	potential	hardware	learning	space	inputs
	#	em	classes	neuron	weight	mixtures	function	weights
\mathbf{V}	pixel	bayesian	optimal	conductance	#	function	machines	#
• •	visual	parameters	*	channels	vlsi	gate	set	outputs
	in	is	see	used	model	networks	however	#
	with	was	show	trained	algorithm	values	also	*
yntax	for	has	note	obtained	system	results	then	i
$\overline{\Omega}$	on	becomes	consider	described	case	models	thus	х
	from	denotes	assume	given	problem	parameters	therefore	t
$\overline{\mathbf{x}}$	at	being	present	found	network	units	first	n
Ś	using	remains	need	presented	method	data	here	-
	into	represents	propose	defined	approach	functions	now	с
	over	exists	describe	generated	paper	problems	hence	r
	within	seems	suggest	shown	process	algorithms	finally	р

Syntactic classes in PNAS

5	8	14	25	26	30	33
IN	ARE	THE	SUGGEST	LEVELS	RESULTS	BEEN
FOR	WERE	THIS	INDICATE	NUMBER	ANALYSIS	MAY
ON	WAS	ITS	SUGGESTING	LEVEL	DATA	CAN
BETWEEN	IS	THEIR	SUGGESTS	RATE	STUDIES	COULD
DURING	WHEN	AN	SHOWED	TIME	STUDY	WELL
AMONG	REMAIN	EACH	REVEALED	CONCENTRATIONS	FINDINGS	DID
FROM	REMAINS	ONE	SHOW	VARIETY	EXPERIMENTS	DOES
UNDER	REMAINED	ANY	DEMONSTRATE	RANGE	OBSERVATIONS	DO
WITHIN	PREVIOUSLY	INCREASED	INDICATING	CONCENTRATION	HYPOTHESIS	MIGHT
THROUGHOUT	BECOME	EXOGENOUS	PROVIDE	DOSE	ANALYSES	SHOULD
THROUGH	BECAME	OUR	SUPPORT	FAMILY	ASSAYS	WILL
TOWARD	BEING	RECOMBINANT	INDICATES	SET	POSSIBILITY	WOULD
INTO	BUT	ENDOGENOUS	PROVIDES	FREQUENCY	MICROSCOPY	MUST
AT	GIVE	TOTAL	INDICATED	SERIES	PAPER	CANNOT
INVOLVING	MERE	PURIFIED	DEMONSTRATED	AMOUNTS	WORK	REMAINED
AFTER	APPEARED	TILE	SHOWS	RATES	EVIDENCE	ALSO
ACROSS	APPEAR	FULL	SO	CLASS	FINDING	THEY
AGAINST	ALLOWED	CHRONIC	REVEAL	VALUES	MUTAGENESIS	BECOME
WHEN	NORMALLY	ANOTHER	DEMONSTRATES	AMOUNT	OBSERVATION	MAG
ALONG	EACH	EXCESS	SUGGESTED	SITES	MEASUREMENTS	LIKELY

Semantic highlighting

Darker words are more likely to have been generated from the topic-based "semantics" module:

In contrast to this approach, we study here how the overall network activity can control single cell parameters such as input resistance, as well as time and space constants, parameters that are crucial for excitability and spariotemporal (sic) integration.

The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks.

In other words, for our proof of convergence, we require the softassign algorithm to return a doubly stochastic matrix as *sinkhorn theorem guarantees that it will instead of a matrix which is merely close to being doubly stochastic based on some reasonable metric.

The aim is to construct a **portfolio** with a maximal **expected** return for a given risk level and time **horizon** while simultaneously obeying *institutional or *legally required constraints.

The left graph is the standard experiment the right from a training with # samples.

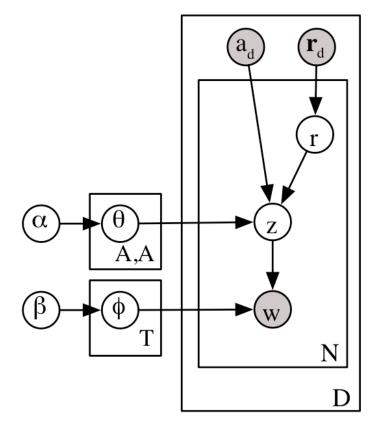
The graph G is called the *guest graph, and H is called the host graph.

Social Network Analysis with Links and Text

Role Discovery

Group Discovery Trend Discovery Community Discovery Impact Measurement

From LDA to Author-Recipient-Topic (ART)


(LDA) [Blei, Ng, Jordan, 2003] (1) (1) (2) (2) (3) (1) (1) (2) (2) (2) (3) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (

Latent Dirichlet Allocation

D

Inference and Estimation

$$p(\theta, \phi, \mathbf{x}_d, \mathbf{z}_d, \mathbf{w}_d | \alpha, \beta, a_d, \mathbf{r}_d) = p(\theta | \alpha) p(\phi | \beta) \prod_{n=1}^{N_d} p(x_{dn} | \mathbf{r}_d) p(z_{dn} | \theta_{a_d, x_{dn}}) p(w_{dn} | \phi_{z_{dn}})$$

Gibbs Sampling:

- Easy to implement
- Reasonably fast

$$P(z_i | \mathbf{z}_{-i}, \mathbf{x}, \mathbf{w}) \propto \frac{n_{z_i}^{w_v} + \beta_v}{\sum_v n_{z_i}^{w_v} + \beta_v} \frac{n_{x_i}^{z_i} + \alpha_{z_i}}{\sum_{z'} n_{x_i}^{z'} + \alpha_{z'}}$$
$$P(\mathbf{r}_i | \mathbf{z}, \mathbf{r}_{-i}, \mathbf{w}) \propto \frac{n_{x_i}^{z_i} + \alpha_{z_i}}{\sum_{z'} n_{x_i}^{z'} + \alpha_{z'}}$$

a...

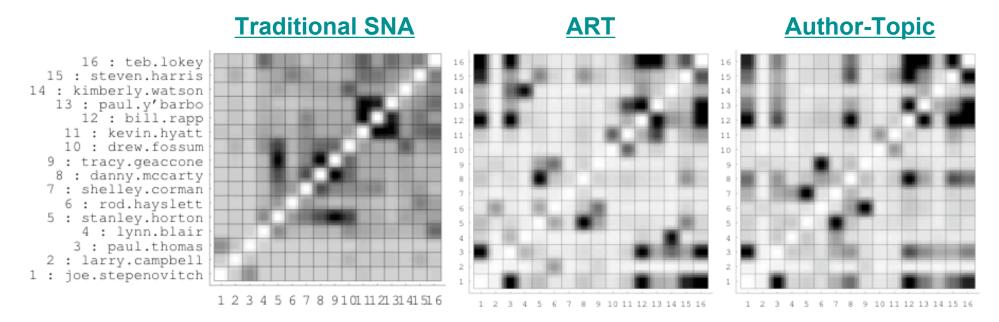
Enron Email Corpus

- 250k email messages
- 23k people

```
Date: Wed, 11 Apr 2001 06:56:00 -0700 (PDT)
From: debra.perlingiere@enron.com
To: steve.hooser@enron.com
Subject: Enron/TransAltaContract dated Jan 1, 2001
Please see below. Katalin Kiss of TransAlta has requested an
electronic copy of our final draft? Are you OK with this? If
so, the only version I have is the original draft without
revisions.
DP
Debra Perlingiere
Enron North America Corp.
Legal Department
1400 Smith Street, EB 3885
Houston, Texas 77002
dperlin@enron.com
```

Topics, and prominent senders / receivers Topic names, by hand

Topic	: 5	Topic 17		Topic 27		Topic 45	
· · ·	"Legal Contracts"		"Document Review"		"Time Scheduling"		Pool"
section	0.0299	attached	0.0742	day	0.0419	game	0.0170
party	0.0265	agreement	0.0493	friday	0.0418	draft	0.0156
language	0.0226	review	0.0340	morning	0.0369	week	0.0135
contract	0.0203	questions	0.0257	monday	0.0282	team	0.0135
date	0.0155	draft	0.0245	office	0.0282	eric	0.0130
enron	0.0151	letter	0.0239	wednesday	0.0267	make	0.0125
parties	0.0149	comments	0.0207	tuesday	0.0261	free	0.0107
notice	0.0126	сору	0.0165	time	0.0218	year	0.0106
days	0.0112	revised	0.0161	good	0.0214	pick	0.0097
include	0.0111	document	0.0156	thursday	0.0191	phillip	0.0095
M.Hain	0.0549	G.Nemec	0.0737	J.Dasovich	0.0340	E.Bass	0.3050
J.Steffes		B.Tycholiz		R.Shapiro		M.Lenhart	
J.Dasovich	0.0377	G.Nemec	0.0551	J.Dasovich	0.0289	E.Bass	0.0780
R.Shapiro		M.Whitt		J.Steffes		P.Love	
D.Hyvl	0.0362	B.Tycholiz	0.0325	C.Clair	0.0175	M.Motley	0.0522
K.Ward		G.Nemec		M.Taylor		M.Grigsby	


Topics, and prominent senders / receivers discovered by ART

Topic	Topic 34		Topic 37		1	Topic 4	42
"Operat	ions"	"Power Market"		"Government Relations"		"Wireless"	
operations	0.0321	market	0.0567	state	0.0404	blackberry	0.0726
team	0.0234	power	0.0563	california	0.0367	net	0.0557
office	0.0173	price	0.0280	power	0.0337	www	0.0409
list	0.0144	system	0.0206	energy	0.0239	website	0.0375
bob	0.0129	prices	0.0182	electricity	0.0203	report	0.0373
open	0.0126	high	0.0124	davis	0.0183	wireless	0.0364
meeting	0.0107	based	0.0120	utilities	0.0158	handheld	0.0362
gas	0.0107	buy	0.0117	commission	0.0136	stan	0.0282
business	0.0106	customers	0.0110	governor	0.0132	fyi	0.0271
houston	0.0099	costs	0.0106	prices	0.0089	named	0.0260
S.Beck	0.2158	J.Dasovich	0.1231	J.Dasovich	0.3338	R.Haylett	0.1432
L.Kitchen		J.Steffes		R.Shapiro		T.Geaccone	
S.Beck	0.0826	J.Dasovich	0.1133	J.Dasovich	0.2440	T.Geaccone	0.0737
J.Lavorato		R.Shapiro		J.Steffes		R.Haylett	
S.Beck	0.0530	M.Taylor	0.0218	J.Dasovich	0.1394	R.Haylett	0.0420
S.White		E.Sager		R.Sanders		D.Fossum	

Beck = "Chief Operations Officer"

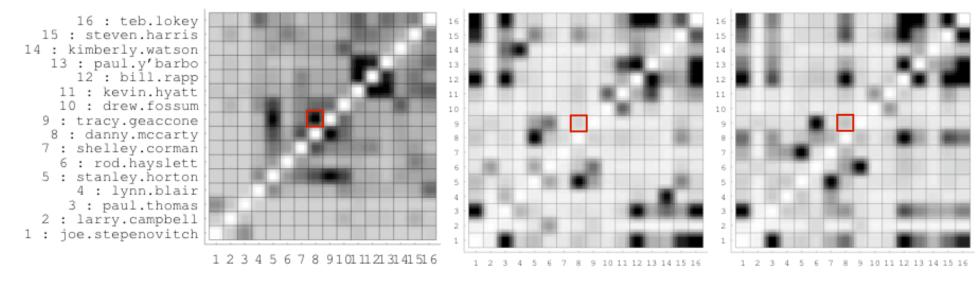
Dasovich = "Government Relations Executive" Shapiro = "Vice President of Regulatory Affairs" Steffes = "Vice President of Government Affairs"

Comparing Role Discovery

connection strength (A,B) =

distribution over recipients

distribution over authored topics


distribution over authored topics

Comparing Role Discovery Tracy Geaconne ⇔ Dan McCarty

Traditional SNA

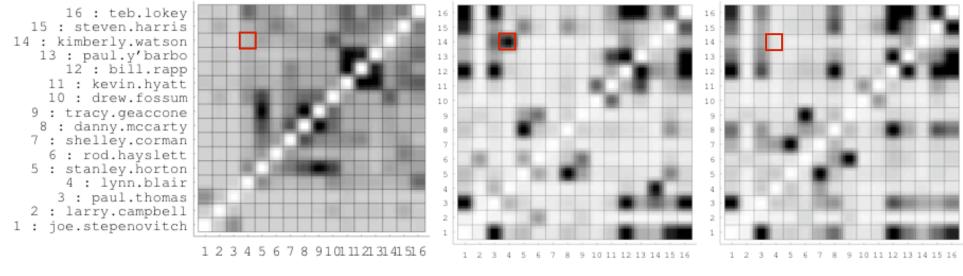
<u>ART</u>

Author-Topic

Similar roles

Different roles

Different roles


Geaconne = "Secretary" McCarty = "Vice President"

Comparing Role Discovery Lynn Blair ⇔ Kimberly Watson

Traditional SNA

<u>ART</u>

Author-Topic

Different roles

Very similar

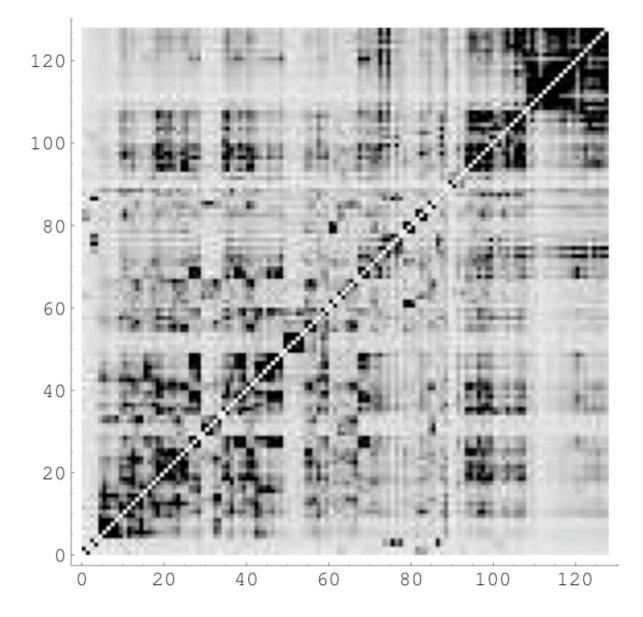
Very different

Blair = "Gas pipeline logistics" Watson = "Pipeline facilities planning"

McCallum Email Corpus 2004

- January October 2004
- 23k email messages
- 825 people

```
From: kate@cs.umass.edu
Subject: NIPS and ....
Date: June 14, 2004 2:27:41 PM EDT
To: mccallum@cs.umass.edu
```


```
There is pertinent stuff on the first yellow folder that is
completed either travel or other things, so please sign that
first folder anyway. Then, here is the reminder of the things
I'm still waiting for:
```

```
NIPS registration receipt.
CALO registration receipt.
```

Thanks,

Kate

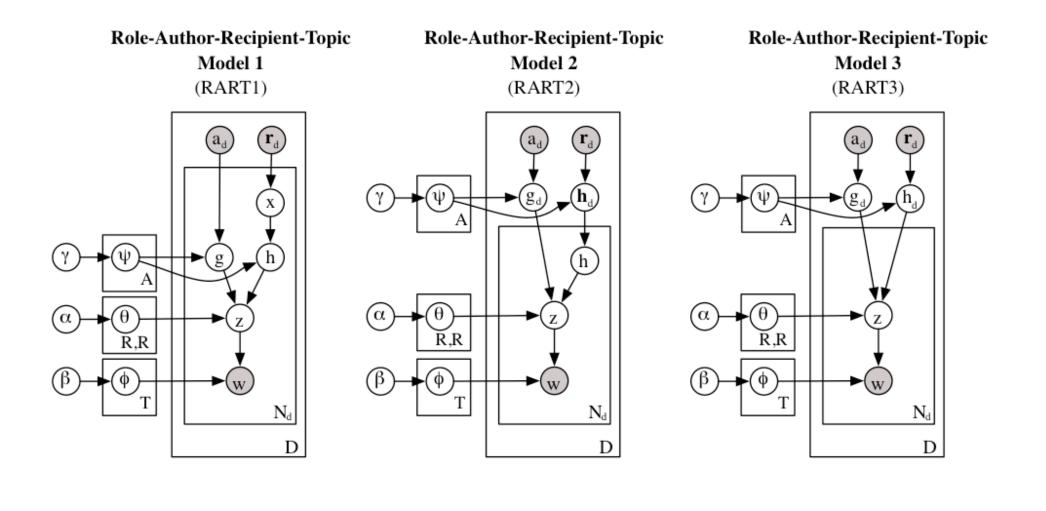
McCallum Email Blockstructure

Four most prominent topics in discussions with ____?

Торі	Topic 5		Topic 31		Topic 38		Topic 41	
"Grant Proposals"		"Meeting Setup"		"ML Models"		"Friendly Discourse"		
proposal	0.0397	today	0.0512	model	0.0479	great	0.0516	
data	0.0310	tomorrow	0.0454	models	0.0444	good	0.0393	
budget	0.0289	time	0.0413	inference	0.0191	don	0.0223	
work	0.0245	11	0.0391	conditional	0.0181	sounds	0.0219	
year	0.0238	meeting	0.0339	methods	0.0144	work	0.0196	
glenn	0.0225	week	0.0255	number	0.0136	wishes	0.0182	
nsf	0.0209	talk	0.0246	sequence	0.0126	talk	0.0175	
project	0.0188	meet	0.0233	learning	0.0126	interesting	0.0168	
sets	0.0157	morning	0.0228	graphical	0.0121	time	0.0162	
support	0.0156	monday	0.0208	random	0.0121	hear	0.0132	

Торіс	e 5	Торіс	31	Topic 38		Topic	41
"Grant Pro	"Grant Proposals"		Setup"	"ML Models"		"Friendly D	iscourse"
proposal	0.0397	today	0.0512	model	0.0479	great	0.0516
data	0.0310	tomorrow	0.0454	models	0.0444	good	0.0393
budget	0.0289	time	0.0413	inference	0.0191	don	0.0223
work	0.0245	11	0.0391	conditional	0.0181	sounds	0.0219
year	0.0238	meeting	0.0339	methods	0.0144	work	0.0196
glenn	0.0225	week	0.0255	number	0.0136	wishes	0.0182
nsf	0.0209	talk	0.0246	sequence	0.0126	talk	0.0175
project	0.0188	meet	0.0233	learning	0.0126	interesting	0.0168
sets	0.0157	morning	0.0228	graphical	0.0121	time	0.0162
support	0.0156	monday	0.0208	random	0.0121	hear	0.0132
smyth	0.1290	ronb	0.0339	casutton	0.0498	mccallum	0.0558
mccallum		mccallum		mccallum		culotta	
mccallum	0.0746	wellner	0.0314	icml04-webadmin	0.0366	mccallum	0.0530
stowell		mccallum		icml04-chairs		casutton	
mccallum	0.0739	casutton	0.0217	mccallum	0.0343	mccallum	0.0274
lafferty		mccallum		casutton		ronb	
mccallum	0.0532	mccallum	0.0200	nips04workflow	0.0322	mccallum	0.0255
smyth		casutton		mccallum		saunders	
pereira	0.0339	mccallum	0.0200	weinman	0.0250	mccallum	0.0181
lafferty		wellner		mccallum		pereira	

Two most prominent topics in discussions with ____?


Topic 1

Prob Words love 0.030514 0.015402 house 0.013659 0.012351 time great 0.011334 hope 0.011043 dinner 0.00959 saturday 0.009154 left 0.009154 Ш 0.009009 0.008282 visit 0.008137 evening 0.008137 stay 0.007847 bring 0.007701 weekend 0.007411 road 0.00712 sunday 0.006829 kids 0.006539 0.006539 flight

Topic 2

Words	Drob
Words	Prob
today	0.051152
tomorrow	0.045393
time	0.041289
II	0.039145
meeting	0.033877
week	0.025484
talk	0.024626
meet	0.023279
morning	0.022789
monday	0.020767
back	0.019358
call	0.016418
free	0.015621
home	0.013967
won	0.013783
day	0.01311
hope	0.012987
leave	0.012987
office	0.012742
tuesday	0.012558

Role-Author-Recipient-Topic Models

Results with RART: People in "Role #3" in Academic Email

- olc lead Linux sysadmin
- gauthier sysadmin for CIIR group
- irsystem mailing list CIIR sysadmins
 - mailing list for dept. sysadmins
 - Prof., chair of "computing committee"
 - second Linux sysadmin
 - mailing list for dept. hardware
 - head of dept. I.T. support
- steve

• tech

• system

• valerie

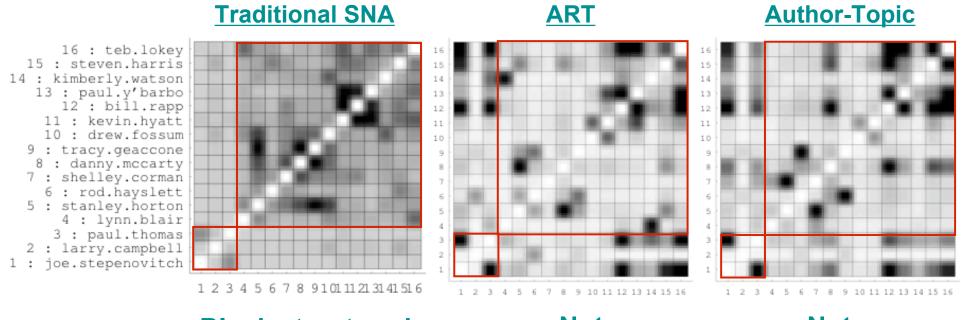
• allan

Roles for allan (James Allan)

- Role #3 I.T. support
- Role #2 Natural Language researcher

Roles for pereira (Fernando Pereira)

•Role #2


•Role #6

•Role #8

•Role #10

- Natural Language researcher
- •Role #4 SRI CALO project participant
 - Grant proposal writer
 - Grant proposal coordinator
 - Guests at McCallum's house

ART: Roles but not Groups

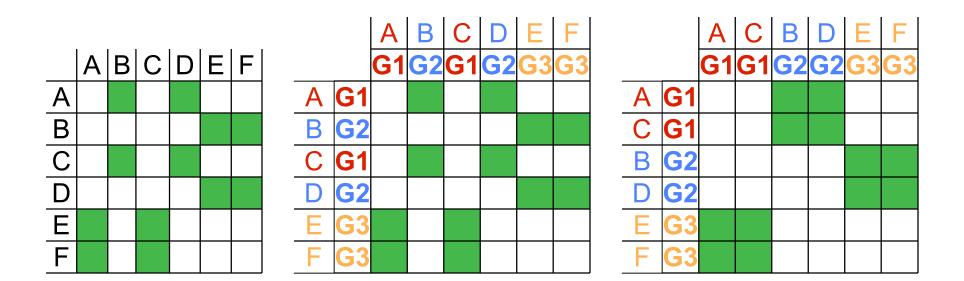
Block structured

Not

Not

Enron TransWestern Division

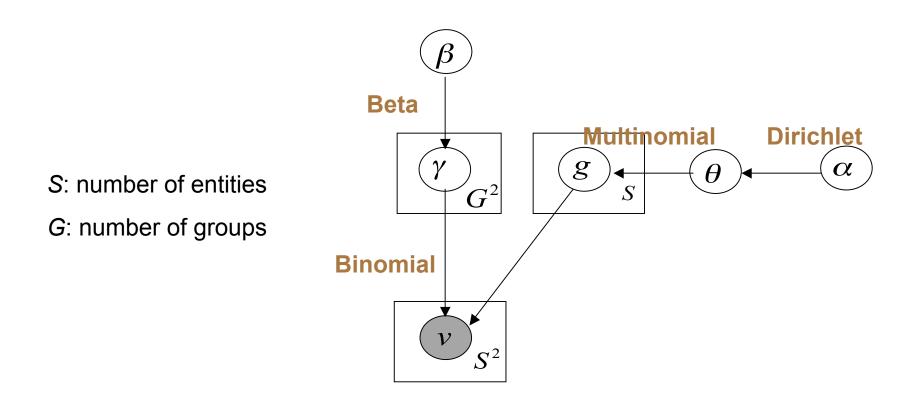
Social Network Analysis with Links and Text


Role Discovery Group Discovery Trend Discovery Community Discovery Impact Measurement

Groups and Topics

- Input:
 - Observed relations between people
 - Attributes on those relations (text, or categorical)
- Output:
 - Attributes clustered into "topics"
 - Groups of people---varying depending on topic

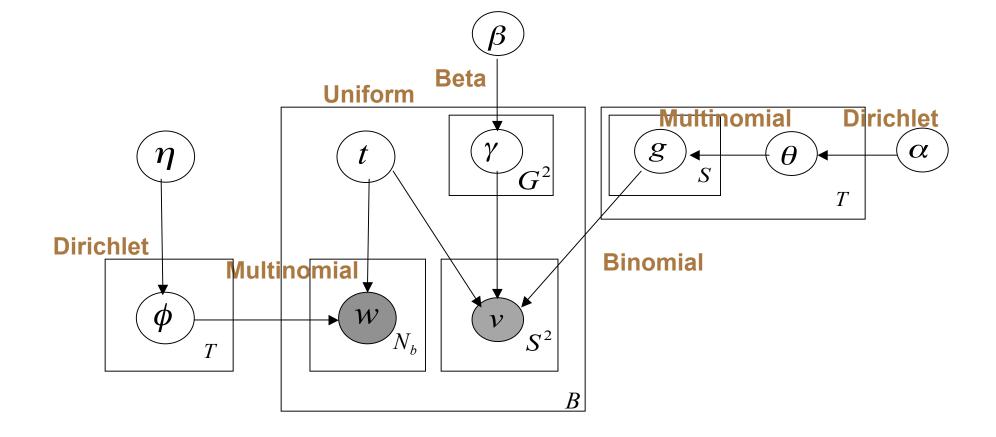
Adjacency Matrix Representing Relations


Student Roster	Academic Admiration
Adams	Acad(A, B) Acad(C, B)
Bennett	Acad(A, D) Acad(C, D)
Carter	Acad(B, E) Acad(D, E)
Davis	Acad(B, F) Acad(D, F)
Edwards	Acad(E, A) Acad(F, A)
Frederking	Acad(E, C) Acad(F, C)

Group Model: Partitioning Entities into Groups

Stochastic Blockstructures for Relations

[Nowicki, Snijders 2001]



Enhanced with arbitrary number of groups in [Kemp, Griffiths, Tenenbaum 2004]

Two Relations with Different Attributes

Student Roster	Academic Admiration			on		Sc	ocia		dmi	irati	ion					
Adams	Aca	ad(A	А, В) Ac	ad(Ċ, E	3)	Soci(/	А, В) S	oci(A, [D) S	Soci	(A, F	F)
Bennett		•	۹, D		•		· ·	Soci(I			•				•	· /
Carter	Aca	ad(E	3, E) Ac	ad(D, E	E)	Soci(C, E	s) S	oci(С, Г) S	Soci	í(C,	F)
Davis	Aca	ad(E	3 , F) Ac	ad(D, F	-)	Soci(I	D, A) S	oci(D, (C) S	Soci	ĺ(D,	E)
Edwards	Aca	ad(E	Ξ, Α) Ac	ad((F, <i>P</i>	\)	Soci(I	Ξ, Β	5) S	oci(E, [D) S	Soci	(E, F	F)
Frederking	Aca	ad(E	Ξ, C) Ac	cad((F, C	C)	Soci(I	=, A) So	oci(F, C	C) S	oci	(F, E	Ξ)
		A G1	C G1	B G2	D G2	E G3	F G3			A G1	C G1	E G1	В G2	D G2	F G2	
A	G1							A	G1							
С	G1							С	G1							
В	G 2							E	G1							
D	G 2							В	G2							
E	G3							D	G2							
F	G3							F	G2							

The Group-Topic Model: Discovering Groups and Topics Simultaneously

Dataset #1: U.S. Senate

- 16 years of voting records in the US Senate (1989 2005)
- a Senator may respond Yea or Nay to a resolution
- 3423 resolutions with text attributes (index terms)
- 191 Senators in total across 16 years

S.543

Title: An Act to reform Federal deposit insurance, protect the deposit insurance funds, recapitalize the Bank Insurance Fund, improve supervision and regulation of insured depository institutions, and for other purposes. Sponsor: Sen Riegle, Donald W., Jr. [MI] (introduced 3/5/1991) Cosponsors (2) Latest Major Action: 12/19/1991 Became Public Law No: 102-242. Index terms: Banks and banking Accounting Administrative fees Cost control Credit Deposit insurance Depressed areas and other 110 terms

Adams (D-WA), **Nay** Akaka (D-HI), **Yea** Bentsen (D-TX), **Yea** Biden (D-DE), **Yea** Bond (R-MO), **Yea** Bradley (D-NJ), **Nay** Conrad (D-ND), **Nay**

Topics Discovered (U.S. Senate)

Mixture of Unigrams

Group-Topic Model

Education	Energy	Military Misc.	Economic		
education	energy	government	federal		
school	power	military	labor		
aid	water	foreign	insurance		
children	nuclear	tax	aid		
drug	gas	congress	tax		
students	petrol	aid	business		
elementary	research	law	employee		
prevention	pollution	policy	care		
Education	Eoroign	Economic	Social Security		
+ Domestic	Foreign	Economic	+ Medicare		
education	foreign	labor	social		
school	trade	insurance	security		
federal	chemicals	tax	insurance		
aid	tariff	congress	medical		
government	congress	income	care		
tax	drugs	minimum	medicare		
energy	communicable	wage	disability		
research	diseases	business	assistance		

Groups Discovered (US Senate)

Groups from topic *Education* + *Domestic*

Group 1	Group 3	Group 4
73 Republicans	Cohen(R-ME)	Armstrong(R-CO)
Krueger(D-TX)	Danforth(R-MO)	Garn(R-UT)
Group 2	Durenberger(R-MN)	Humphrey(R-NH)
90 Democrats	Hatfield(R-OR)	McCain(R-AZ)
Chafee,L.(R-RI)	Heinz(R-PA)	McClure(R-ID)
Jeffords(I-VT)	Jeffords(R-VT)	Roth(R-DE)
	Kassebaum(R-KS)	Symms(R-ID)
	Packwood(R-OR)	Wallop(R-WY)
	Specter(R-PA)	Brown(R-CO)
	Snowe(R-ME)	DeWine(R-OH)
	Collins(R-ME)	Thompson(R-TN)
		Fitzgerald(R-IL)
		Voinovich(R-OH)
		Miller(D-GA)
		Coleman(R-MN)

Senators Who Change Coalition the most Dependent on Topic

Senator	Group Switch Index
Shelby(D-AL)	0.6182
Heflin(D-AL)	0.6049
Voinovich(R-OH)	0.6012
Johnston(D-LA)	0.5878
Armstrong(R-CO)	0.5747

e.g. Senator Shelby (D-AL) votes with the Republicans on Economic with the Democrats on Education + Domestic with a small group of maverick Republicans on Social Security + Medicaid

Dataset #2:

The UN General Assembly

- Voting records of the UN General Assembly (1990 2003)
- A country may choose to vote Yes, No or Abstain
- 931 resolutions with text attributes (titles)
- 192 countries in total
- Also experiments later with resolutions from 1960-2003

Vote on <u>Permanent Sovereignty of Palestinian People</u>, 87th plenary meeting

The draft resolution on permanent sovereignty of the Palestinian people in the occupied Palestinian territory, including Jerusalem, and of the Arab population in the occupied Syrian Golan over their natural resources (document A/54/591) was adopted by a recorded vote of 145 in favour to 3 against with 6 abstentions:

In favour: Afghanistan, Argentina, Belgium, Brazil, Canada, China, France, Germany, India, Japan, Mexico, Netherlands, New Zealand, Pakistan, Panama, Russian Federation, South Africa, Spain, Turkey, and other 126 countries. Against: Israel, Marshall Islands, United States. Abstain: Australia, Cameroon, Georgia, Kazakhstan, Uzbekistan, Zambia.

Topics Discovered (UN)

	Everything Nuclear	Human Rights	Security in Middle East
Mixture of	nuclear	rights	occupied
Unigrams	weapons	human	israel
	use	palestine	syria
	implementation	situation	security
	countries	israel	calls
Group-Topic	Nuclear Non-proliferation	Nuclear Arms Race	Human Rights
Model	nuclear	nuclear	rights
Model	states	arms	human
	united	prevention	palestine
	weapons	race	occupied
	nations	space	israel

Groups Discovered (UN)

The countries list for each group are ordered by their 2005 GDP (PPP) and only 5 countries are shown in groups that have more than 5 members.

G	Nuclear Arsenal	Human Rights	Nuclear Arms Race
R	nuclear	rights	nuclear
0	states	human	arms
U	united	palestine	prevention
P	weapons	occupied	race
\downarrow	nations	israel	space
	Brazil	Brazil	UK
	Columbia	Mexico	France
1	Chile	Columbia	Spain
	Peru	Chile	Monaco
	Venezuela	Peru	East-Timor
	USA	Nicaragua	India
	Japan	/ Papua	Russia
2	Germany	Rwanda	Micronesia
	UK	Swaziland	
	Russia	Fiji	
	China	USA	Japan
	India	Japan	Germany
3	Mexico	Germany	Italy
	Iran	UK /	Poland
	Pakistan	Russia	Hungary
	Kazakhstan	China	China
	Belarus	India	Brazil
4	Yugoslavia	Indonesia	Mexico
	Azerbaijan	Thailand	Indonesia
	Cyprus	Philippines	Iran
	Thailand	Belarus	USA
	Philippines	Turkmenistan	Israel
5	Malaysia	Azerbaijan	Palau
	Nigeria	Uruguay	
	Tunisia	Kyrgyzstan	

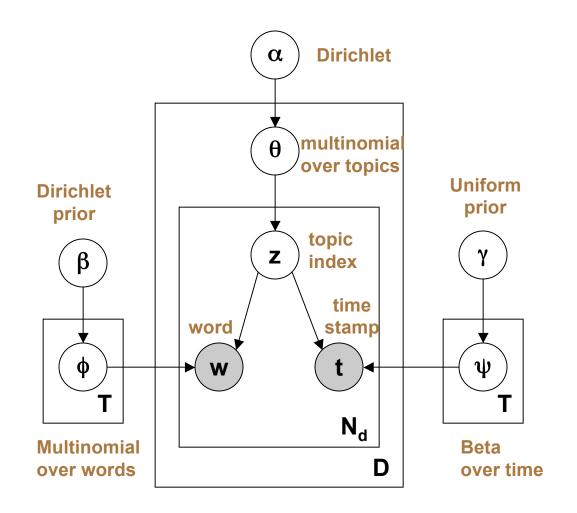
Groups and Topics, Trends over Time (UN)

Time					Group d	istributions fo	r Topic 3	
Period	Topic 1	Topic 2	Topic 3	Group 1	Group2	Group3	Group4	Group5
	Nuclear	Procedure	Africa Indep.	India	USA	Argentina	USSR	Turkey
	operative	committee	calling	Indonesia	Japan	Colombia	Poland	
60-75	general	amendment	right	Iran	UK	Chile	Hungary	
	nuclear	assembly	africa	Thailand	France	Venezuela	Bulgaria /	
	power	deciding	self	Philippines	Italy	Dominican	Belarus	
	Independence	Finance	Weapons	Cuba	India	Algeria	USSR	USA
	territories	budget	nuclear	Albania	Indonesia	Iraq	Poland	Japan
65-80	independence	appropriation	UN		Pakistan	Syria	Hungary	UK
	self	contribution	international		Saudi	Libya	Bulgaria	France
	colonial	income	weapons		Egypt	Afganistan	Belarus	Italy
	N. Weapons	Israel	Rights	Mexico	China	USA	Brazil	India
	nuclear	israel	africa	Indonesia		Japan	Turkey	USSR
70-85	international	measures	territories	Iran		UK	Argentina	Poland
	UN	hebron	south	Thailand		France	Colombia	Vietnam
	human	expelling	right	Philippines		Italy	Chile	Hungary
	Rights	Israel/Pal.	Disarmament	Mexico	USA	Algeria	China	India
	south	israel	UN	Indonesia	Japan	Vietnam	Brazil	
75 - 90	africa	arab	international	Iran	UK	Iraq	Argentina	
	israel	occupied	nuclear	Thailand	France	Syria /	Colombia	
	rights	palestine	disarmament	Philippines	USSR	Libya	Chile	
	Disarmament	Conflict	Pal. Rights	USA	China	Japan	Guatemala	Malawi
	nuclear	need	rights	Israel	India	UK	St Vincent	
80-95	US	israel	palestine		Russia	France	Dominican	
	disarmament	palestine	israel		Spain	Italy		
	international	secretary	occupied		Hungary	Canada		
	Weapons	Rights	Israel/Pal.	Poland	China	USA	Russia	Cameroon
	nuclear	rights	israeli	Czech R.	India	Japan	Argentina	Congo
85-00	weapons	human	palestine	Hungary	Brazil	UK	Ukraine	Ivory C.
	use	fundamental	occupied	Bulgaria	Mexico	France	Belarus	Liberia
	international	freedoms	disarmament	Albania	Indonesia	Italy	Malta	

Social Network Analysis with Links and Text

Role Discovery Group Discovery **Trend Discovery** Community Discovery Impact Measurement

Groups and Topics, Trends over Time (UN)


Time					Group d	istributions fo	r Topic 3	
Period	Topic 1	Topic 2	Topic 3	Group 1	Group2	Group3	Group4	Group5
	Nuclear	Procedure	Africa Indep.	India	USA	Argentina	USSR	Turkey
	operative	committee	calling	Indonesia	Japan	Colombia	Poland	
60-75	general	amendment	right	Iran	UK	Chile	Hungary	
	nuclear	assembly	africa	Thailand	France	Venezuela	Bulgaria /	
	power	deciding	self	Philippines	Italy	Dominican	Belarus	
	Independence	Finance	Weapons	Cuba	India	Algeria	USSR	USA
	territories	budget	nuclear	Albania	Indonesia	Iraq	Poland	Japan
65-80	independence	appropriation	UN		Pakistan	Syria	Hungary	UK
	self	contribution	international		Saudi	Libya	Bulgaria	France
	colonial	income	weapons		Egypt	Afganistan	Belarus	Italy
	N. Weapons	Israel	Rights	Mexico	China	USA	Brazil	India
	nuclear	israel	africa	Indonesia		Japan	Turkey	USSR
70-85	international	measures	territories	Iran		UK	Argentina	Poland
	UN	hebron	south	Thailand		France	Colombia	Vietnam
	human	expelling	right	Philippines		Italy	Chile	Hungary
	Rights	Israel/Pal.	Disarmament	Mexico	USA	Algeria	China	India
	south	israel	UN	Indonesia	Japan	Vietnam	Brazil	
75 - 90	africa	arab	international	Iran	UK	Iraq	Argentina	
	israel	occupied	nuclear	Thailand	France	Syria /	Colombia	
	rights	palestine	disarmament	Philippines	USSR	Libya	Chile	
	Disarmament	Conflict	Pal. Rights	USA	China	Japan	Guatemala	Malawi
	nuclear	need	rights	Israel	India	UK	St Vincent	
80-95	US	israel	palestine		Russia	France	Dominican	
	disarmament	palestine	israel		Spain	Italy		
	international	secretary	occupied		Hungary	Canada		
	Weapons	Rights	Israel/Pal.	Poland	China	USA	Russia	Cameroon
	nuclear	rights	israeli	Czech R.	India	Japan	Argentina	Congo
85-00	weapons	human	palestine	Hungary	Brazil	UK	Ukraine	Ivory C.
	use	fundamental	occupied	Bulgaria	Mexico	France	Belarus	Liberia
	international	freedoms	disarmament	Albania	Indonesia	Italy	Malta	

Want to Model Trends over Time

- Pattern appears only briefly
 - Capture its statistics in focused way
 - Don't confuse it with patterns elsewhere in time
- Is prevalence of topic growing or waning?
- How do roles, groups, influence shift over time?

Topics over Time (TOT)

[Wang, McCallum, KDD 2006]

State of the Union Address

208 Addresses delivered between January 8, 1790 and January 29, 2002.

To increase the number of documents, we split the addresses into paragraphs and treated them as 'documents'. One-line paragraphs were excluded. Stopping was applied.

- 17156 'documents'
- 21534 words
- 669,425 tokens

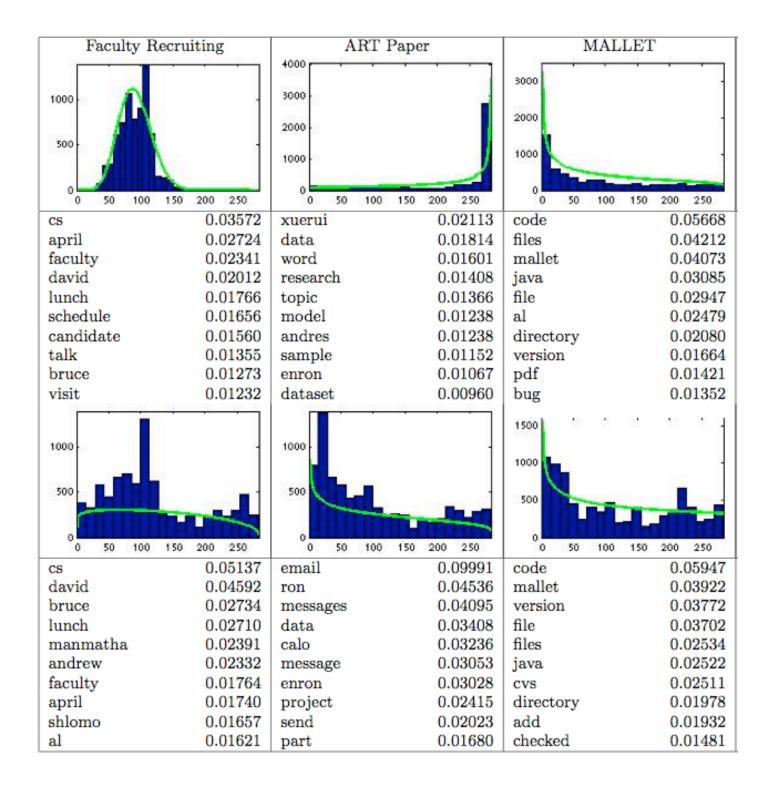
Our scheme of taxation, by means of which this needless surplus is taken from the people and put into the public Treasury, consists of a tariff or duty levied upon importations from abroad and internal-revenue taxes levied upon the consumption of tobacco and spirituous and malt liquors. It must be conceded that none of the things subjected to internal-revenue taxation are, strictly speaking, necessaries. There appears to be no just complaint of this taxation by the consumers of these articles, and there seems to be nothing so well able to bear the burden without hardship to any portion of the people.

Comparing

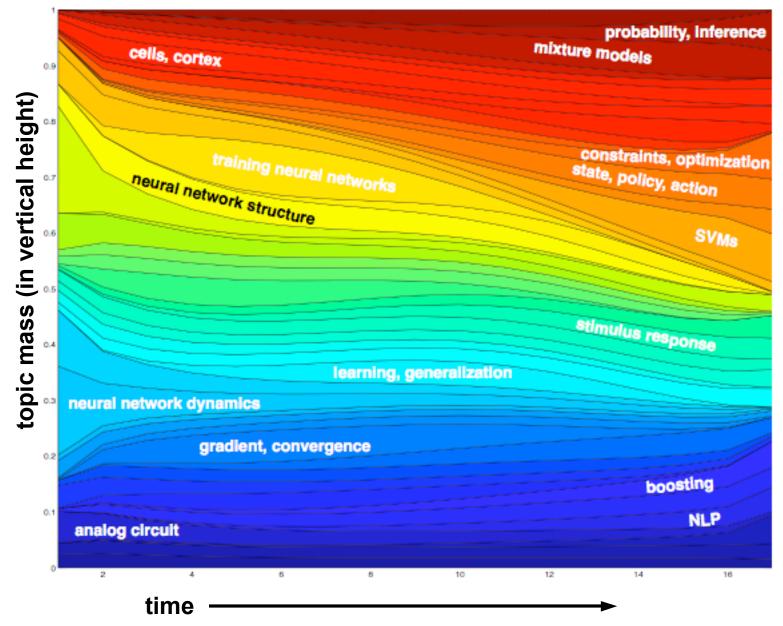
ΤΟΤ

against

LDA


Mexican	War	Panama C	anal	Cold War		
6000		6000		4000		
+000		4000		3000	1	
		1000		2000		
2000	1	2000		1000		
o		o		0		
1800 1850 1900	1950 2000	1800 1850 1900	1950 2000	10000	950 2000	
states	0.020	government	0.029	world	0.019	
mexico	0.018	united	0.021	states	0.017	
government	0.017	states	0.021	security	0.017	
united	0.015	islands	0.012	soviet	0.017	
war	0.011	canal	0.010	united	0.015	
congress	0.010	american	0.009	nuclear	0.015	
country	0.009	cuba	0.008	peace	0.014	
texas	0.009	made	0.007	nations	0.011	
made	0.007	general	0.007	international	0.010	
great	0.006	war	0.007	america	0.010	
5000		2500		2500		
4000		2000		2000	.	
3000		1500		1500		
2000		1000	<u> </u>	1000		
1000		500		500		
				500		
0 1800 1850 1900	1950 2000	0 1800 1850 1900	1950 2000	0 1800 1850 1900 1	950 2000	
mexico	0.067	government	0.056	defense	0.056	
government	0.023	american	0.027	military	0.038	
mexican	0.021	central	0.025	forces	0.033	
texas	0.021	canal	0.023	security	0.030	
territory	0.017	republic	0.022	strength	0.024	
part	0.016	america	0.022	nuclear	0.019	
republic	0.013	pacific	0.018	weapons	0.017	
military	0.011	panama	0.018	arms	0.013	
state	0.010	nicaragua	0.014	maintain	0.012	
make	0.009	isthmus	0.011	strong	0.011	

TOT

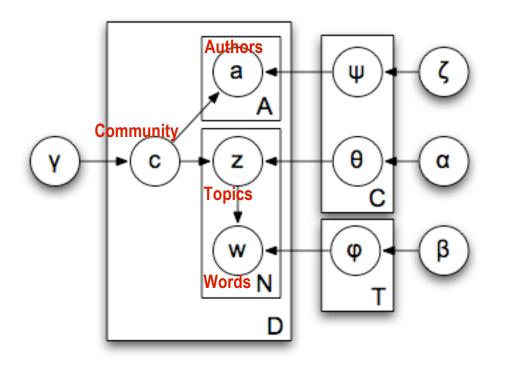

versus

LDA

on my email

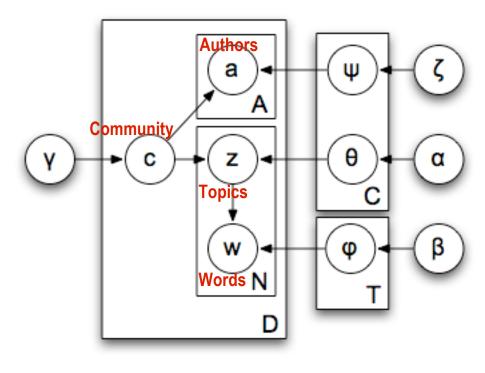
Topic Distributions Conditioned on Time

Social Network Analysis with Links and Text


Role Discovery Group Discovery Trend Discovery **Community Discovery** Impact Measurement

How do new links form in social networks?

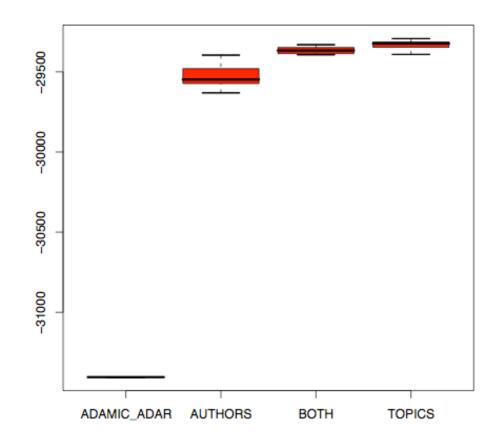
- 1) Randomly (*Poisson graph*)
- 2) Pick someone popular (*Preferential attachment*)
- 3) Pick someone with mutual friends (Adamic & Adar, Liben-Nowell & Kleinberg)
- 4) Pick someone from one of your "communities" (*Mimno, Wallach & McCallum 2007*)


Can we find communities that help predict links?

A Community-based Generative Model for Text and Co-authorships

- 1) To generate a document, we first pick a community.
- 2) The community then determines the choice of authors and topics.
- 3) From topics, we pick words.

A Community-based Generative Model for Text and Co-authorships



Graphical Model can answer various queries!

 $P(author_3 | author_1, author_2)$ $P(author_3 | author_1, author_2, text)$

P(community | authors) P (authors | community) P (text | community) P (text | authors)

Link Prediction Probability of NIPS 2004-6 Co-authorships

(Preferential attachment is much worse, at -40,121.)

Community-Author View

Ng_A	features, feature, markov, sequence, models, conditional, label, function, set
Koller_D	number, results, paper, based, function, previous, resulting, introduction, general
Parr_R	policy, learning, action, states, function, reward, actions, optimal, mdp
Abbeel_P	control, controller, model, helicopter, system, neural, forward, learning, systems
Jordan_M	model, models, press, shows, figure, related, journal, underlying, correspond
Merzenich_M	present, effect, figure, references, important, increase, similar, addition, increased
Mel_B	learning, control, reinforcement, sutton, action, space, task, trajectory, methods

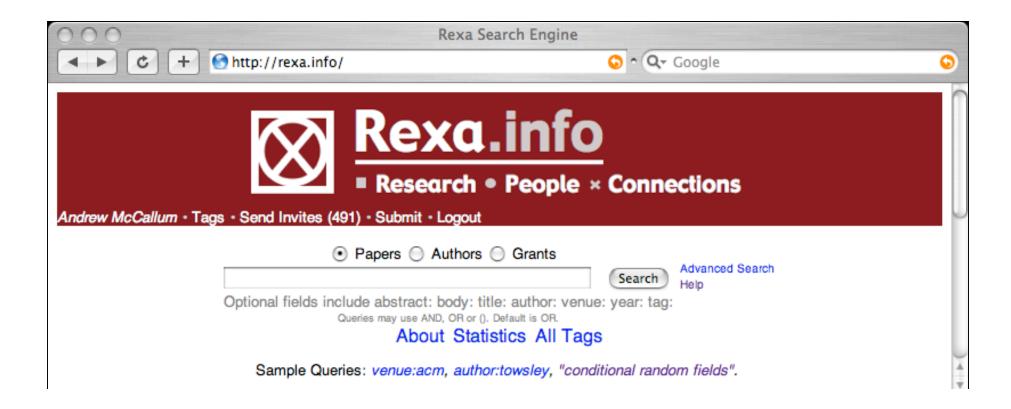
Jordan_M Jaakkola_T Saul_L Bach_F_R Singh_S Wainwright_M Nguyen_X propagation, belief, tree, nodes, node, approximation, variational, networks, bounc number, results, paper, based, function, previous, resulting, introduction, general theorem, case, proof, function, assume, set, section, algorithm, bound field, boltzmann, approximations, exact, jordan, parameters, set, step, network log, models, inference, variables, model, distribution, variational, parameters, matr problem, algorithm, optimization, methods, solution, method, problems, proposed, clustering, spectral, graph, matrix, cut, data, clusters, eigenvectors, normalized

Community-Author-Topic View

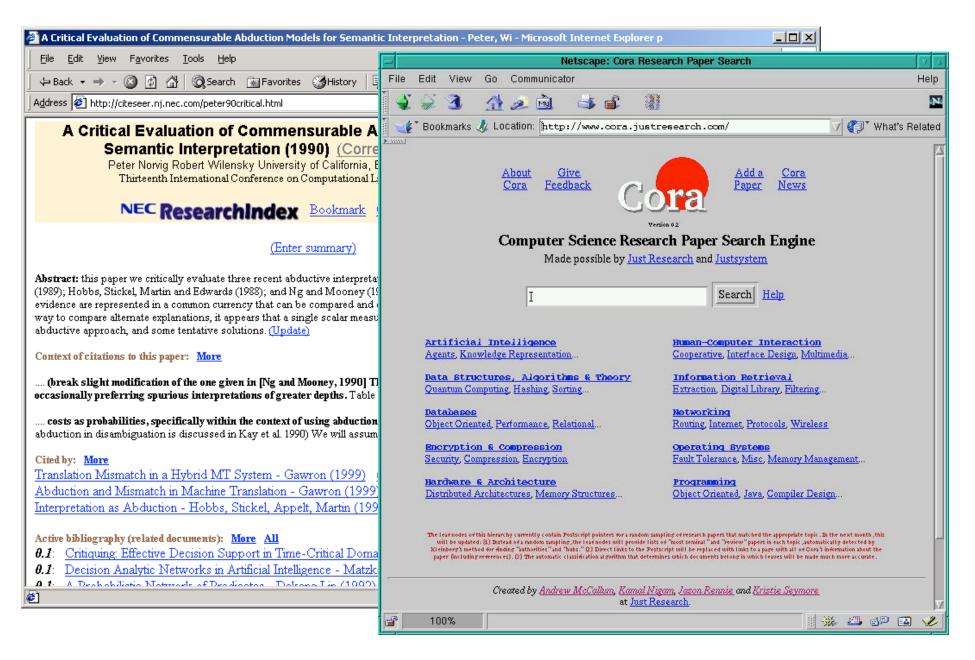
Griffiths_T_L Singer_Y Blei_D Goldwater_S Jordan_M Johnson_M Campbell_W words, model, word, documents, document, text, topic, distribution, mixture suffix, algorithm, feature, adaptor, space, model, kernels, strings, natural learning, category, naive, definition, estimation, single, figure, applied, obtain set, labels, analysis, adclus, pmm, function, evaluation, problem, alphabet number, results, paper, based, function, previous, resulting, introduction, general prior, posterior, distribution, bayesian, likelihood, data, models, probability, model target, task, visual, figure, contrast, attention, search, orientation, discrimination

Jordan_M Willsky_A Jaakkola_T Saul_L Wiegerinck_W Kappen_H Wainwright_M propagation, belief, tree, nodes, node, approximation, variational, networks, bounc field, boltzmann, approximations, exact, jordan, parameters, set, step, network log, models, inference, variables, model, distribution, variational, parameters, matr network, variables, node, inference, distribution, nodes, algorithm, message, tree number, results, paper, based, function, previous, resulting, introduction, general theorem, case, proof, function, assume, set, section, algorithm, bound mixture, data, gaussian, density, likelihood, parameters, distribution, model, function

Kawato_M Jordan_M Barto_A


control, motor, learning, arm, model, movement, feedback, movements, hand eye, vor, visual, desired, field, controller, force, cerebellum, vestibular neural, data, activity, figure, firing, movement, motor, speech, dynamics present effect figure references important increase similar addition increased

Social Network Analysis with Links and Text


Role Discovery Group Discovery Trend Discovery Community Discovery Impact Measurement

Our Data

- Over 1.6 million research papers, gathered as part of *Rexa.info* portal.
- Cross linked references / citations.

Previous Systems

'conditional random fields"

Scholar

Results 1 - 10 of about 154 for "conditional random fields". (0.09 seconds)

À

[PDF] Conditional random fields: Probabilistic models for segmenting and labeling sequence data

J Lafferty, A McCallum, F Pereira - View as HTML - Cited by 117

Page 1. Conditional Random Fields: Probabilistic Models. for Segmenting and Labeling Sequence Data. John Lafferty j. LAFFERTY @ CS . CMU . EDU. Andrew McCallum ... Proc. 18th International Conf. on Machine Learning, 2001 - aladdin.cs.cmu.edu - <u>cis.upenn.edu</u> - <u>nlp.cs.nyu.edu</u> - <u>portal.acm.org</u> - <u>all 5</u> versions »

[PDF] Shallow parsing with conditional random fields

F Sha, F Pereira - View as HTML - Cited by 34

Page 1. Shallow Parsing with Conditional Random Fields. Fei Sha and Fernando

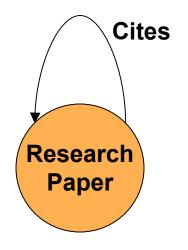
Pereira Department of Computer and Information Science ...

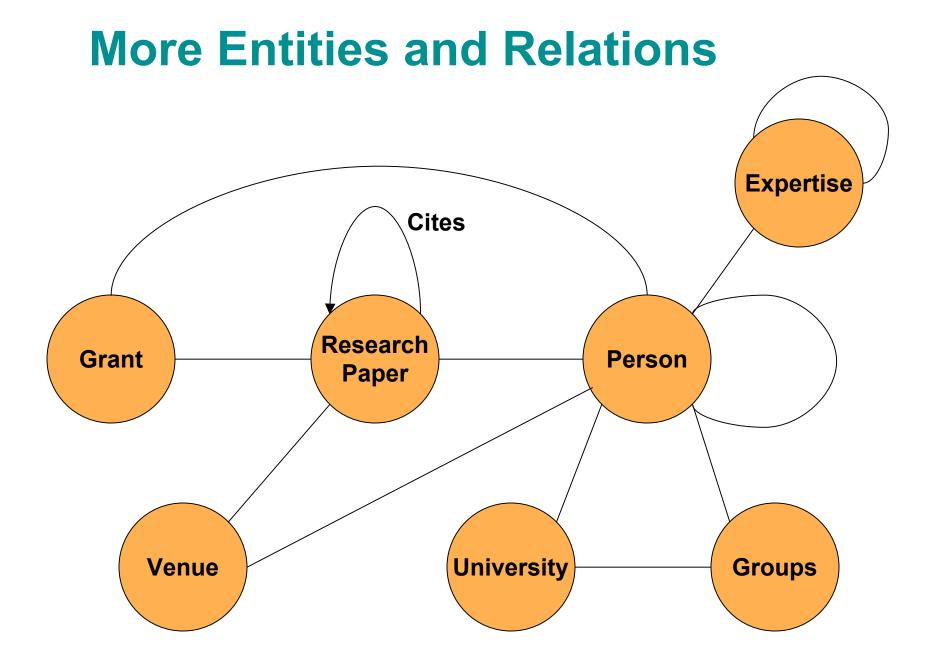
Proceedings of Human Language Technology, NAACL, 2003 - Idc.upenn.edu - acl.eldoc.ub.rug.nl - acl.Idc.upenn.edu - tangra.si.umich.edu - all 8 versions »

[PDF] Efficiently inducing features of conditional random fields

A McCallum - View as HTML - Cited by 16

Page 1. Efficiently Inducing Features of **Conditional Random Fields**. Andrew McCallum Computer Science Department University of Massachusetts ... Nineteenth Conference on Uncertainty in Artificial ..., 2003 - ciir.cs.umass.edu - <u>cs.umass.edu</u> - <u>cs.umass.edu</u>


[PDF] Table extraction using conditional random fields


D Pinto, A McCallum, X Wei, WB Croft - <u>Cited by 15</u> Page 1. Table Extraction Using **Conditional Random Fields**. David Pinto, Andrew McCallum, Xing Wei, W. Bruce Croft Center for Intelligent ... SIGIR'03, 2003 - portal.acm.org - <u>cs.umass.edu</u> - <u>cs.umass.edu</u> - <u>ciir.cs.umass.edu</u> - <u>all 5 versions »</u>

[PDF] Early Results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web ... A McCallum, W Li - <u>View as HTML</u> - <u>Cited by 9</u> Page 1. Early Results for Named Entity Recognition with Conditional Random

Fields, Feature Induction and Web-Enhanced Lexicons. Andrew ...

Previous Systems

Sponsored by :

Our work in automated information extraction and co-reference is far from finished. Please excuse the inaccuracies and missing data while we continue our work in progress. Version 1.0 © 2006 Created by:IESL, Department of Computer Science, University of Massachusetts

About Rexa · Help · Privacy Policy · Robot · Send feedback to rexa-discuss@cs.umass.edu.

Rexa \frown ▶ http://rexa.info/results?pager.offset=0&pager.offset=0&searchIndex=paper G. 12 Papers ① Authors ① Grants Rexa.info Search table extraction Optional fields include abstract: body: title: author: venue: year: tag: Research • People × Connections Queries may use AND, OR or (). Default is OR. Andrew McCallum • Tags • Send Invites (477) • Submit • Logout Search among papers using guery table extraction Results 1-10 of about 151488

1. Table extraction using conditional random fields David Pinto, Andrew McCallum, Xin Wei, W. Bruce Croft

SIGIR, 2003

The ability to find tables and extract information from them is a necessary component of data mining, question answering, and other information retrieval tasks. Documents often contain tables in order to communicate densely packed, multi-dimensional information. Tables do this by employing layout patterns to efficiently indicate fields and records in two-dimensional form. Their rich combination of formatting and content present difficulties for traditional language modeling techniques, however. This paper presents ... (17 citations)

2. Learning table extraction from examples A. Tengli, Yun Yang, Nianli Ma

In Proceedings of the 20th International Conference on Computational Linguistics (COLING, 2004 (0 citations)

3. Computational Aspects of Resilient Data Extraction from Semistructured Sources Hasan Davulcu, Guizhen Yang, Michael Kifer, idhar Ramakrishnan

PODS, 2000

Automatic data **extraction** from semistructured sources such as HTML pages is rapidly growing into a problem of signi#cant importance, spurred by the growing popularity of the so called "shopbots" that enable end users to compare prices of goods and other services at various web sites without having to manually browse and fill out forms at each one of these sites. The main problem one has to contend with when designing (5 citations)

4. Learning Information Extraction Rules for Semi-Structured and Free Text Stephen Soderland

Machine Learning vol 34, pages 233, 1999

A wealth of on-line text information can be made available to automatic processing by information **extraction** (IE) systems. Each IE application needs a separate set of rules tuned to the domain and writing style. WHISK helps to overcome this knowledgeengineering bottleneck by learning text **extraction** rules automatically. WHISK is designed to handle text styles ranging from highly structured to free text, including text that is neither rigidly formatted nor composed (82 citations)

Automatic Table Ground Truth Generation and a Background-Analysis-Based Table Structure Extraction Method

.....

) \ominus 😑 Rexa: Pinto 2003 Table extracti	on using conditional random fields 🤤
🛛 🔹 👘 🥵 🔯 http://rexa.info/paper?id=5CC36DAB028	8BF4CB0F5EA126434704AD390A8 🔻 💽
Research • People × Connections	Papers Authors Grants Search Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.
able extraction using conditional random fields avid Pinto, Andrew McCallum, Xin Wei, W. Bruce Croft SIGIR, 2003 [Edit] [Email link]	<i>Download:</i> ciir.cs.umass.edu, www.cs.umass.edu, Rexa cached <i>Find in:</i> Google, GScholar, Citeseer, DBLP, Yahoo!, MSN, Rexa Raw
yout features ^x conditional random fields ^x dd Note]	inf information extraction 3 tags inference 1 tags
 bstract: he ability to find tables and extract information from them is a eccessary component of data mining, question answering, and other formation retrieval tasks. Documents often contain tables in order to communicate densely packed, multi-dimensional information. Tables to this by employing layout patterns to efficiently indicate fields and ecords in two-dimensional form. Their rich combination of formatting and content present difficulties for traditional language modeling echniques, however. This paper presents the use of conditional andom fields (CRFs) for table extraction, and compares them with dden Markov models (HMMs). Unlike HMMs, [Expand] eferences: (16) Sorted by date I citations I alphabetically Fei Sha, Fernando C N Pereira. Shallow Parsing with Conditional Random Fields. HLT-NAACL, 2003 (42 citations) Andrew Kachites McCallum. MALLET: a machine learning for language toolkit. 2002 (9 citations) David Pinto, Michael S. Brandstein, RE Coleman, W. Bruce Croft, Matthew King, Wei Li, Xin Wei. QuASM: a system for question answering using semi-structured data. JCDL, 2002 (2 citations) Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky. Exact MAP Estimates by (Hyper)tree Agreement. NIPS, 2002 (5 	 Bibtex Entry: Tean; @inproceedings{pinto2003table, author = "David Pinto and Andrew McCallum and Xin Wei and W. Bruce Croft", title = "Table extraction using conditional random fields", booktitle = "SIGIR", pages = "235", year = "2003" } Topics: experimental results (20.2%), classification (13.1%), information retrieval (10.1%), speech recognition (9.1%), operations (7.1%), en automatique (6.1%), data (4%), escherichia coli (3%) Citings: (17) Sorted by date I citations I alphabetically Trevor Cohn, Alvy Ray Smith, Melissa Osborne. Scaling Conditional Random Fields Using Error-Correcting Codes. Association for Computational Linguistics, pages 10-17, 2005 (2 citations) Charles A. Sutton, Khashayar Rohanimanesh, Andrew McCallum. Dynamic conditional random fields: factorized

Rexa: W. Bruce Croft

Mttp://rexa.info/author?id=DD3413947C0716FD5B95E4912C16BC8E9F721 G.

Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Rexa.info

W. Bruce Croft [Google][EditInfo][SendInvite][EmailIlink]

3

Distinguished Professor Department of Computer Science, University of Massachusetts BRUCE CROFT, Amherst, MA, 01003-9264 Email: croftg@cs.umass.edu URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date I citations

- 2004 Donald Metzler, W. Bruce Croft. Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. vol 40, pages 735, 2004 (1 citation)
 - Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
 - Andrés Corrada-Emmanuel, W. Bruce Croft, Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
 - Chirag Shah, W. Bruce Croft. Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
 - Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor R. Lesser. A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
 - Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal multiple-bernoulli models for language modeling. SIGIR, 2004 (0 citations)
 - Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)
- W. Bruce Croft. Language Models for Information Retrieval. 2003 ODE 0000 (0

Papers ① Authors ① Grants

Search

 \frown

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

Co-authors | Cited authors | Citing authors: (1 to 40 of 257) Sorted by date I number I name

- Victor Lavrenko, 2004 2003 2002 2002 2001 2001 2222 2222
- Stephen Cronen-Townsend, 2004 2002 2001 ????
- Donald Metzler, 2004 2004 2003
- Xiaoyong Liu, 2004 2002
- Andrés Corrada-Emmanuel, 2004
- Victor R. Lesser, 2004
- Brian N. Levine, 2004
- Chirag Shah, 2004
- Haizheng Zhang, 2004
- Yu Zhou, 2004
- James P. Callan, 2003 2001 1997 1996 1996 1995 1993 1993 1993 1992 1992 ???? ???? ????
- Howard R. Turtle, 2003 1999 1997 1996 1993 1992 4

Done

http://rexa.info/author?id=DD3413947C0716FD5B95E4912C16BC8E9F721

Papers C Authors C Grants

Search

 \bigcirc

*

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

G.

W. Bruce Croft [Google][EditInfo][SendInvite][EmailIlink]

Rexa.info

Distinguished Professor Department of Computer Science, University of Massachusetts BRUCE CROFT, Amherst, MA, 01003-9264 Email: croftg@cs.umass.edu URL: http://ciir.cs.umass.edu/personnel/croft.html

Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date citations

- James P. Callan, Zhihong Lu, W. Bruce Croft. Searching ~ 90 Distributed Collections with Inference Networks, SIGIR, 1995 (84 citations)
 - James P. Callan, W. Bruce Croft, Stephen M. Harding. The INQUERY Retrieval System. DEXA, 1992 (80 citations)
- Jay M. Ponte, W. Bruce Croft. A Language Modeling Approach to ~ 80 Information Retrieval. SIGIR, 1998 (77 citations)
- Jinxi Xu, W. Bruce Croft. Query Expansion Using Local and Global Document Analysis. SIGIR, 1996 (63 citations) ~ 70
 - Nicholas J. Belkin, W. Bruce Croft. Information Filtering and Information Retrieval: Two Sides of the Same Coin. Commun. ACM vol 35, pages 29, 1992 (63 citations)
- · Howard R. Turtle, W. Bruce Croft. Evaluation of an Inference ~ 50 Network-Based Retrieval Model. ACM Trans. Inf. Syst. vol 9, pages 187, 1991 (48 citations)
- Isidro Laso Ballesteros, W. Bruce Croft. Phrasal Translation and ~ 40 Query Expansion Techniques for Cross-language Information Retrieval. SIGIR, 1997 (39 citations)
 - · Isidro Laso Ballesteros, W. Bruce Croft. Resolving Ambiguity for Cross-Language Retrieval, SIGIR, 1998 (36 citations)

Co-authors | Cited authors | Citing authors: (1 to 40 of 257) Sorted by date I number I name

- Victor Lavrenko, 2004 2003 2002 2002 2001 2001 2222 2222
- Stephen Cronen-Townsend, 2004 2002 2001 ????
- Donald Metzler, 2004 2004 2003
- Xiaoyong Liu, 2004 2002
- Andrés Corrada-Emmanuel, 2004
- Victor R. Lesser, 2004
- Brian N. Levine, 2004
- Chirag Shah, 2004
- Haizheng Zhang, 2004
- Yu Zhou, 2004
- James P. Callan, 2003 2001 1997 1996 1996 1995 1993 1993 1993 1992 1992 ???? ???? ????
- Howard R. Turtle, 2003 1999 1997 1996 1993 1992 1992 1991 1991 1991 1990 1990 1990 1989

Mttp://rexa.info/author?id=DD3413947C0716FD5B95E4912C16BC8E9F721 G.

Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Rexa.info

W. Bruce Croft [Google][EditInfo][SendInvite][EmailIlink]

2

Distinguished Professor Department of Computer Science, University of Massachusetts BRUCE CROFT, Amherst, MA, 01003-9264 Email: croftg@cs.umass.edu URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date | citations

- 2004 Donald Metzler, W. Bruce Croft. Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. vol 40, pages 735, 2004 (1 citation)
 - Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
 - Andrés Corrada-Emmanuel, W. Bruce Croft, Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
 - Chirag Shah, W. Bruce Croft. Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
 - Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor R. Lesser. A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
 - Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal multiple-bernoulli models for language modeling. SIGIR, 2004 (0 citations)
 - Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)
- W. Bruce Croft. Language Models for Information Retrieval. 2003 ODE 0000 (0

Papers O Authors O Grants

Search

 \frown

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

> Co-authors | Cited authors | Citing authors: (1 to 40 of 257) Sorted by date | number | name

- James P. Callan, 2003 2001 1997 1996 1996 1995 1993 1993 1993 1992 1992 ???? ???? ????
- Howard R. Turtle, 2003 1999 1997 1996 1993 1992 1992 1991 1991 1991 1990 1990 1990 1989
- John Broglio, 1996 1996 1996 1995 1995 1994 1994 1994 1994 1994 1993
- Nicholas J. Belkin, 2003 2002 1993 1992 1990 1987 1987 1987 ????
- Victor Lavrenko, 2004 2003 2002 2002 2001 2001 ???? ????
- James Allan, 2003 2003 2002 2000 1997 1996 1995
- Jinxi Xu, 2003 2000 1999 1998 1998 1996 1995
- Isidro Laso Ballesteros, 1998 1998 1998 1997 1997 1996 1996

.....

Mttp://rexa.info/author?id=DD3413947C0716FD5B95E4912C16BC8E9F721 G.

Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Rexa.info

W. Bruce Croft [Google][EditInfo][SendInvite][EmailIlink]

Distinguished Professor Department of Computer Science, University of Massachusetts BRUCE CROFT, Amherst, MA, 01003-9264 Email: croftg@cs.umass.edu URL: http://ciir.cs.umass.edu/personnel/croft.html

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date I citations


- 2004 Donald Metzler, W. Bruce Croft. Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. vol 40, pages 735, 2004 (1 citation)
 - Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
 - Andrés Corrada-Emmanuel, W. Bruce Croft, Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
 - Chirag Shah, W. Bruce Croft. Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
 - Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor R. Lesser. A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
 - Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal multiple-bernoulli models for language modeling. SIGIR, 2004 (0 citations)
 - Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)
- W. Bruce Croft. Language Models for Information Retrieval. 2003 ICDE, 2003 (0 citations)
 - W. Bruce Croft. John Lafferty. Language Modeling for Information

Papers O Authors O Grants

Search

 \frown

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

Co-authors | Cited authors | Citing authors: (1 to 40 of 368) Sorted by date | number | name

- W. Bruce Croft, 2004 2003 2002 2002 2001 2000 2000 1999 1999 1998 1998 1997 1997 1997 2222 2222
- James P. Callan, 2001 1999 1997 1995 1995 1995 1994 1994 1994 1994 1993 1992
- Ellen M. Voorhees, 2002 2001 2000 2000 1999 1994 1993 1993 1983
- James Allan, 1999 1998 1997 1995 1993 ????
- Howard R. Turtle, 1994 1992 1991 1991 1991 1990
- Justin Zobel, 2001 1996 1994 1994 1992
- John Broglio, 1996 1995 1994 1994 1994
- Hector Garcia-Molina, 1995 1994 1994 1993 ????
- Donna Harman, 1995 1992 1992 1991 1988

Mttp://rexa.info/author?id=DD3413947C0716FD5B95E4912C16BC8E9F721 G.

Papers C Authors C Grants

Search

 \frown

Optional fields include abstract: body: title: author: venue: year: tag: Queries may use AND, OR or (). Default is OR.

W. Bruce Croft [Google][EditInfo][SendInvite][EmailIlink]

Rexa.info

2

Distinguished Professor Department of Computer Science, University of Massachusetts BRUCE CROFT, Amherst, MA, 01003-9264 Email: croftg@cs.umass.edu URL: http://ciir.cs.umass.edu/personnel/croft.html

Research • People × Connections

Andrew McCallum • Tags • Send Invites (477) • Submit • Logout

Publications: (1 to 40 of 233) (total 1436 citations) Sorted by date | citations

- 2004 Donald Metzler, W. Bruce Croft. Combining the language model and inference network approaches to retrieval. Inf. Process. Manage. vol 40, pages 735, 2004 (1 citation)
 - Xiaoyong Liu, W. Bruce Croft. Cluster-based retrieval using language models. SIGIR, 2004 (0 citations)
 - Andrés Corrada-Emmanuel, W. Bruce Croft. Answer models for question answering passage retrieval. SIGIR, 2004 (0 citations)
 - Chirag Shah, W. Bruce Croft. Evaluating high accuracy retrieval techniques. SIGIR, 2004 (1 citation)
 - Haizheng Zhang, W. Bruce Croft, Brian N. Levine, Victor R. Lesser. A Multi-Agent Approach for Peer-to-Peer Based Information Retrieval System. AAMAS, 2004 (1 citation)
 - Donald Metzler, Victor Lavrenko, W. Bruce Croft. Formal multiple-bernoulli models for language modeling. SIGIR, 2004 (0 citations)
 - Stephen Cronen-Townsend, Yu Zhou, W. Bruce Croft. A framework for selective query expansion. CIKM, 2004 (0 citations)
- W. Bruce Croft. Language Models for Information Retrieval. 2003 ICDE 2003 (0 citations)

Co-authors I Cited authors I Citing authors: (1 to 40 of 1527) Sorted by date I number I name

- W. Bruce Croft. 2004 2004 2003 2002 2002 2002 2002 2001 1998 1997 1997 1997 1996 1995 1995 1994 1994 1993 1992 ???? ???? ???? ???? ???? 2222 2222 2222
- James Allan, 2004 2003 2002 2002 2001 2001 2000 1998 1998 1996 1996 1994 1993 ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
- Douglas W. Oard, 2003 2003 2003 2002 1999 1998 1998 1996 1996 1995 ???? ???? ???? ???? ???? 7777 7777 7777 7777 7777 7777 7777
- Victor Lavrenko, 2004 2004 2003 2002 2001 2000 1998 1996 ???? ???? ???? ???? ???? ???? 2222 2222 2222
- James P. Callan, 2004 2003 2002 2002 2001 2000 2000 1996 1995 1994 1994 1994 1993 1992 ????

Tolerating Latency by Prefetching Java Objects Brendon Cahoon, Kathryn S. McKinley To appear: Workshop on Hardware Support for Objects and Microarchitectures for Vava, 1999 [Edit] [Email link] Add tags at nght/ Whatisateg? Add Note] Add Note] Abstract: n recent years, processor speed has become increasingly faster than memory speed. One technique for improving memory performance is lata prefetching which is successful in array-based codes but only nor recursive method updates an object o, we prefetch objects to which or recursive method updates an object o, we prefetch objects to which or recursive method updates an object o, we prefetch objects to which or prefers. We describe inter- and intraprocedural algorithms for computing objects to prefetch and we present preliminary results Expand	🖻 😁 💮 Rexa: Cahoon 1999 Tolerating L	atency by Prefetching Java Objects
Search Search Deprivation Presearch * People * Connections Detreating Latency by Prefetching Java Objects Cuerter may use ARD, OR or(). Default is OR. Defaulting Latency by Prefetching Java Objects Download: the cs.umass.edu, Rexa cached To appear: Workshop on Hardware Support for Objects and Microarchitectures for Vava, 1999 [Edit] [Email link] Download: the cs.umass.edu, Rexa cached Add tags at right/ Whatis stag? <type a="" and="" press="" return="" tag=""> + to read* reading group + recommended + hot + semmal + survey + turbust + classe + controvenal + mory used Abstraction are researchers applying to pointer-based codes. In this paper, we avaluate a data prefetching lechnique, called greedy prefetching, when a loop or recursive method updates an object o, we prefetch objects to which or recursive method updates an object o, we prefetch objects to which or recursive method updates an object o, we prefetch objects to which or recursive method updates an object o, we prefetch objects to which or recursive method updates an object o, we prefetch objects to which or recursive method updates an object o, we prefetch objects to which or recursive method updates an object o, we prefetch objects to which or or recursive method updates an object o, we prefetching to refers. We describe inter- and intraprocedural algorithms for computing objects to prefetch and we present preliminary results References: (1) Sorted by date I citations I alphabetically Avin Roth, Gurindar S, Sohi, Effective Jump-Pointer necursive Data Structures. ISCA, 1999 (26 citations) Structures C, 1999 (6 citations) (6 citations) <th>🔶 🔹 🚽 🔯 😢 🔯 http://rexa.info/paper?id=B4FD31A7FAB</th><th>50720CC761DD6D4CA11054B32; V Gr</th></type>	🔶 🔹 🚽 🔯 😢 🔯 http://rexa.info/paper?id=B4FD31A7FAB	50720CC761DD6D4CA11054B32; V Gr
 Bite control (alter of appear: Workshop on Hardware Support for Objects and Microarchitectures for find in: Google, GScholar, Citeseer, DBLP, Yahool, MSN, Rexa Raw Find in: Google, GScholar, Citeseer, DBLP, Yahool, MSN, Rexa Raw Carter of the control (Control (Optional fields include abstract: body: title: author: venue: year: tag:
Add Note]	Tolerating Latency by Prefetching Java Objects Brendon Cahoon, Kathryn S. McKinley <i>To appear: Workshop on Hardware Support for Objects and</i> Java, 1999 [Edit] [Email link]	Rexa cached Find in: Google, GScholar, Citeseer,
 n recent years, processor speed has become increasingly faster than nemory speed. One technique for improving memory performance is lata prefetching which is successful in array-based codes but only now are researchers applying to pointer-based codes. In this paper, we evaluate a data prefetching technique, called greedy prefetching, when a loop or recursive method updates an object o, we prefetch objects to which or refers. We describe inter- and intraprocedural algorithms for computing objects to prefetch and we present preliminary results Expand] References: (17) Sorted by date I citations I alphabetically Alvin Roth, Gurindar S. Sohi. Effective Jump-Pointer Prefetching for Linked Data Structures. ISCA, 1999 (26 citations) Trishul M. Chilimbi, Mark D. Hill, James R. Larus. Cache-Conscious Structure Layout. PLDI, 1999 (54 citations) Brad Calder, Chandra Krintz, Simmi John, Todd M. Austin. Brad Calder, Chandra Krintz, Simmi John, Todd M. Austin. 		+ to read + read + reading group + recommended + hot + seminal + survey
Deales Canasiana Deta Diasamant ACDI OC. 1000 107. IDUASIDICIDE ID SUDDOD Research OD NetWorked Multimedia	 Prefetching for Linked Data Structures. ISCA, 1999 (26 citations) Trishul M. Chilimbi, Mark D. Hill, James R. Larus. Cache-Conscious Structure Layout. PLDI, 1999 (54 citations) Shai Rubin, David Bernstein, Michael Rodeh. Virtual Cache Line: A New Technique to Improve Cache Exploitation for Recursive Data Structures. CC, 1999 (3 citations) Brad Calder, Chandra Krintz, Simmi John, Todd M. Austin. 	 @inproceedings{cahoon1999tolerating, author = "Brendon Cahoon and Kathryn S. McKinley", title = "Tolerating Latency by Prefetching Java Objects", booktitle = "To appear: Workshop on Hardware Support for Objects and Microarchitectures for Java", institution = "Department of Computer Science, University of Massachusetts", year = "1999" } <u>Topics:</u> cache (26.9%), experimental results (20.9%), memory (9%), object (6%), high (4.5%), java (4.5%), algorithms (4.5%), accuracy (4.5%), techniques (4.5%) <u>Grants:</u> (1) James F. Kurose, John A. Stankovic, Donald F. Towsley, Krithi Ramamritham, J. Eliot B Moss, W. Richards Adrion, W. Bruce Croft, Kathryn McKinley. <i>CISE Research Infrastructure:</i>
	Done	Adblock

) 😑 😁 Rexa: Kurose August 1, 1995 CISE Research Infrastructure: Infrastructure to Support Research on Networked Multimedi... 🤅

I• 🔶 - 🛃 I

🔯 http://rexa.info/grant?id=8F07FF9BAB69A62C95048A2EFC6A2BA6F254031 🔻

CISE Research Infrastructure: Infrastructure to Support Research on Networked Multimedia Information Systems [Google]

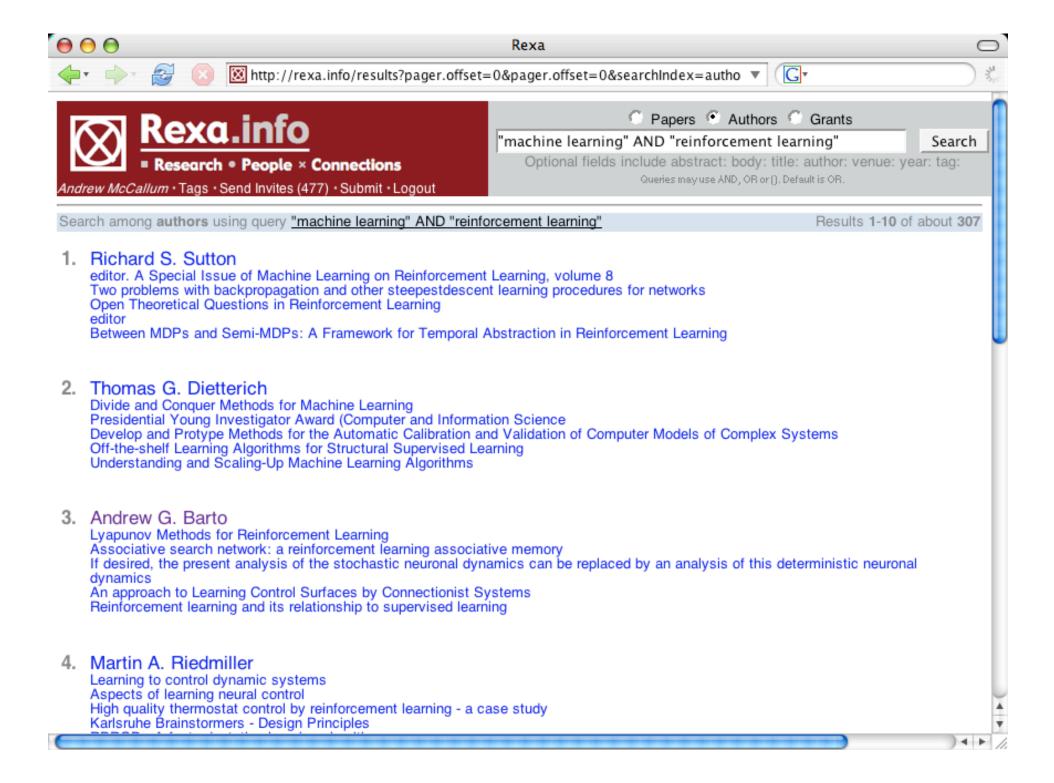
James F. Kurose, John A. Stankovic, Donald F. Towsley, Krithi Ramamritham, J. Eliot B Moss, W. Richards Adrion, W. Bruce Croft, Kathryn McKinley

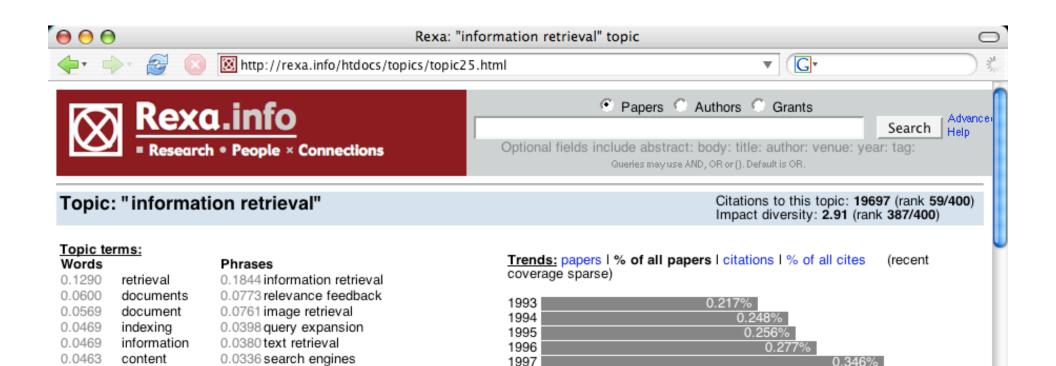
NSF Grant EIA-9502639, August 1, 1995 - December 29, 1999

Abstract:

This award provides support to equip a networked, experimental testbed to enable research in the development of the operating system, I/O, networking, object management, and information retrieval components of future networked multimedia information systems. The testbed will consist of two shared-memory multiprocessor facilities attached to several parallel mass storage I/O devices and a high-speed ATM network. The research team will be developing several key hardware and software technologies needed to support future networked, multimedia information systems. Specific research areas include operating systems, I/O, networking, object management and information retrieval.

Papers: (17) Sorted by date I citations I alphabetically


This may be only a partial list of papers for this grant.


- Emery D. Berger, Benjamin G. Zorn, Kathryn S. McKinley. *Composing High-Performance Memory Allocators*. PLDI, 2001 (7 citations)
- Brendon Cahoon, Kathryn S. McKinley. Data Flow Analysis for Software Prefetching Linked Data Structures in Java. IEEE PACT, 2001 (11 citations)

G.

- Sally Floyd, Mark Handley, Jitendra Padhye, Jörg Widmer. *Equation-based congestion control for unicast applications*. SIGCOMM, 2000 (229 citations)
- Sally Floyd, Mark Handley, Jitendra Padhye. Equation-Based Congestion Control for Unicast Applications Lambda. 2000 (7 citations)
- Supratik Bhattacharyya, Don Towsley, James F. Kurose. Design and Analysis of Loss Indication Filters for Multicast Congestion Control. CMPSCI Technical Report TR 99-46, Department of Computer Science University of Massachusetts Amherst, 2000 (0 citations)
- Kathryn S. McKinley, Olivier Temam. Quantifying loop nest locality using SPEC'95 and the perfect benchmarks. ACM Trans. Comput. Syst. vol 17, pages 288, 1999 (9 citations)
- Brendon Cahoon, Kathryn S. McKinley. Tolerating Latency by Prefetching Java Objects. To appear: Workshop on Hardware Support for Objects and Microarchitectures for Java, 1999 (3 citations)
- Jitendra Padhye, James F. Kurose, Donald F. Towsley, Rajeev Koodli. A TCP-Friendly Rate Adjustment Protocol for Continuous Media Flows over Best Effort Networks CMPSCI

4

1998

1999

2000

2001

2002

2003

2004

2005

Citing topics

0.0391

0.0273

0.0242

0.0241

- experimental results (3877)
- text (633)

auerv

relevance

collection

search

- web (610)
- query language (481)
- word (415)
- video (296)
- image (257)
- search (242)
- semantic web (217)
- information (217)
- user (199)

Cooccurring topics

- word (0.03411)
- experimental results (0.03019)
- image (0.02958)
- text (0.02817)
- web (0.02627)

Cited topics

0.0282 search engine

0.0240 image databases

0.0208 latent semantic

indexing

0.0197 relevant documents

- information (1231) experimental results (1085)
- text (705)
- web (636)
- search (558)
- word (547)
- guery language (434)
- image (415)
- access (289)
- world wide web (287)
- neural networks (214)

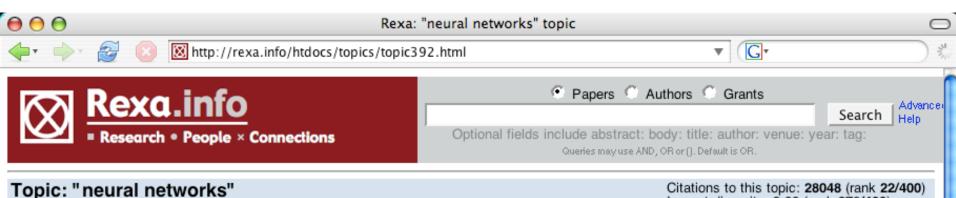
- Top papers: Sorted by citations | broadest impact | earliest
 - Gerard Salton, Chris Buckley, Term-Weighting Approaches in Automatic Text Retrieval. (257 citations)
 - Myron Flickner, Harpreet S Sawhney, Jonathan J Ashley, Qiang Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele, Peter Yanker. Query by Image and Video Content: The QBIC System. (250 citations)

0.253%

0.324%

0.414%

0.415%


0.379%

0.393%

0.419%

0.431%

- Douglas R Cutting, Jan O Pedersen, David R Karger, John W Tukey. Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections. (140 citations)
- Wayne Niblack, Ron Barber, William Equitz, Myron Flickner, Eduardo H Glasman, Dragutin Petkovic, Peter Yanker, Christos Faloutsos. Gabriel Taubin. The QBIC Project: Querying Images by Content, Using Color, Texture, and Shape. (137 citations)
- A Pentland, R Picard, S Sclaroff. Photobook: Content-based

•

Citations to this topic: 28048 (rank 22/40 Impact diversity: 3.66 (rank 278/400)

Topic terms:

Words		Phrases
0.0955	neural	0.3318 neural networks
0.0908	learning	0.1565 neural network
0.0837	training	0.0425 artificial neural networks
0.0404	network	0.0227 organizing maps
0.0365	recurrent	0.0214 associative memory
0.0360	networks	0.0171 neural nets
0.0313	organizing	0.0168 organizing map
0.0253	trained	0.0163 hidden units
0.0222	connectionist	0.0125 artificial neural network
0.0198	weights	0.0112 recurrent networks

Citing topics

- experimental results (9332)
- classification (805)
- learning (709)
- visual cortex (614)
- basal ganglia (557)
- cognitive (397)
- bayesian (384)
- university (351)
- mobile robot (334)
- genetic algorithms (321)
- speech recognition (290)

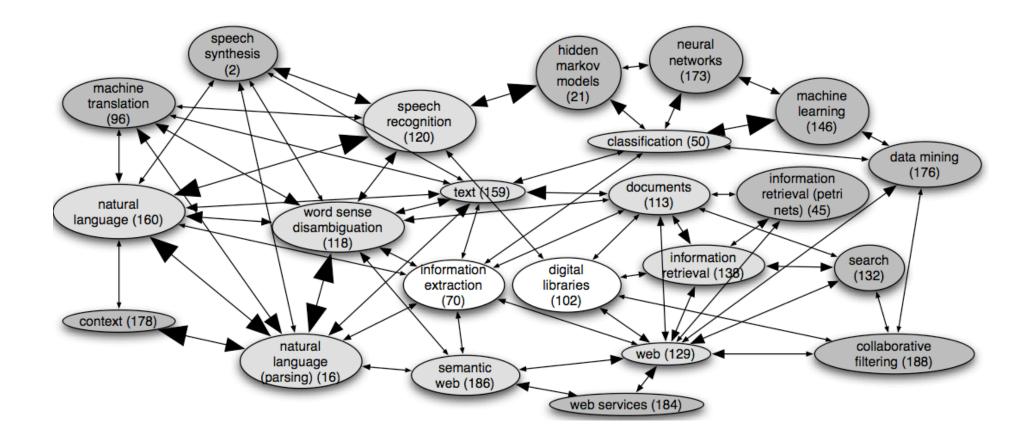
Cooccurring topics

- fuzzy (0.01314)
- genetic algorithms (0.01227)
- de (0.01125)
- recognition (0.01102)
- features (0.01024)

Cited topics

- experimental results (656)
- visual cortex (499)
- cognitive (411)
 basal ganglia (410)
- learning (387)
- error (287)
- speech recognition (252)
- curves (228)
- breast cancer (218)
- bayesian (183)
- recognition (183)

<u>Trends:</u> papers I % of all papers I citations I % of all cites (recent coverage sparse)


1993	1.183%
1994	1.078%
1995	0.916%
1996	0.763%
1997	0.644%
1998	0.529%
1999	0.438%
2000	0.388%
2001	0.345%
2002	0.264%
2003	0.200%
2004	0.139%
2005	0.112%

Top papers: Sorted by citations | broadest impact | earliest

- Kurt Hornik, Maxwell Stinchcombe, Halbert White. *Multilayer Feed-forward Neural Networks Are Universal Approximators*,. (235 citations)
- Howard A Rowley, Shumeet Baluja, Takeo Kanade. Neural Network-Based Face Detection. (197 citations)
- Stuart Geman, Elie Bienenstock, R Doursat. Neural networks and the bias/variance dilema. (167 citations)
- Teuvo Kohonen. The self-organizing map. (163 citations)
- Scott E Fahlman, Christian Lebiere. The Cascade-Correlation Learning Architecture. (147 citations)
- Anders Krogh, Jesper Vedelsby. Neural Network Ensembles, Cross Validation, and Active Learning. (101 citations)
- P Tamayo. Interpreting patterns of gene expression with self-organizing maps: methods and application, (100 citations)

Topical Transfer

Citation counts from one topic to another. Map "producers and consumers"

Topical Bibliometric Impact Measures

[Mann, Mimno, McCallum, 2006]

- Topical Citation Counts
- Topical Impact Factors
- Topical Longevity
- Topical Precedence
- Topical Diversity
- Topical Transfer

Topical Transfer

Transfer from Digital Libraries to other topics

Other topic	Cit's	Paper Title
Web Pages	31	Trawling the Web for Emerging Cyber- Communities, Kumar, Raghavan, 1999.
Computer Vision	14	On being 'Undigital' with digital cameras: extending the dynamic
Video	12	Lessons learned from the creation and deployment of a terabyte digital video libr
Graphs	12	Trawling the Web for Emerging Cyber- Communities
Web Pages	11	WebBase: a repository of Web pages

Topical Diversity

Papers that had the most influence across many other fields...

Topical	Citations	Title
Diversity		
4.00	618	A tutorial on hidden Markov models and selected applications in speech processing
3.80	138	The self-organizing map
3.77	163	Hierarchical mixtures of experts and the EM algorithm
3.74	65	Quantifying Inductive Bias: AI Learning Algorithms and
3.74	144	Knowledge Acquisition via Incremental Conceptual Clustering
3.73	155	A Tutorial on Learning With Bayesian Networks
3.72	244	Term-Weighting Approaches in Automatic Text Retrieval
3.71	294	Finding Structure in Time
3.7	173	An introduction to hidden Markov models
3.7	132	Nearest neighbor pattern classification

Topical Diversity

Entropy of the topic distribution among papers that cite this paper (this topic).

Topic	Impact Diversity	
Simulated Annealing (52)	4.59	н
Pattern Recognition (125)	4.57	D
Probabilistic Modeling (3)	4.55	
Finite Automata (66)	4.55	
Probability (89)	4.5	
Digital Libraries (102)	3.77	
Machine Translation (96)	3.32	
Mobile Robots (22)	3.31	
Graphics (9)	3.21	
Speech Recognition (120)	3.09	Lo
Computer Vision (49)	2.95	Di

High Diversity

Low Diversity

Topical Bibliometric Impact Measures

[Mann, Mimno, McCallum, 2006]

- Topical Citation Counts
- Topical Impact Factors
- Topical Longevity
- Topical Precedence
- Topical Diversity
- Topical Transfer

Topical Precedence "Early-ness"

Within a topic, what are the earliest papers that received more than *n* citations?

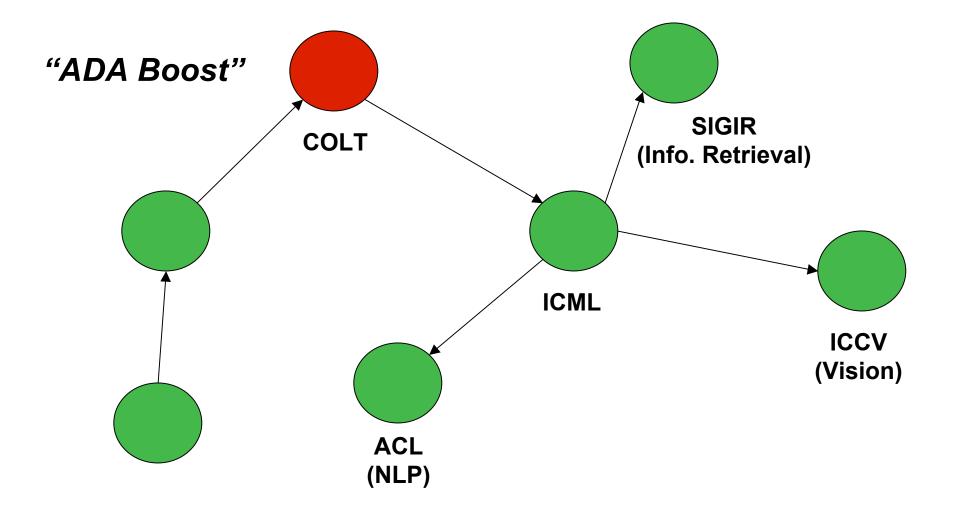
Speech Recognition:

Some experiments on the recognition of speech, with one and two ears, E. Colin Cherry (1953) Spectrographic study of vowel reduction, B. Lindblom (1963) Automatic Lipreading to enhance speech recognition, Eric D. Petajan (1965) Effectiveness of linear prediction characteristics of the speech wave for..., B. Atal (1974) Automatic Recognition of Speakers from Their Voices, B. Atal (1976)

Topical Precedence "Early-ness"

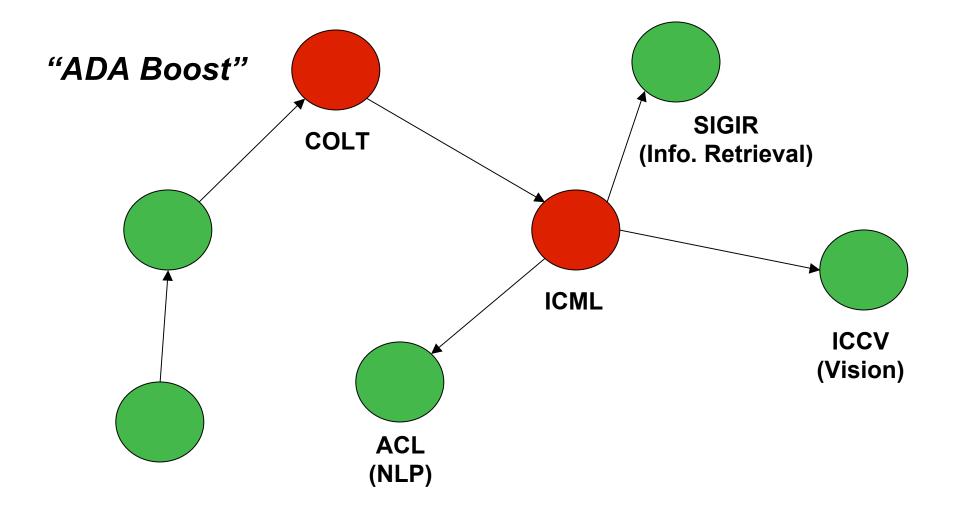
Within a topic, what are the earliest papers that received more than *n* citations?

Information Retrieval:

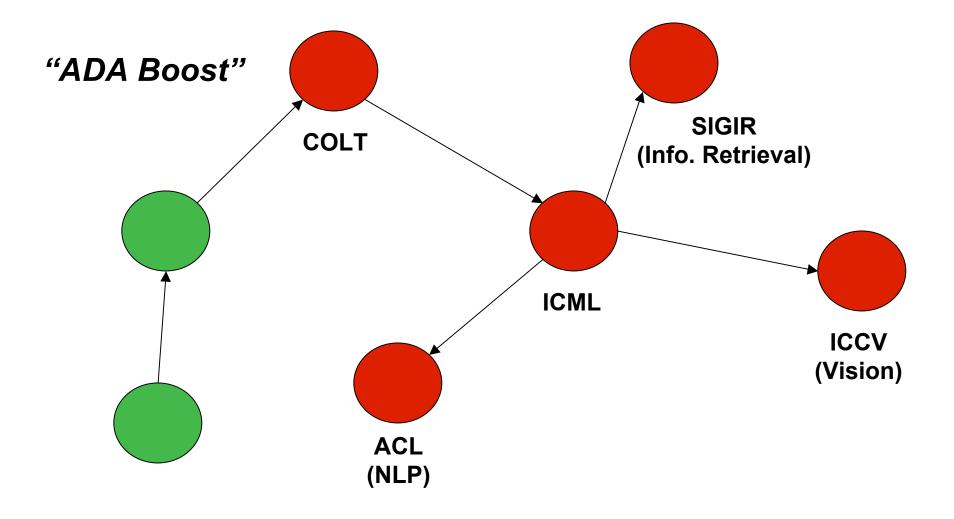

On Relevance, Probabilistic Indexing and Information Retrieval, Kuhns and Maron (1960) Expected Search Length: A Single Measure of Retrieval Effectiveness Based on the Weak Ordering Action of Retrieval Systems, Cooper (1968) Relevance feedback in information retrieval, Rocchio (1971) Relevance feedback and the optimization of retrieval effectiveness, Salton (1971) New experiments in relevance feedback, Ide (1971) Automatic Indexing of a Sound Database Using Self-organizing Neural Nets, Feiten and Gunzel (1982)

Topical Transfer Through Time

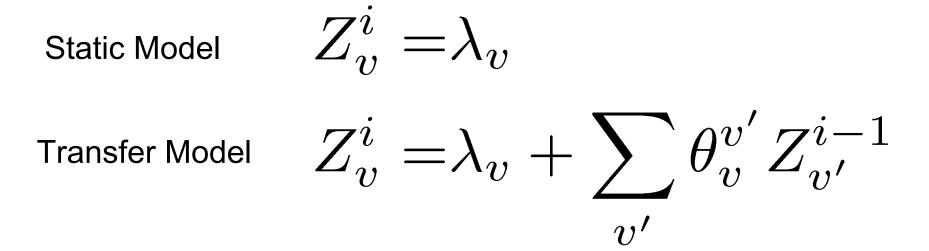
- Can we predict which research topics will be "hot" at ICML next year?
- ...based on
 - the hot topics in "neighboring" venues last year
 - learned "neighborhood" distances for venue pairs


How do Ideas Progress Through Social Networks?

Hypothetical Example:

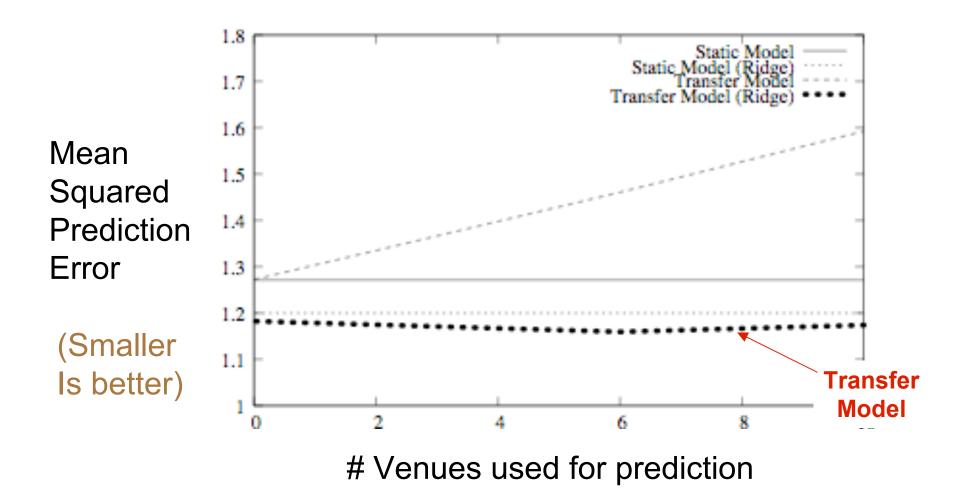

How do Ideas Progress Through Social Networks?

Hypothetical Example:



How do Ideas Progress Through Social Networks?

Hypothetical Example:


Topic Prediction Models

- Z_v^i : proportion of topic Z in venue v in year i
- λ_v : static topic coefficient
- $\theta_v^{v'}$: topic transfer coefficient

Linear Regression and Ridge Regression Used for Coefficient Training.

Preliminary Results

Transfer Model with Ridge Regression is a good Predictor

Topic Model Musings

- 3 years ago Latent Dirichlet Allocation appeared as a complex innovation ...but now these methods & mechanics are well-understood.
- Innovation now is to understand data and modeling needs, how to structure a new model to capture these.